Brief Introduction to Vectors and Matrices

Size: px
Start display at page:

Download "Brief Introduction to Vectors and Matrices"

Transcription

1 CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued function, and linear independency of a group of vectors and vector-valued functions. 1. Vectors and Matrices A matrix is a group of numbers(elements) that are arranged in rows and columns. In general, an m n matrix is a rectangular array of mn numbers (or elements) arranged in m rows and n columns. If m n the matrix is called a square matrix. For example a 2 2 matrix is a11 a 12 and an 3 3 matrix is a 21 a 22 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Generally, we use bold phase letter, like A, to denote a matrix, and lower case letters with subscripts, like a ij, to denote element of a matrix. Here a ij would be the element at i th row and j th column. So a 11 is an element at 1 st row and column. Sometime we use the abbreviation A (a ij ) for a matrix with elements a ij Special matrices. 0 denotes the zero matrix whose elements are all zeroes. So 2 2 and 3 3 zero matrices are 0 0 and Another special matrix is the identity matrix, denoted by I, a identity matrix is an matrix whose main diagonal elements are 1, and all 1

2 2 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES other elements are 0. So 2 2 and 3 3 zero matrices are 1 0 and A vector is a matrix with one row or one column. In this chapter, a vector is always a matrix with one column as x1 x 2 for a two-dimensional vector and x 1 x 2 x 3 for a three dimensional vector. Here the element has only one index that denotes the row position (Sometimes we use different variable to denote number in different position such as using x y for a 2-dimensional vector). denote a vector. We use bold lower case, such as v, to 1.2. Operations on Matrices. Arrange number in rectangular fashion, as a matrix, itself is not something terribly interesting. The most important advantage from that kind arrangement is that we can define matrix addition, multiplication, and scalar multiplication. Definition 1.1. (i) Equality: Two matrix A (a ij ) and B (b ij ) are equal if corresponding elements are equal, i.e. a ij b ij. (ii) Addition: If A (a ij ) and B (b ij ) and the sum of Aand B is A + B (c ij ) a ij + b ij. (iii) Scalar Product: If A (a ij ) is matrix and k is number(scalar), the ka (ka ij ) is product of k and A. From the above definition, we see that, to multiply a matrix by a number k, we simply multiply each of its entries by k; to add two matrices we just add their corresponding entries; A B A+( 1)B. Example 1.1. Let A

3 and 1. VECTORS AND MATRICES 3 B find (a) A + B, (b) 3A, (c) 4A B. Solution (a) (b) (c) 4A B, A + B ( 4) A The following fact lists all properties of matrix addition and scalar product. Theorem 1.1. Let A, bb, and C be matrices. Let a, b be scalars (numbers). We have (1) A A A, A A 0; (2) A + B B + A (commutativity); (3) A + (B + C) (A + B) + C, (ab)a a(ba) (associativity); (4) a(a+b) aa+ab, (a+b)a aa+ba (distributivity) When we have a row vector and a column vector with the same number of elements, we can define the dot product as Definition 1.2. Dot Product: in 2-dimension: Let x y1 x 1 x 2 and y, the y 2 dot product of x and y is, x y x 1 y 1 + x 2 y 2

4 4 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES in 3-dimension: Let x x 1 x 2 x 3 and y the dot product of x and y is, y 1 y 2 y 3, x y x 1 y 1 + x 2 y 2 + x 3 y 3 Definition 1.3. Matrix product Let A (a ij ) and B (b ij ), if the number of columns of A is the same as number of rows of B, then the product of A and B is given by AB (c ij ) where c ij is dot product of i th row of A with j th column of B. and Example 1.2. Let find AB A B , Solution AB (0) + 3 (3) ( 4) ( 1) (0) ( 4) Notice, the first element of AB is 2 (0) + 3 (3) which is the dot product of first row of A, and first column of B, 3 The following fact gives properties of matrix product, Theorem 1.2. Let A, B, C be three matrices and r be a scalar, we have A(BC) (AB)C, r(ab) A(rB) (associativity) A(B + C) AB + AC (distributivity) Notice, in general AB BA, that is for most of the times, AB is not equal to BA. Using the matrix notation and matrix product, we can write the following system of equations { ax1 + bx 2 y 1 cx 1 + dx 2 y 2

