10.1 Systems of Linear Equations: Substitution and Elimination


 Stephanie Wells
 11 months ago
 Views:
Transcription
1 10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You can have one solution, multiple solutions, infinite solutions or no solutions. Three methods of solution Graphing: Graph the two equations and find the intersection. Example Solve the following system of equations by graphing. { x y = 0 (1) 3x y = 0 () Substitution Solve one of the equations for x or y and substitute into the other equation. Example Use substitution to solve the following system of equations. { x y = 0 (1) 3x y = 0 () In this case we solve equation (1) for x and substitute into equation (). 1
2 Elimination Multiply the equations by appropriate constants so that, when you add the two equations, one variable cancels. Example Solve by elimination. { x+7y = 1 3x 5y = 10 Example Solve by any method. { 6x+5y = 3 x 5 6 y = 7
3 Example Solve by any method. { 3x+y = x 3y = 6 Example Solve by any method. { x+3y = 18 5x y = 11 3
4 Example Solve by any method. { 3 x 1 5 y = 8 x+3y = Multivariable Linear Systems We saw in section that we could solve systems of equations using the method of substitution. We can do the same thing for equations with three variables. Example In this first example we will look at a method known as backsubstitution. In this method we know the value of one of the variables and we can use that to solve for the other two by substituting into the other equations. 5x 8z = 5y 5z = 10 z = 4 4
5 We saw in section that we could solve systems of equations using the method of elimination. We can do the same thing for equations with three variables. Example x+4y +z = 1 x y 3z = x+ y z = 1 If we want to solve these three equations we need a more complicated set of rules. We want to be able to do things which don t change the value of the system. It turns out that we can do three things that we call row operations. 1. Interchange two equations.. Multiply an equation by a nonzero constant. 3. Add a multiple of one equation to a multiple of any other equation and replace either with the result. We will start by using these row operations to eliminate one of the variables from two of the equations. 5
6 These equations don t always have nice neat answers. Example x 3y +6z = 6 x+y z = 5 5x 8y +13z = 7 6
7 10. Matrices and systems of equations We saw in sections 10.1 that we could solve systems of equations using the method of elimination. We saw that if we wanted to solve systems of three equations we needed a more complicated set of rules that we call row operations. 1. Interchange two equations.. Multiply an equation by a nonzero constant. 3. Add a multiple of one equation to a multiple of any other equation and replace either with the result. We don t want to have to do these calculations with all these variables so we use Matrices. An m n matrix is a rectangular array with m rows and n columns that looks like: a 11 a 1 a 1n A = a 1 a a m1 a m a mn Each entry a ij is a number. Example A = 4 4 A = A = 4 A = x 1 matrix x 1 matrix 1 x matrix x matrix Q. How is this going to help us solve systems of equations? A. We will take a system of equations and write it as an augmented matrix which is easier to solve. Example Write the system of equations as an augmented matrix: x 8y +5z = 8 7x 15z = 38 3x y 8z = There are two parts to this matrix: The coefficient matrix and the constant matrix. 7
8 Since this matrix simply represents a set of equations we can perform the same operations that we used to solve the systems in section We will reduce the matrix with elementary row operations. 1. Interchange two rows.. Multiply a row by a nonzero constant. 3. Add a multiple of one row to a multiple of any other row and replace either with the result. When we are done with this process we MUST have the matrix in reduced row echelon form a b c We want it in this form because now we can covert back into a system of equations and we get x = a the answers immediately: y = b z = c We ll begin with a small example: Example { 3x y = x+y = 10 8
9 If we have more rows and columns the procedure is the same but we have to work longer. Example Solve using Gauss Jordan Elimination: x y +z = 3 3x+y z = 7 x 3y +z =
10 Example Solve using Gauss Jordan Elimination: x+3z = 3 4x 3y +7z = 5 8x 9y +15z = Example Solve using Gauss Jordan Elimination: { x 3y = 4x+6y = 9 10
11 10.4 Matrix Algebra Addition and Subtraction Multiplication by a number Multiplication by another matrix Addition and Subtraction Q. What does it mean for two matrices to be equal? A. It means they are the same size and have the EXACT same entries. We can only add and subtract matrices that are the same size. Q. How do we add matrices? A. We add corresponding entries. a b c d e f + g h = (a+e) (b+f) (c+g) (d+h) Example = What about standard addition properties? Matrix addition is: 1. Commutative: A+B = B +A.. Associative: (A+B)+C = A+(B +C) Definition The Zero Matrix is a matrix with all entries zero. We often use 0 to represent it. Example = =
12 The negative of a matrix M is M. It is the matrix whose entries are the negative of the entries in M. So now we can subtract: Example Example Multiplication by a number Multiply every entry in the matrix by the number. Example = 5( 7) 5(3) 5(0) 5(9) 5(4) 5( 5) 5(6) 5() Example A = Find A B and 4B A B =
