Here are some examples of combining elements and the operations used:

Size: px
Start display at page:

Download "Here are some examples of combining elements and the operations used:"

Transcription

1 MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction, Scalar Multiplication. Matrix Multiplication An operation is a way that we combine two elements. The basic operations are: Addition (+) Subtraction (-) Multiplication ( * ) Division ( ) Here are some examples of combining elements and the operations used: Combining elements that are rational numbers (fractions) using the operation of addition Combining elements that are second degree binomials using the operation of multiplication. 2 2 (2x + 3)(4x 1) Combining elements that are integers using the operation of division This FAQ will review the definitions of addition, scalar multiplication, subtraction, and the multiplication of matrices. Division is undefined for matrices, but there is a separate related concept, Inverse Matrices, that is similar to division and is found among the other FAQ topics listed on the Online Math Center.

2 ADDITION of TWO MATRICES To add two matrices, their orders (the number of rows and columns in both matrices) must be the same. Add the corresponding row-column elements from each Matrix to produce a new element in the same row-column location. Example 1: Both matrices are order 2 x A B A B Example 2: Both matrices are order 3 x A B A+ B MULTIPLICATION of a MATRIX by a scalar A scalar is simply a number. To multiply a Matrix by a scalar, distribute the scalar to all elements in the Matrix and multiply. Example 1: Multiply Matrix A by the scalar 3: * 4 3* 2 3* A A *8 3*1 3* * 2 3*9 3*

3 Example 2: Multiply Matrix B by the scalar 1 4 : 4 20 B *4 *( 20) B *16 *8 4 4 SUBTRACTION of TWO MATRICES To subtract two matrices, their orders (the number of rows and columns in both matrices) must be the same. The easy way To subtract Matrix A and B, simply subtract corresponding row-column elements. Don t forget to change signs of elements in Matrix B Example 1: Subtract Matrix B from Matrix A. Both are order 2 x A B A B Example 2: Subtract Matrix B from Matrix A. Both are order 1 x 4. [ ] B [ ] A [ ] [ ] A B [ ] [ ]

4 Example 3: Subtract D from C C 12 D Matrix C is a 3 x 3 order Matrix. Matrix D is a 3 x 1 order Matrix. Since the order of the two matrices is different, they can NOT be subtracted. Now the mathematics behind the scenes The negative sign in front of the second Matrix is actually the scalar 1. Distribute the scalar 1 to all elements in the second Matrix. Add the corresponding row-column elements from each Matrix to produce a new element in the same row-column location. Example: Subtract B from A A 2 5 B A B A + 1* B *7 1*( 6) * *( 1) 1* *3 1*

5 COMBINATIONS of ADDITION, SUBTRACTION, and Scalar MULTIPLICATION. The order of operations requires multiplication be done before addition or subtraction, so first multiply the elements inside a Matrix by the scalar in front of it. Add and/or subtract afterwards. Example: A B 8 3 Find 3A 5B 3 4 3*3 3* A 3 3*2 3* *1 5* B *8 5* A 5B MULTIPLICATION of TWO MATRICES Two matrices A and B can be multiplied if the number of columns in A is the same as the number of rows in B. The new Matrix will have the same number of rows as A and the same number of columns as B. Example, find A* B A B Matrix A is 2 x 3 (2 rows, 3 columns). Matrix B is a 3 x 3 (3 rows, 3 columns) Matrix. The columns in A equal the rows in B, so we can multiply A*B producing a 2 x 3 Matrix. However, the columns in B do not equal the rows in A, so we can not multiply B*A.