5 as Ax y with x x1 x 2, and y 1. VECTORS AND MATRICES 5 a b A c d. y 2 y1 Definition 1.4. A square (ex. 2 2 or 3 3) matrix A is invertible if there is a matrix A -1 such that AA -1 A -1 A I. Theorem 1.3. Let, a b A c d be a 2 2 matrix, if A is invertible, we have A -1 1 d b ad bc c d So if A is invertible, to solve Ax y, we need to simply multiply both sides with A -1, that is x x A -1 y. Example 1.3. Solve the system of equation { 3x1 4x 2 2 2x 1 + 5x 2 7 Solution x1 equation is The equation can be rewrite Ax y with 3 4 A, x 2, and y Now the inverse of A is so the solution is A -1 x A -1 y 1 7. So in matrix form the system of x1 2 x (5) ( 2)( 4) ,

6 6 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES x Example 1.4. Solve the system of equation 3x 1 4x 2 + 5x 3 2 2x 1 + 5x 2 7 x 1 5x 2 + 8x 3 1 Solution x 1 x 2 x 3 The equation can be rewrite Ax y with A , 1 5 8, and y equation, Ax y, is So in matrix form the system of x 1 x 2 x It is a little harder to compute the inverse of a 3 3 matrix, we will use Mathcad to solve the equation. Here is how to do it, Type A:CtrlM at a blank area to bring up the matrix definition screen, put 3 in the both input boxes and click OK, you will get a 3 3 matrix place holder like A :. Fill the entries of A in the corresponding position, using Tab key to navigate among the place holders(or just click each one). Type b:ctrlm in another blank area, the matrix definition screen is up again. This time put 3 in the number of row box, and 1 in the number of column box and click OK. You will get b: put the values of y in the corresponding position. Type A^-1 *b you will get the solution, which is,

7 1. VECTORS AND MATRICES 7 Notice, by default, Mathcad will display the results as decimal, you can double click on the result vector to change it to fraction, after you double click the result you will have a popup menu such as Figure 1. Format Result The next example shows how we can determine the unknown constants typically found in the initial value problems of system of differential equations. Example 1.5. Let x 1 (t) C 1 e t + C 2 e 2t and x 2 2C 1 e t C 2 e 2t. If x 1 (0) 2, x 2 (0) 3, find C 1 and C 2 Solution From x 1 (t) C 1 e t + C 2 e 2t, set t 0 we have x 1 (0) C 1 e 0 + C 2 e 2(0) C 1 + C 2. Similarly, x 2 (t) 2C 1 e t C 2 e 2t, gives x 2 (0) 2C 1 e ( 0) C 2 e 2(0) 2C 1 C 2. Together with x 1 (0) 2, x 2 (0) 3 we have the following system of equations, { C1 + C 2 1 2C 1 C 2 3 Rewrite the equation in matrix form 1 1 C C 2 3 and using Mathcad we find the solution is 4 C1 3 C 2 1 3,

8 8 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES So x 1 (t) 4 3 et 1 3 e 2t and x et e 2t. They are solution of the following system of differential equations, { x 1 (t) x 1(t) + x 2 (t) x 2 (t) 2x 1 a b 1.3. Eigenvalues and Eigenvectors. If A the de- c d termined of A is defined as A a b c d ad bc. For a 3 3 matrix a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 we can compute the matrix as a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 a 22 a 23 a 32 a 33 a 12 a 21 a 23 a 31 a 33 +a 13 a 21 a 22 a 31 a 32 In Mathcad, type the vertical bar to bring up the absolute evaluator, put the matrix in the place holder and press to compute the determinant. The following screen shot shows an example,. Figure 2. Compute determinant in Mathcad The concepts of eigenvalue and eigenvector play an important role in find solutions to system of differential equations. Definition 1.5. We say λ is an eigenvalue of a matrix A (2 2 or 3 3) if the determinant A λi 0. An nonzero vector v is an eigenvector associated with λ if Remark 1.1. Av λv.