13 Multiplication of two matrices An n 1 matrix multiplied by a 1 n matrix is the 1 1 matrix given by: a1 a a n b 1 b. = a 1 b 1 +a b + +a n b n Example b n = ( 1)()+(0)(3)+(3)(4)+()( 1) Larger Matrices If A is an n m matrix and B is a p m matrix then the matrix product of A and B, AB, is an m n matrix whose i th row and j th column entry is the real number obtained from multiplying the i th of A by the j th column of B. THE MUMBER OF COLUMNS OF A MUST BE THE SAME AS THE NUMBER OF ROWS OF B. 1 1 Example =
14 3 0 Example A = Find BA and AB B = Writing a system of equations in matrix form. Example Write the system of equations as the matrix equation AX = B where A is the x 1 coefficient matrix, B is the constants matrix and X = x x 3 x 1 +3x 3 = 3 4x 1 3x +7x 3 = 5 8x 1 9x +15x 3 = 9 14
15 Example Write the system of equations as the matrix equation AX = B where A is the x 1 coefficient matrix, B is the constants matrix and X = x x 3 x 1 x +x 3 = 0 x +4x 3 = 13 3x 1 +4x 5x 3 = 14 15
16 Finding the Inverse of a Square Matrix Definition 10.. The Identity Matrix is a square matrix with 1 s along the main diagonal and zeros everywhere else. Example I = , I = We call it the identity matrix because it behaves like 1 in multiplication. Example Example a b c d e f a b c d a b = c d = a b c d a b c d e f = a b c d Definition If M is a square matrix and if there exists M 1 such that MM 1 = I and M 1 M = I then M 1 is the Multiplicative Inverse of M. We often simply call it The Inverse of M. Example A = other = and A 1 = 3 1. Show that these are inverses of each NOT ALL SQUARE MATRICES HAVE INVERSES. For example 1 4 Q. How do we know if an inverse exists for A and how do we find one if it does? A. We perform Gauss Jordan Elimination on the augmented matrix A I until it looks like I A 1 16
17 1 0 Example A = 3 1 Row reduce this matrix: Find A 1 Example A = Find A 1 17
18 3 9 Example A = 6 Row reduce this matrix: Find A 1 Example M = Find M 1 =
19 Solving a matrix equation Suppose we have a system of equations a 1 x 1 +a x +a 3 x 3 = a 4 b 1 x 1 +b x +b 3 x 3 = b 4 c 1 x 1 +c x +c 3 x 3 = c 4 where a i, b i, and c i are real numbers and x 1,x,x 3 are variables. Then we can write the coefficient matrix a 1 a a 3 A = b 1 b b 3 c 1 c c 3 and (IF it exists) we can find the inverse matrix A 1. The original system can be written in matrix form: a 1 a a 3 b 1 b b 3 c 1 c c 3 } {{ } A x 1 x x 3 }{{} X = a 4 b 4 c 4 }{{} b and we end up with an equation of the form AX = b. If this were an algebraic equation where A and b were numbers we could easily solve this by dividing on both sides by A. WE CAN T divide matrices. What we can do with matrices is to multiply by the inverse of A. Then we get something that looks like this AX = b A 1 AX = A 1 b IX = A 1 b X = A 1 b The nice thing about solving an equation this way is that now we can easily solve many problems that have the same A but different b with one simple matrix multiplication. 19
20 Example Solve 3x 1 x +x 3 = 1 x 1 +x = 1 x 1 +x 3 = 1 by writing the equation in matrix form as AX = b and multiplying by A 1. Example Solve 3x 1 x +x 3 = 1 x 1 +x = x 1 +x 3 = 3 0
21 Example Solve x 1 x = x 1 +5x = 5 and x 1 x = 4 x 1 +5x = 1 by writing the equations in matrix form as AX = b and multiplying by A 1. 1
Chapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More information4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination
4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination 4.2/3.1 We have discussed using the substitution and elimination methods of solving a system of linear equations in
More informationChapter 4: Systems of Equations and Ineq. Lecture notes Math 1010
Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an
More informationChapter 2 Part 2 MATRICES
Finite Math B Chapter 2 MATRICES 1 Chapter 2 Part 2 MATRICES A: Augmented Matrices and Row Operations (Lessons 2.2 pg 6870) Augmented Matrices Suppose you are given a system of equations such as: 2x y
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More information3.4 Solving Matrix Equations with Inverses
3.4 Solving Matrix Equations with Inverses Question : How do you write a system of equations as a matrix equation? Question 2: How do you solve a matrix equation using the matrix inverse? Multiplicative
More informationMath 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices
Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More informationSystems of Linear Equations
Systems of Linear Equations DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n and b are constants, x
More informationSystems of Linear Equations
Systems of Linear Equations Recall that an equation of the form Ax + By = C is a linear equation in two variables. A solution of a linear equation in two variables is an ordered pair (x, y) that makes
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationMAC Module 1 Systems of Linear Equations and Matrices I. Learning Objectives. Upon completing this module, you should be able to:
MAC 03 Module Systems of Linear Equations and Matrices I Learning Objectives Upon completing this module, you should be able to:. Represent a system of linear equations as an augmented matrix.. Identify
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationSystems of Linear Equations
Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations
More information3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.