6 Steps in multiplying two matrices 1. Determine if the two matrices can be multiplied, i.e. the number of columns in A equals the number of rows in B. If the order of A is (m x n) and the order of B is (n x p), the new Matrix will be of order (m x p). 2. Set up the new, blank (m x p) Matrix. 3. Pick a row-column location of an element in the new Matrix, e.g. the element in row 1 column 1 of the new Matrix. 4. Multiply the first element from the identified row in A by the first element in the identified column of B. Multiply the second element from the identified row of A by the second element in the identified column of B. Continue across the row of A and down the column of B. Then add all of the results. Place the answer in the new Matrix at the row-column location identified. 5. Continue until all row-column locations of the new Matrix are filled. Example: A B 8 3 Matrix A has 2 rows and 2 columns; Matrix B has 2 rows and 2 columns. The number of columns in A equals the number of rows in B, so the two matrices can be multiplied. The (2 x 2) times (2 x 2) will produce a new (2 x 2) Matrix. Set up the new, blank 2 x 2 Matrix. A * B? The question mark has been placed in the first row, first column location of the new Matrix. So multiply the first element in row 1 of Matrix A by the first element in column 1 of Matrix B. Then multiply the second element in row 1 of Matrix A by the second element in column 1 of Matrix B A B 8 3 Multplying row 1 of A by column 1 of B: ( 3)( 1) + ( 4)( 8) We have gone across row 1 in Matrix A and down column 1 in Matrix B, so we can add the results and place the answer in row 1-column 1 of the new Matrix. ( 3)( 1) + ( 4)( 8) New Matrix: row 1, column 1: 29 _

7 Now let s find the element for row 1, column 2: 29? A B 8 3 Multplying row 1 of A by column 2 of B: ( 3)( 7 ) + ( 4)( 3) So row 1, column 2 of the new Matrix is the element 33: 29 33?? For row 2, column 1 multiply row 2 of Matrix A and column 1 of Matrix B. For row 2, column 2 multiply row 2 of Matrix A and column 2 of matrix B: A (2)(1) (5)(8) B A B (2)( 7) (5)( 3) Hence: A* B 42 1 Example: Find A * B A [ ] B 2 1 A is order (1 x 3) and B is order (3 x 1), so the new matrix will be order (1 x 1): [?] There is only one element in the new matrix: the row 1, column 1 element. Multiply row 1 elements of Matrix A by column 1 elements of Matrix B and add the result. 4 A [ 1 5 3] B 2 (1)(4) + (5)( 2) + ( 3)(1) A * B [ 3]

8 Example: Find A * B A B A is order (2 x 3) and B is order (3 x 2), so the new matrix will be order (2 x 2): row1, column1 row1, column 2 row2, column1 row2, column 2 Row 1, Column 1: (1)(5) + (0)(1) + (4)(7) Row 1, Column 2: (1)(0) + (0)(6) + (4)( 2) Row 2, Column 1: ( 1)(5) + (2)(1) + (3)(7) Row 2, Column 2: ( 1)(0) + (2)(6) + (3)( 2) A * B

MATH Algebra for High School Teachers Units and Zero Divisors

MATH Algebra for High School Teachers Units and Zero Divisors MATH 57091 - Algebra for High School Teachers Units and Zero Divisors Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 9 Examples

More information

Mathematics IMA ( 1) ( 2)

Mathematics IMA ( 1) ( 2) Maths Learning Service: Revision Matrices Mathematics IA Mathematics IMA A matrix is an array of numbers, written within a set of pattern of rows and columns. For example: 4 5 6, 0 0 0, brackets, and arranged

More information

Chapter 4. Systems of Linear Equations; Matrices. Addition and Subtraction of Matrices. Section 4 Matrices: Basic Operations

Chapter 4. Systems of Linear Equations; Matrices. Addition and Subtraction of Matrices. Section 4 Matrices: Basic Operations Chapter 4 Systems of Linear Equations; Matrices Section 4 Matrices: Basic Operations Addition and Subtraction of Matrices To add or subtract matrices, they must be of the same order, m n. To add matrices

More information

Absolute Value. Example. Practice

Absolute Value. Example. Practice Absolute Value The absolute value of a number is the distance between the origin of a number line and the point representing that number. Look at the number line below. Both 7 and 7 are 7 units from the