9 1. VECTORS AND MATRICES 9 - The above definition of eigenvector and eigenvalue is valid for any square matrix with n rows and columns. - p(λ) A λi is a polynomial of degree n for n n matrix A, which is called the characteristic polynomial of A. - If we view A as an transform that maps a vector x to Ax, an eigenvector v defines a straight line passing origin that is invariant under A. - If v is an eigenvector then for and number s 0, sv is also an eigenvector. This is especially useful when using Mathcad to get eigenvectors, the result of Mathcad might look bad, you might need to remove the common factor of the component of the vector to make it better. Computing eigenvalues and eigenvectors of a given matrix is quite tedious, Mathcad provides two functions eigenvals() and eigenvecs() to compute eigenvalues and eigenvectors of a matrix. In Mathcad, eigenvecs(m) Returns a matrix containing the eigenvectors. The nth column of the matrix returned is an eigenvector corresponding to the nth eigenvalue returned by eigenvals. The results of these functions by default is in decimal, you can change it by using simplify key word as shown in the following diagram. (a) Find eigenvalue (b) Find eigenvector Figure 3. Compute eigenvalue and eigenvector in Mathcad Notice, in the diagram, the eigenvalues are listed as vector and the eigenvectors are listed in a matrix 1+ 3 (8+2 3) (8+2 3) 1 2 -( 3-1) (8-2 3) (8-2 3) 1 2, 3 3

10 10 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES each column represents a eigenvector. Since multiplying an eigenvector by a nonzero constant you still get an eigenvector, so we can simplify the eigenvectors as v 1, and v Here is how to use Mathcad, Define the matrix by type A:CtrlM and specify the row and column number, fill the entries. type eigenvals(, you will get eigenvals( ) and in the place holder type A. Click at end of the eigenvals(a) and press ShiftCtrl., you will get eigenvals(a). In the place holder type in key word simple. And click any area outside the box to get result. Using the same procedure for find eigenvector using eigenvecs() function. 2. Vector-valued functions A vector-valued function over a, b is a function whose value is a vector or matrix. For example the following functions are vector-valued functions, t Example 2.1. (1) v(t) t 2 (2) x 1 t 2 (3) A(t) e t 1 t 3 4t sin(t) 2.1. Arithmetics of vector-valued function. To add two vector-valued function is to add their corresponding components. To multiply a vector-valued function by a scalar function to to multiply each entry by the scalar function. To multiply a vector(matrix) valued function to another vectorvalued function is same as multiply a matrix with a vector. The following example illustrate how to add/subtract two vector-valued functions and how to multiply a vector-valued function by a scalar function and how to apply a vector-valued function that is matrix to a vector value function.

11 2. VECTOR-VALUED FUNCTIONS 11 Example 2.2. Suppose v(t) A(t) t t 2 t sin(t) 1 t3 4t (a) Find v(t) + x(t); (b) Let f(t) e t, find f(t)x(t); (c) Find A(t)x(t), x 1 t 2 e t., and Solution (a) v(t) + x(t) (b) (c) t t 2 t t 2 e t f(t)x(t) e t 1 t 2 e t et t 2 e t e 2t A(t)x(t) 1 t3 4t sin(t) t2 (t 3 4t + 5) + e t 2t 2 + e t sin(t) 2 + sin(t) t + 1 2t 2 t e t ; 1 t 2 e t ; 2.2. derivative and integrations of vector-valued functions. A vector-valued function is continuous if each of its entries are continuous. A vector-valued function is differentiable if each of its entries are differentiable. If v(t) is an vector-valued function, then the derivative dv(t) dt v (t) of v(t) is a vector-valued function whose entries are the derivative of corresponding entries of v(t). That is to find derivative of a vector-valued function we just need to find derivative of each of its component.

12 12 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES The antiderivative v(t) dt of an vector-valued function v(t) is a vector-valued function whose entries are the antiderivative of corresponding entries of v(t). 3t Example 2.3. Find derivative of x(t) 2 5 sin(t) Solution x (t) dx(t) dt d dt 3t 2 5 sin(t) d dt (3t2 5) d (sin(t)) dt Example 2.4. Find antiderivative of x(t) 3t 2 5 sin(t) 6t cos(t) Solution 3t 2 5 x(t) dt sin(t) t 3 5t + C 1 cos(t) + C 2 (3t dt 2 5) dt sin(t) dt C1 + C 2 t 3 5t cos(t) Theorem 2.1. Suppose v(t), x(t), A(t) are differentiable vectorvalued functions (A(t) is matrix), and f(t) is differentiable scalar function. We have, (1) Sum and Difference rule: - v(t) ± x(t) v (t) ± x (t), - v(t) ± x(t) dt v(t) dt ± x(t) dt. (2) Product rule: - f(t)v(t) f (t)v(t) + f(t)v (t), - A(t)x(t) A (t)x(t) + A(t)x (t), Using Mathcad to find derivative or antiderivative of a vectorvalued function using Mathcad, you need to find derivative or antiderivative component wise as shown in the following screen shot,