3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices
More informationLecture 11: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationSystems of Linear Equations Introduction
Systems of Linear Equations Introduction Linear Equation a x = b Solution: Case a 0, then x = b (one solution) a Case 2 a = 0, b 0, then x (no solutions) Case 3 a = 0, b = 0, then x R (infinitely many
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a, is an where
More information4 Solving Systems of Equations by Reducing Matrices
Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More information9 Matrices, determinants, inverse matrix, Cramer s Rule
AAC  Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:
More informationWarmUp. Find the x, y and z intercepts: Solve this 2D system by Graphing on your calculator
WarmUp Find the x, y and z intercepts: a) 3x + 4y + 6z = 24 b) 2x + 5y + 10z = 10 Solve this 2D system by Graphing on your calculator c) 2x + 3y = 45 4x + 5y = 10 Solving Systems of Equations Learning
More information5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems
5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.11 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The
More informationOverview. Matrix Solutions to Linear Systems. Threevariable systems. Matrices. Solving a threevariable system
Overview Matrix Solutions to Linear Systems Section 8.1 When solving systems of linear equations in two variables, we utilized the following techniques: 1.Substitution 2.Elimination 3.Graphing In this
More information1.5 Elementary Matrices and a Method for Finding the Inverse
.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:
More informationLecture 12: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More informationMAT Solving Linear Systems Using Matrices and Row Operations
MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented
More information8.2 Systems of Linear Equations: Augmented Matrices
8. Systems of Linear Equations: Augmented Matrices 567 8. Systems of Linear Equations: Augmented Matrices In Section 8. we introduced Gaussian Elimination as a means of transforming a system of linear
More informationMore with Matrices and the Calculator Video Lecture. Sections 11.1 and 11.2
More with Matrices and the Calculator Video Lecture Sections 11.1 and 11.2 Course Learning Objectives: 1)Solve systems of linear equations using technology. 2)Perform the algebra of matrices, find inverses
More informationLecture 5: Matrix Algebra
Lecture 5: Matrix Algebra In Song Kim September 7, 2011 1 Matrix Algebra 11 Definition Matrix: A matrix is an array of mn real numbers arranged in m rows by n columns a 11 a 12 a 1n a 21 a 22 a 2n A =
More informationMath 2331 Linear Algebra
1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University
More informationIf we apply Gaussian elimination then we get to a matrix U in echelon form
5. Gauss Jordan Elimination Gauss Jordan elimination is very similar to Gaussian elimination, except that one keeps going. To apply Gauss Jordan elimination, first apply Gaussian elimination until A is
More informationEP2.2/H3.1. HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0. The 2 2 matrix is invertible exactly when ad bc 0.
EP22/H31 HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0 a b The 2 2 matrix is invertible exactly when c d ad bc 0 What about a 3 3 matrix? Is there some short of expression
More informationChapter 1 Matrices and Systems of Linear Equations
Chapter 1 Matrices and Systems of Linear Equations 1.1: Introduction to Matrices and Systems of Linear Equations 1.2: Echelon Form and GaussJordan Elimination Lecture Linear Algebra  Math 2568M on Friday,
More informationMath 117 Chapter 2 Systems of Linear Equations and Matrices
Math 117 Chapter 2 Systems of Linear Equations and Matrices Flathead Valley Community College Page 1 of 28 1. Systems of Linear Equations A linear equation in n unknowns is defined by a 1 x 1 + a 2 x 2
More informationQuestion 1: How do you write a system of equations as a matrix equation?