More information

For almost every real number, there is another number such that their product is equal. is 1. Numbers such as these are called

For almost every real number, there is another number such that their product is equal. is 1. Numbers such as these are called . Matrix Inverses Question : What is a matrix inverse? Question : How do you find a matrix inverse? For almost every real number, there is another number such that their product is equal to one. For instance,

More information

3.2 Matrix Multiplication

3.2 Matrix Multiplication 3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract

More information

and the same number of columns, or one of the matrices must be a scalar. Thus, if you have an a x b matrix, and you want to add this to another matrix

and the same number of columns, or one of the matrices must be a scalar. Thus, if you have an a x b matrix, and you want to add this to another matrix The joy of matrix maths Matrices matrix is a rectangle of numbers. For example: X = 4 X is a matrix with rows and columns, a x matrix. In general a matrix with a rows and b columns is an a x b matrix.

More information

MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants.

MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted A T, is the matrix whose rows are columns of A (and

More information

Matrices: Basic Operations and Their Properties Dr.Hayk Melikyan Department of Mathematics and CS

Matrices: Basic Operations and Their Properties Dr.Hayk Melikyan Department of Mathematics and CS Matrices: Basic Operations and Their Properties Dr.Hayk Melikyan Department of Mathematics and CS melikyan@nccu.edu H.Melikian/1210 1 Matrix A matrix with m rows and n columns is said to have SIZE m n.

More information

Chapter 4. Systems of Linear Equations; Matrices. Identity Matrix for Multiplication. Section 5 Inverse of a Square Matrix

Chapter 4. Systems of Linear Equations; Matrices. Identity Matrix for Multiplication. Section 5 Inverse of a Square Matrix Chapter 4 Systems of Linear Equations; Matrices Section 5 Inverse of a Square Matrix Identity Matrix for Multiplication 1 is called the multiplicative identity for real numbers since a(1) = (1)a = a For

More information

Matrices Worksheet. Adding the results together, using the matrices, gives

Matrices Worksheet. Adding the results together, using the matrices, gives Matrices Worksheet This worksheet is designed to help you increase your confidence in handling MATRICES. This worksheet contains both theory and exercises which cover. Introduction. Order, Addition and

More information

Put the following equations to slope-intercept form then use 2 points to graph

Put the following equations to slope-intercept form then use 2 points to graph Tuesday September 23, 2014 Warm-up: Put the following equations to slope-intercept form then use 2 points to graph 1. 4x - 3y = 8 8 x 6y = 16 2. 2x + y = 4 2x + y = 1 Tuesday September 23, 2014 Warm-up:

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

AB = BA = I n. For example, the matrix has inverse Unit 1, Section 4: Inverses of Matrices Inverses of Matrices 2 B =

AB = BA = I n. For example, the matrix has inverse Unit 1, Section 4: Inverses of Matrices Inverses of Matrices 2 B = Inverses of Matrices We have seen that many ideas from the world of numbers, such as addition and multiplication, have analogues in matrix theory The tables below summarizes these ideas: Real numbers Matrices

More information

3.4 Solving Matrix Equations with Inverses

3.4 Solving Matrix Equations with Inverses 3.4 Solving Matrix Equations with Inverses Question : How do you write a system of equations as a matrix equation? Question 2: How do you solve a matrix equation using the matrix inverse? Multiplicative

More information

Groups 1. Definition 1 A Group G is a set with an operation which satisfies the following: e a = a e = e. a a 1 = a 1 a = e.

Groups 1. Definition 1 A Group G is a set with an operation which satisfies the following: e a = a e = e. a a 1 = a 1 a = e. Groups 1 1 Introduction to Groups Definition 1 A Group G is a set with an operation which satisfies the following: 1. there is an identity element e G, such that for every a G e a = a e = e 2. every element

More information

Matrices A = n n

Matrices A = n n Chapter 3 Matrices 3.1 Overview 3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example, A x 4 3 4 3 x 3 x 4 The numbers (or functions) are called the elements or the entries

More information

MATH 304 Linear Algebra Lecture 9: Properties of determinants.