13 2. VECTOR-VALUED FUNCTIONS 13 Figure 4. Differentiate and integrate vector-valued function

14 14 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES Notice: - Press Shift/to get the derivative operator and press CtrlI to get the antiderivative operator. - To get dx(t)simplif y you type dx(t) and press ShiftCtrl. and type the key word simplify in the place holder before. - To execute symbolically ( operator), just press Ctrl. 3. Linearly independency 3.1. Linearly independency of vectors. Let x 1, x 2,, x n be n vectors, C 1, C 2,, C n are n scalars(numbers), the expression C 1 x 1 + C 2 x C n x n is called a linear combination of vectors x 1, x 2,, x n. if Definition 3.1. n vectors x 1, x 2,, x n is linearly independent C 1 x 1 + C 2 x C n x n 0 leads to C 1 0, C 2 0,, C n 0. A set of vectors are linearly dependent if they are not linearly independent. If 0 is one of x 1, x 2,, x n, then they linearly dependent. Two nonzero vectors x and y are linearly dependent if and only if x sy for some s 0. n nonzero vectors are linearly independent if one can be represented as linear combination of the others. Any three or more 2-dimensional vectors (vectors with two entries) are linear dependent. Any four or more 3-dimensional(vectors with three entries) vectors are linear dependent. To determine if a given set of vectors are linearly independent, create a matrix so that the row of the matrix are given vectors. Using Mathcad function rref( ) to find the reduced echelon form of the matrix, if the result contains one or more rows that are entirely zero the vectors are linearly dependent, otherwise the vectors are linearly independent.

15 3. LINEARLY INDEPENDENCY 15 Example 3.1. For x , x , and x , we can form a matrix, A apply rref(type rref and in the place holder type A, then press ), rref(a) We see that the vectors are linearly dependent as the last row is entirely zero Linearly independency of functions. We can also define linearly independency for a group of functions over an given interval a, b. Let f 1, f 2,, f n be n functions defined over a, b, C 1, C 2,, C n are n scalars(numbers), the expression, C 1 f 1 + C 2 f C n f n is called a linear combination of functions f 1, f 2,, f n. Definition 3.2. n functions f 1, f 2,, f n is linearly independent over a, bif (1) C 1 f 1 + C 2 f C n f n 0 for all a t b leads to C 1 0, C 2 0,, C n 0. A set of function are linearly dependent if they are not linearly independent. If 0 function is one of f 1, f 2,, f n, then they linearly dependent. Two nonzero functions f(t) and g(t) are linearly dependent over a, b if and only if f(t) sg(t) for a constant s 0 and all a t b, for example, f(t) t and g(t) 4t are linearly dependent but f(t) t and g(t) 4t 2 are not, even f(0) 4g(0) and f(1) 4g(1). There are exists infinite many functions that are linearly independent. For example the set {1, t, t 2, t 3,, t n, } is a linearly independent set.

16 16 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES Here are some sets of linearly independent functions that we encounter in solving a system of differential equations, assume k 1, k 2,, k n are different numbers, - {t k 1, t k 2,, t k n }. - {e k 1t, e k 1t,, e k 1t }. - {sin(k 1 t), sin(k 2 t),, sin(k n t)}. - {cos(k 1 t), cos(k 2 t),, cos(k n t)}. - The mixing of above sets. - For each above set, when multiplying each element by an common nonzero factor, we get another linearly independent set. The following screen shot displays a heuristic Mathcad function that tries to determine if a given set of functions are linearly independent. Figure 5. Calculus tool bar One warning, the result of the program is not very reliable, the user should check the result manually to confirm the result. To manually check if an set of functions are linearly independent on a, b, one need to show that the only solutions are C 1 0, C 2 0,, C n 0. if equation (1) holds for all t in a, b, which requires strong algebraic skill. One method is to choose n different numbers {t 1, t 2,, t n } from a, b and using the functions to create an matrix, the compute the determinant of the matrix A (f i (t j )), if the determinant is not zero, the functions are linearly independent, but if the determinant is zero, it is inconclusive(most likely are linearly dependent). Example 3.2. Determine if f 1 (t) t 2 2t + 3, f 2 (t) 2t 2 5t 6, and f 3 (t) 5t 2 11t + 4 are linearly independent.