Question : How do ou write a sstem of equations as a matrix equation? In section 3.2, ou learned how to multipl two matrices. This process involved multipling the entries in the row of one matrix b the
More information2.4 Solving a System of Linear Equations with Matrices
.4 Solving a System of Linear Equations with Matrices Question : What is a matrix? Question : How do you form an augmented matrix from a system of linear equations? Question : How do you use row operations
More informationNumerical Methods Lecture 2 Simultaneous Equations
Numerical Methods Lecture 2 Simultaneous Equations Topics: matrix operations solving systems of equations Matrix operations: Mathcad is designed to be a tool for quick and easy manipulation of matrix forms
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationSystems of Linear Equations
A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Systems of Linear Equations Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION AttributionNonCommercialShareAlike (CC
More information2.1 Introduction to Systems of Equations
2.1 Introduction to Systems of Equations A linear equation in 2 variables is an equation of the form ax+by = c. A linear equation in 3 variables is an equation of the form ax+by +cz = d. To solve a system
More informationChapter 4  Systems of Equations and Inequalities
Math 233  Spring 2009 Chapter 4  Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to
More informationChapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants
Chapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapter 2 1 / 36 Matrices: Definitions, Notation,
More informationSOLVING SYSTEMS BY SUBSTITUTION 6.2.1
SOLVING SYSTEMS BY SUBSTITUTION 6.2.1 A system of equations has two or more equations with two or more variables. In Section 4.2, students were introduced to solving a system by looking at the intersection
More informationSolving Systems of Linear Equations. Substitution
Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,
More informationMATH 2030: ASSIGNMENT 3 SOLUTIONS
MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by
More information1 Review of two equations in two unknowns
Contents 1 Review of two equations in two unknowns 1.1 The "standard" method for finding the solution 1.2 The geometric method of finding the solution 2 Some equations for which the "standard" method doesn't
More information6.1 Matrix Solutions to Linear Systems
6 Matrix Solutions to Linear Systems Section 6 Notes Page In this section we will talk about matrices Matrices help to organize data They can also be used to solve equations, which is what we will mainly
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationGaussian Elimination
Gaussian Elimination Simplest example Gaussian elimination as multiplication by elementary lower triangular and permutation matrices Lower/Upper triangular, Permutation matrices. Invariance properties.
More informationAlgebra is generous; she often gives more than is asked of her. (Jean D Alembert)
Chapter 8 Linear Algebra Algebra is generous; she often gives more than is asked of her. (Jean D Alembert) This chapter is called linear algebra, but what we will really see is the definition of a matrix,
More informationFor almost every real number, there is another number such that their product is equal. is 1. Numbers such as these are called
. Matrix Inverses Question : What is a matrix inverse? Question : How do you find a matrix inverse? For almost every real number, there is another number such that their product is equal to one. For instance,
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More information1.3 Matrices and Matrix Operations
0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they
More informationCramer s Rule and Gauss Elimination
Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version
More informationIntermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables
Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables A system of equations involves more than one variable and more than one equation. In this section we will focus on systems
More informationHomework assignment 2
p Exercise. Let Homework assignment A = 0, B = 3 3 0 4 4 Verify directly that A(AB) = A B Solution: 7 3 A = 5 3, A B = 0 4 6 3 4 5 5 5 7 3 AB = 8 0, A(AB) = 0 4 0 5 5 Exercise 3. Find two different matrices
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More information2  Solving Linear Equations
2  Solving Linear Equations Linear algebra developed from studying methods for solving systems of linear equations. We say an equation in the variables x 1, x 2, x 3,..., x n is linear if it consists
More information( ). (Section 8.1: Matrices and Determinants) 8.21 PART E: WHEN DOES A SYSTEM HAVE NO SOLUTION? If we ever get a row of the form:
PART E: WHEN DOES A SYSTEM HAVE NO SOLUTION? (Section 8.1: Matrices and Determinants) 8.21 If we ever get a row of the form: 0 0 0 ( non0 constant), then STOP! We know at this point that the solution
More informationDefinition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that
0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationLecture # 2  Matrix Algebra
Lecture #  Matrix Algebra Consider our simple macro model Y = C + I + G C = a + by Y C = I + G by + C = a This is an example of system of linear equations and variables In general, a system of x: a 11
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More informationLinear Algebra. Chapter 2: Systems of Linear Equations. University of Seoul School of Computer Science Minho Kim
Linear Algebra Chapter 2: Systems of Linear Equations University of Seoul School of Computer Science Minho Kim Table of contents Introduction: Triviality Introduction to Systems of Linear Equations Direct
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = x y = 0. ( This system can be solved easily: Multiply the nd equation by 4, and add the two resulting
More informationSolving Systems of Linear Equations; Row Reduction
Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationSystems of Linear Equations in Fields
Systems of Linear Equations in Fields Fields A field is a structure F = (F ; +, ;, ι; 0, ) such that () F is a set with at least two members (2) +,,, ι, 0, are operations on F (a) + (addition) and (multiplication)
More informationin the example above).