MATH 304 Linear Algebra Lecture 9: Properties of determinants. MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Presentation 3: Eigenvalues and Eigenvectors of a Matrix

Presentation 3: Eigenvalues and Eigenvectors of a Matrix Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues

More information

Chapter 1 Introductory Information and Review

Chapter 1 Introductory Information and Review SECTION 1.1 Numbers Chapter 1 Introductory Information and Review Section 1.1: Numbers Types of Numbers Order on a Number Line Types of Numbers Natural Numbers: MATH 1300 Fundamentals of Mathematics 1

More information

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

More information

A rational number is a number that can be written as where a and b are integers and b 0.

A rational number is a number that can be written as where a and b are integers and b 0. S E L S O N Rational Numbers Goal: Perform operations on rational numbers. Vocabulary Rational number: Additive inverse: A rational number is a number that can be a written as where a and b are integers

More information

About Fractions. Introduction

About Fractions. Introduction About Fractions TABLE OF CONTENTS About Fractions... 1 What is a FRACTION?... 1 Introduction... 1 Introduction... 1 Forms of Fractions... 1 Different Forms of Fractions... 1 Proper Fractions... 2 Improper

More information

MATRICES AND DETERMINANTS. A "matrix" is a special way of presenting numbers. Here are some examples:

MATRICES AND DETERMINANTS. A matrix is a special way of presenting numbers. Here are some examples: MATRICES AND DETERMINANTS WHAT IS A MATRIX? A "matrix" is a special way of presenting numbers. Here are some examples: 3 6 ex.1) 2 8 5 7 - The above is called a "matrix." - A matrix is always enclosed

More information

Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

More information

9 Matrices, determinants, inverse matrix, Cramer s Rule

9 Matrices, determinants, inverse matrix, Cramer s Rule AAC - Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:

More information

Matrix Algebra in R A Minimal Introduction

Matrix Algebra in R A Minimal Introduction A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering

More information

Finding equations of lines

Finding equations of lines Finding equations of lines A very typical question for a student in a math class will be to find the equation of a line. This worksheet will provide several examples of how to complete this task. Find

More information

Basic Matrix Manipulation with a Casio Graphing Calculator

Basic Matrix Manipulation with a Casio Graphing Calculator Basic Matrix Manipulation with a Casio Graphing Calculator Often, a matrix may be too large or too complex to manipulate by hand. For these types of matrices, we can employ the help of graphing calculators

More information

Matrices and Matrix Operations Linear Algebra MATH 2010

Matrices and Matrix Operations Linear Algebra MATH 2010 Matrices and Matrix Operations Linear Algebra MATH 2010 Basic Definition and Notation for Matrices If m and n are positive integers, then an mxn matrix is a rectangular array of numbers (entries) a 11

More information

Elementary Row Operations and Matrix Multiplication

Elementary Row Operations and Matrix Multiplication Contents 1 Elementary Row Operations and Matrix Multiplication 1.1 Theorem (Row Operations using Matrix Multiplication) 2 Inverses of Elementary Row Operation Matrices 2.1 Theorem (Inverses of Elementary

More information

MATH 105: Finite Mathematics 2-6: The Inverse of a Matrix

MATH 105: Finite Mathematics 2-6: The Inverse of a Matrix MATH 05: Finite Mathematics 2-6: The Inverse of a Matrix Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline Solving a Matrix Equation 2 The Inverse of a Matrix 3 Solving Systems of

More information

Notes on Matrix Multiplication and the Transitive Closure

Notes on Matrix Multiplication and the Transitive Closure ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

More information

Harvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices.

Harvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices. Harvey Mudd College Math Tutorial: Matrix Algebra We review here some of the basiefinitions and elementary algebraic operations on matrices There are many applications as well as much interesting theory

More information

Chapter 2: Determinants 17

Chapter 2: Determinants 17 Chapter 2: Determinants 17 SECTION B Properties of a Determinant By the end of this section you will be able to prove that the determinant of a triangular or diagonal matrix is the product of the leading

More information

1.3 Matrices and Matrix Operations

1.3 Matrices and Matrix Operations 0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Matrix Inverses. Since the linear system. can be written as. where. ,, and,

Matrix Inverses. Since the linear system. can be written as. where. ,, and, Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant

More information

Chapter 4: Binary Operations and Relations

Chapter 4: Binary Operations and Relations c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Inverses and powers: Rules of Matrix Arithmetic

Inverses and powers: Rules of Matrix Arithmetic Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

More information

row row row 4

row row row 4 13 Matrices The following notes came from Foundation mathematics (MATH 123) Although matrices are not part of what would normally be considered foundation mathematics, they are one of the first topics

More information

( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

( % . This matrix consists of $ 4 5  5' the coefficients of the variables as they appear in the original system. The augmented 3  2 2 # 2  3 4& Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

More information

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. 1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is one-to-one

More information

Proofs Homework Set 3

Proofs Homework Set 3 Proofs Homework Set 3 MATH 217 WINTER 2011 Due January 26 A few words about proofs This is our first set of proof problems There will be additional proof problems accompanying every assignment for the

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

More information

Matrices: 2.3 The Inverse of Matrices

Matrices: 2.3 The Inverse of Matrices September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

More information

Chapter 2 Review. Solution of Linear Systems by the Echelon Method

Chapter 2 Review. Solution of Linear Systems by the Echelon Method Chapter 2 Review Solution of Linear Systems by the Echelon Method A first-degree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

4. MATRICES Matrices

4. MATRICES Matrices 4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

More information

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

More information

Elementary Matrices and The LU Factorization

Elementary Matrices and The LU Factorization lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

More information

Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Matrix Operations How Much Wood Would You Need?

Matrix Operations How Much Wood Would You Need? Matrix Operations ACTIVITY 1.6 SUGGESTED LEARNING STRATEGIES: Marking the Text, Graphic Organizer, Vocabulary Organizer, Create Representations Monique and Shondra have created their own after-school business

More information

Addition and Subtraction

Addition and Subtraction 10 17 0 7 7 2 11 17 5 11 10 12 6 14 12 20 7 3 9 19 4 14 5 0 5 7 0 2 1 2 11 7 8 4 4 10 12 3 9 0 10 11 9 1 8 0 10 12 1 3 9 11 7 8 7 18 1 12 11 12 0 10 3 13 1 5 10 4 8 2 9 7 Sheet 1 10 17 0 7 7 14 2 9 Add

More information

A = v = 1 3 5

A = v = 1 3 5 Vectors and Matrices Firstoff,avectorcanbethoughtofasamatrixsowe are really studying matrices. A matrix is an array of numbers, 0 2 A = 2 2 00 97 5 is a matrix with 4 rows and 3 columns. It s a 4 3 matrix.

More information

Magic Mathematics. Randall Pyke SFU-CMS Math Camp Surrey 2015

Magic Mathematics. Randall Pyke SFU-CMS Math Camp Surrey 2015 Magic Mathematics Randall Pyke rpyke@sfu.ca SFU-CMS Math Camp Surrey 2015 Pick a number from 1,,9 (don t tell anybody!) Pick a number from 1,,9 (don t tell anybody!) Multiply it by 2 and then add 5 Pick

More information

Typical Linear Equation Set and Corresponding Matrices

Typical Linear Equation Set and Corresponding Matrices EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of

More information

Definition: Group A group is a set G together with a binary operation on G, satisfying the following axioms: a (b c) = (a b) c.

Definition: Group A group is a set G together with a binary operation on G, satisfying the following axioms: a (b c) = (a b) c. Algebraic Structures Abstract algebra is the study of algebraic structures. Such a structure consists of a set together with one or more binary operations, which are required to satisfy certain axioms.