17 3. LINEARLY INDEPENDENCY 17 Solution Choose t 1 1, t 2 0, and t 3 1, f 1(t 1 ) f 1 (t 2 ) f 1 (t 3 ) f 2 (t 1 ) f 2 (t 2 ) f 2 (t 3 ) f 3 (t 1 ) f 3 (t 2 ) f 3 (t 3 ) Compute the determinant, , 2 so the functions are linearly independent. Project At beginning you should enter: Project title, your name, ss#, and due date in the following format Project One: Define and Graph Functions John Doe SS# Due: Mon. Nov. 23rd, 2003 You should format the text region so that the color of text is different than math expression. You can choose color for text from Format >Style select normal and click modify, then change the settings for font. You can do this for headings etc. (1) Independent of functions as vectors Goal: Familiar your self with the concept of linearly independency. Use the Mathcad code provided at at the website mzhan/linear to check if given set of functions are linearly independent or not. {sin(x), sin(2x), sin(3x)} {t 2, 2t 2 2t + 4, 3t, 6} {e t, te t, t 3 e t } {e 2t, e t, e 3t } Using algebraic arguments or reasoning to verify the conclusion of the Mathcad code.

18 18 1. BRIEF INTRODUCTION TO VECTORS AND MATRICES (2) Condition Number In solving Ax b, one number is very important, it is called the condition number, which can be defined as C(A) s, where λ s is the eigenvalue with smallest l absolute value and lambda l is the eigenvalue with largest absolute value, if C(A) is too large or too small, a little change in b will result in a large in the solution x. We say the system Ax b is not stable. Now if A Find all eigenvalues, all eigenvectors, and C(A). Find solution of Ax b if b Change b a little to b 1 1 we get different solution, 1.1 which component of the new solution change most? The change of the third component if 10% what is the percentage change of the most changed component? Note: Our definition of condition number is not accurate, the true definition is C(A) where is a 1 A A -1 given norm (metric). Mathcad provides three functions cond1(a), cond2(a) and condi(a) in compute condition number for A in different metric

System of First Order Differential Equations

System of First Order Differential Equations CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t) Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Quick Tour of Mathcad and Examples

Quick Tour of Mathcad and Examples Fall 6 Quick Tour of Mathcad and Examples Mathcad provides a unique and powerful way to work with equations, numbers, tests and graphs. Features Arithmetic Functions Plot functions Define you own variables

More information

Vector Spaces. Chapter 2. 2.1 R 2 through R n

Vector Spaces. Chapter 2. 2.1 R 2 through R n Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final

More information

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Summary of important mathematical operations and formulas (from first tutorial):

Summary of important mathematical operations and formulas (from first tutorial): EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a

More information

Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is a vector? What is a vector space? Span, linear dependence, linear independence

Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is a vector? What is a vector space? Span, linear dependence, linear independence Math 115A - Week 1 Textbook sections: 1.1-1.6 Topics covered: What is Linear algebra? Overview of course What is a vector? What is a vector space? Examples of vector spaces Vector subspaces Span, linear

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Excel Basics By Tom Peters & Laura Spielman

Excel Basics By Tom Peters & Laura Spielman Excel Basics By Tom Peters & Laura Spielman What is Excel? Microsoft Excel is a software program with spreadsheet format enabling the user to organize raw data, make tables and charts, graph and model

More information

Typical Linear Equation Set and Corresponding Matrices

Typical Linear Equation Set and Corresponding Matrices EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of

More information

Eigenvalues, Eigenvectors, and Differential Equations

Eigenvalues, Eigenvectors, and Differential Equations Eigenvalues, Eigenvectors, and Differential Equations William Cherry April 009 (with a typo correction in November 05) The concepts of eigenvalue and eigenvector occur throughout advanced mathematics They

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

Linear Algebraic Equations, SVD, and the Pseudo-Inverse

Linear Algebraic Equations, SVD, and the Pseudo-Inverse Linear Algebraic Equations, SVD, and the Pseudo-Inverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For non-smmetric matrices, the eigenvalues and singular

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Matrix Algebra in R A Minimal Introduction

Matrix Algebra in R A Minimal Introduction A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information