4: Matrices 41: Organizing Data into Matrices A matrix is just a grid of numbers That's all However, matrices can be quite useful The size of a matrix is given as r c, where the matrix has r rows and c
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationMatrices A = n n
Chapter 3 Matrices 3.1 Overview 3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example, A x 4 3 4 3 x 3 x 4 The numbers (or functions) are called the elements or the entries
More information2.6 The Inverse of a Square Matrix
200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the
More informationSolving a System of Equations
11 Solving a System of Equations 111 Introduction The previous chapter has shown how to solve an algebraic equation with one variable. However, sometimes there is more than one unknown that must be determined
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More informationAPPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the cofactor matrix [A ij ] of A.
APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the cofactor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj
More informationBasic Linear Algebra. 2.1 Matrices and Vectors. Matrices. For example,, 1 2 3
Basic Linear Algebra In this chapter, we study the topics in linear algebra that will be needed in the rest of the book. We begin by discussing the building blocks of linear algebra: matrices and vectors.
More informationLinear Algebra and Matrices
LECTURE Linear Algebra and Matrices Before embarking on a study of systems of differential equations we will first review, very quickly, some fundamental objects and operations in linear algebra.. Matrices
More information4.1. Systems of Linear Equations in Two Variables. Systems of Linear Equations in Two Variables
4.1 Systems of Linear Equations in Two Variables Systems of Linear Equations in Two Variables Objectives 1 2 4 Decide whether an ordered pair is a solution of a linear system. Solve linear systems by graphing.
More informationJUST THE MATHS UNIT NUMBER 9.4. MATRICES 4 (Row operations) A.J.Hobson
JUST THE MATHS UNIT NUMBER 9.4 MATRICES 4 (Row operations) by A.J.Hobson 9.4.1 Matrix inverses by row operations 9.4.2 Gaussian elimination (the elementary version) 9.4.3 Exercises 9.4.4 Answers to exercises
More informationVectors. Arrows that have the same direction and length represent the same vector.
Part 1. 1 Part 1. Vectors A vector in the plane is a quantity that has both a magnitude and a direction. We can represent it by an arrow. Arrows that have the same direction and length represent the same
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = 5 x y = 0. () This system can easily be solved: just multiply the nd equation by 4, and add the
More informationMathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?
MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationHarvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices.
Harvey Mudd College Math Tutorial: Matrix Algebra We review here some of the basiefinitions and elementary algebraic operations on matrices There are many applications as well as much interesting theory
More informationMatrices and Matrix Operations Linear Algebra MATH 2010
Matrices and Matrix Operations Linear Algebra MATH 2010 Basic Definition and Notation for Matrices If m and n are positive integers, then an mxn matrix is a rectangular array of numbers (entries) a 11
More informationCHAPTER 8: MATRICES and DETERMINANTS
(Section 8.1: Matrices and Determinants) 8.01 CHAPTER 8: MATRICES and DETERMINANTS The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). SECTION 8.1: MATRICES and
More informationProperties of Transpose
Properties of Transpose Transpose has higher precedence than multiplication and addition, so AB T = A B T and A + B T = A + B T As opposed to the bracketed expressions AB T and A + B T Example 1 1 2 1
More informationand B = 0 1. Since the size of A is 2 3 and that of B is , A B. Do note, however, that the entries of A and B are the same.
Matrix Arithmetic Harold W. Ellingsen Jr. SUNY Potsdam ellinghw@potsdam.edu This supplements Linear Algebra by Hefferon, which is lacking a chapter of matrix arithmetic for its own sake. Instructors who
More informationSolving System of Two equations
Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) are the same equations as: x y = 1 (3) x + y =
More information(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.
1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is onetoone
More informationUsing Matrix Elimination to Solve Three Equations With Three Unknowns
Using Matrix Elimination to Solve Three Equations With Three Unknowns Here we will be learning how to use Matrix Elimination to solve a linear system with three equation and three unknowns. Matrix Elimination
More informationPhysics 116A Solving linear equations by Gaussian Elimination (Row Reduction)
Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In
More informationMatrices: 2.2 Properties of Matrices
Goals We will describe properties of matrices with respect to addition, scalar multiplications and matrix multiplication and others. Among what we will see 1. Matrix multiplication does not commute. That
More information