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Matrix Operations Using Mathcad Charles Nippert

Matrix Operations Using Mathcad Charles Nippert Matrix Operations Using Mathcad Charles Nippert These notes describe how to use Mathcad to perform matrix operations. As an example you'll be able to solve a series of simultaneous linear equations using

More information

Row Operations and Inverse Matrices on the TI-83

Row Operations and Inverse Matrices on the TI-83 Row Operations and Inverse Matrices on the TI-83 I. Elementary Row Operations 2 8 A. Let A =. 2 7 B. To interchange rows and 2 of matrix A: MATRIX MATH C:rowSwap( MATRIX NAMES :[A],, 2 ) ENTER. 2 7 The

More information

MATH 2030: ASSIGNMENT 3 SOLUTIONS

MATH 2030: ASSIGNMENT 3 SOLUTIONS MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by

More information

Rational Expressions - Complex Fractions

Rational Expressions - Complex Fractions 7. Rational Epressions - Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + = () is solved when x =, because this value

More information

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

More information

Question 1: How do you write a system of equations as a matrix equation?

Question 1: How do you write a system of equations as a matrix equation? Question : How do ou write a sstem of equations as a matrix equation? In section 3.2, ou learned how to multipl two matrices. This process involved multipling the entries in the row of one matrix b the

More information

Department of Mathematics Exercises G.1: Solutions

Department of Mathematics Exercises G.1: Solutions Department of Mathematics MT161 Exercises G.1: Solutions 1. We show that a (b c) = (a b) c for all binary strings a, b, c B. So let a = a 1 a 2... a n, b = b 1 b 2... b n and c = c 1 c 2... c n, where

More information

Systems of Linear Equations in Fields

Systems of Linear Equations in Fields Systems of Linear Equations in Fields Fields A field is a structure F = (F ; +, ;, ι; 0, ) such that () F is a set with at least two members (2) +,,, ι, 0, are operations on F (a) + (addition) and (multiplication)

More information

Gaussian Elimination

Gaussian Elimination Gaussian Elimination Simplest example Gaussian elimination as multiplication by elementary lower triangular and permutation matrices Lower/Upper triangular, Permutation matrices. Invariance properties.

More information

2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form. Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

More information

Exam. Name. Solve the system of equations by graphing. 1) 2x y 5 3x y 6. Solve the system of equations by substitution.

Exam. Name. Solve the system of equations by graphing. 1) 2x y 5 3x y 6. Solve the system of equations by substitution. Exam Name Solve the system of equations by graphing. 1) 2x y 5 3x y 6 10 y 1) 5-10 -5 5 10 x -5-10 Var: 50 Objective: (4.1) Solve Systems of Linear Equations by Graphing Solve the system of equations by

More information

The Inverse of a Matrix

The Inverse of a Matrix The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 11 Examples of matrices Definition: A matrix is a rectangular array of numbers and/or variables For instance 4 2 0 3 1 A 5 12 07 x 3 π 3 4 6 27 is a matrix with 3 rows and

More information

Section 15.4 The Binomial Theorem. 4. Expand ( a b) n. Pascal s Triangle

Section 15.4 The Binomial Theorem. 4. Expand ( a b) n. Pascal s Triangle 918 Chapter 15 Sequences and Series Section 15.4 The Binomial Theorem Objectives 1. Expand ( a b) n Using Pascal s Triangle 2. Evaluate Factorials 3. Evaluate a n r b 4. Expand ( a b) n Using the Binomial

More information

Linear Dependence Tests

Linear Dependence Tests Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

More information

1 Gaussian Elimination

1 Gaussian Elimination Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

More information

Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 313 Lecture #10 2.2: The Inverse of a Matrix Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

More information

MANCHESTER COLLEGE Department of Education. Length: 25 minutes Grade Intended: Pre-Algebra (7 th )

MANCHESTER COLLEGE Department of Education. Length: 25 minutes Grade Intended: Pre-Algebra (7 th ) LESSON PLAN by: Kyler Kearby Lesson: Multiplying and dividing integers MANCHESTER COLLEGE Department of Education Length: 25 minutes Grade Intended: Pre-Algebra (7 th ) Academic Standard: 7.2.1: Solve

More information

HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)

HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 25, 2016

Inverses. Stephen Boyd. EE103 Stanford University. October 25, 2016 Inverses Stephen Boyd EE103 Stanford University October 25, 2016 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

1.4 More Matrix Operations and Properties

1.4 More Matrix Operations and Properties 8 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. More Matrix Operations Properties In this section, we look at the properties of the various operations on matrices. As we do so, we try to draw a parallel

More information

6.1 Matrix Solutions to Linear Systems

6.1 Matrix Solutions to Linear Systems 6 Matrix Solutions to Linear Systems Section 6 Notes Page In this section we will talk about matrices Matrices help to organize data They can also be used to solve equations, which is what we will mainly

More information

DIVIDING COUNTING NUMBERS

DIVIDING COUNTING NUMBERS me. divided by me. equals me. DIVIDING COUNTING NUMBERS The fifth scene in a series of articles on elementary mathematics. written by Eugene Maier designed and illustrated by Tyson Smith To find 15 3,

More information

Problem Set 3 Due: In class Thursday, Sept. 27 Late papers will be accepted until 1:00 PM Friday.

Problem Set 3 Due: In class Thursday, Sept. 27 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L Kazdan Problem Set 3 Due: In class Thursday, Sept 27 Late papers will be accepted until 1:00 PM Friday These problems are intended to be straightforward with not much computation

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations? - It is the set of all ordered pairs (x, y) that satisfy the two equations. You

More information

Discrete Mathematics. Stephen Perencevich

Discrete Mathematics. Stephen Perencevich Discrete Mathematics Stephen Perencevich Stephen Perencevich Gonzaga College High School Washington, DC sperencevich@gonzaga.org c 0 All rights reserved. Algebra II: Discrete Mathematics Arithmetic Sequences

More information

1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY

1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY Properties of Real Numbers SUGGESTED LEARNING STRATEGIES: Create Representations, Activating Prior Knowledge, Think/Pair/Share, Interactive Word Wall The local girls track team is strength training by

More information

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2 MATHEMATICS FO ENGINEES BASIC MATIX THEOY TUTOIAL This is the second of two tutorials on matrix theory. On completion you should be able to do the following. Explain the general method for solving simultaneous

More information

Number Theory Vocabulary (For Middle School Teachers)

Number Theory Vocabulary (For Middle School Teachers) Number Theory Vocabulary (For Middle School Teachers) A Absolute value the absolute value of a real number is its distance from zero on the number line. The absolute value of any real number, a, written

More information

Algebra I Station Activities for Common Core State Standards

Algebra I Station Activities for Common Core State Standards Algebra I Station Activities for Common Core State Standards WALCH EDUCATION Table of Contents Standards Correlations...................................................... v Introduction..............................................................vii

More information

Cramer s Rule and Gauss Elimination

Cramer s Rule and Gauss Elimination Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

If we apply Gaussian elimination then we get to a matrix U in echelon form

If we apply Gaussian elimination then we get to a matrix U in echelon form 5. Gauss Jordan Elimination Gauss Jordan elimination is very similar to Gaussian elimination, except that one keeps going. To apply Gauss Jordan elimination, first apply Gaussian elimination until A is

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

Math Magic Surprising Tricks that Build Number Sense and Algebraic Reasoning

Math Magic Surprising Tricks that Build Number Sense and Algebraic Reasoning Teaching K-8 April 2005 Math Column Michael Naylor Math Magic Surprising Tricks that Build Number Sense and Algebraic Reasoning Mathematics truly is magical, especially for students with strong number

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015

Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015 Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information