Here are some examples of combining elements and the operations used:


 Victor McCoy
 11 months ago
 Views:
Transcription
1 MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction, Scalar Multiplication. Matrix Multiplication An operation is a way that we combine two elements. The basic operations are: Addition (+) Subtraction () Multiplication ( * ) Division ( ) Here are some examples of combining elements and the operations used: Combining elements that are rational numbers (fractions) using the operation of addition Combining elements that are second degree binomials using the operation of multiplication. 2 2 (2x + 3)(4x 1) Combining elements that are integers using the operation of division This FAQ will review the definitions of addition, scalar multiplication, subtraction, and the multiplication of matrices. Division is undefined for matrices, but there is a separate related concept, Inverse Matrices, that is similar to division and is found among the other FAQ topics listed on the Online Math Center.
2 ADDITION of TWO MATRICES To add two matrices, their orders (the number of rows and columns in both matrices) must be the same. Add the corresponding rowcolumn elements from each Matrix to produce a new element in the same rowcolumn location. Example 1: Both matrices are order 2 x A B A B Example 2: Both matrices are order 3 x A B A+ B MULTIPLICATION of a MATRIX by a scalar A scalar is simply a number. To multiply a Matrix by a scalar, distribute the scalar to all elements in the Matrix and multiply. Example 1: Multiply Matrix A by the scalar 3: * 4 3* 2 3* A A *8 3*1 3* * 2 3*9 3*
3 Example 2: Multiply Matrix B by the scalar 1 4 : 4 20 B *4 *( 20) B *16 *8 4 4 SUBTRACTION of TWO MATRICES To subtract two matrices, their orders (the number of rows and columns in both matrices) must be the same. The easy way To subtract Matrix A and B, simply subtract corresponding rowcolumn elements. Don t forget to change signs of elements in Matrix B Example 1: Subtract Matrix B from Matrix A. Both are order 2 x A B A B Example 2: Subtract Matrix B from Matrix A. Both are order 1 x 4. [ ] B [ ] A [ ] [ ] A B [ ] [ ]
4 Example 3: Subtract D from C C 12 D Matrix C is a 3 x 3 order Matrix. Matrix D is a 3 x 1 order Matrix. Since the order of the two matrices is different, they can NOT be subtracted. Now the mathematics behind the scenes The negative sign in front of the second Matrix is actually the scalar 1. Distribute the scalar 1 to all elements in the second Matrix. Add the corresponding rowcolumn elements from each Matrix to produce a new element in the same rowcolumn location. Example: Subtract B from A A 2 5 B A B A + 1* B *7 1*( 6) * *( 1) 1* *3 1*
5 COMBINATIONS of ADDITION, SUBTRACTION, and Scalar MULTIPLICATION. The order of operations requires multiplication be done before addition or subtraction, so first multiply the elements inside a Matrix by the scalar in front of it. Add and/or subtract afterwards. Example: A B 8 3 Find 3A 5B 3 4 3*3 3* A 3 3*2 3* *1 5* B *8 5* A 5B MULTIPLICATION of TWO MATRICES Two matrices A and B can be multiplied if the number of columns in A is the same as the number of rows in B. The new Matrix will have the same number of rows as A and the same number of columns as B. Example, find A* B A B Matrix A is 2 x 3 (2 rows, 3 columns). Matrix B is a 3 x 3 (3 rows, 3 columns) Matrix. The columns in A equal the rows in B, so we can multiply A*B producing a 2 x 3 Matrix. However, the columns in B do not equal the rows in A, so we can not multiply B*A.
6 Steps in multiplying two matrices 1. Determine if the two matrices can be multiplied, i.e. the number of columns in A equals the number of rows in B. If the order of A is (m x n) and the order of B is (n x p), the new Matrix will be of order (m x p). 2. Set up the new, blank (m x p) Matrix. 3. Pick a rowcolumn location of an element in the new Matrix, e.g. the element in row 1 column 1 of the new Matrix. 4. Multiply the first element from the identified row in A by the first element in the identified column of B. Multiply the second element from the identified row of A by the second element in the identified column of B. Continue across the row of A and down the column of B. Then add all of the results. Place the answer in the new Matrix at the rowcolumn location identified. 5. Continue until all rowcolumn locations of the new Matrix are filled. Example: A B 8 3 Matrix A has 2 rows and 2 columns; Matrix B has 2 rows and 2 columns. The number of columns in A equals the number of rows in B, so the two matrices can be multiplied. The (2 x 2) times (2 x 2) will produce a new (2 x 2) Matrix. Set up the new, blank 2 x 2 Matrix. A * B? The question mark has been placed in the first row, first column location of the new Matrix. So multiply the first element in row 1 of Matrix A by the first element in column 1 of Matrix B. Then multiply the second element in row 1 of Matrix A by the second element in column 1 of Matrix B A B 8 3 Multplying row 1 of A by column 1 of B: ( 3)( 1) + ( 4)( 8) We have gone across row 1 in Matrix A and down column 1 in Matrix B, so we can add the results and place the answer in row 1column 1 of the new Matrix. ( 3)( 1) + ( 4)( 8) New Matrix: row 1, column 1: 29 _
7 Now let s find the element for row 1, column 2: 29? A B 8 3 Multplying row 1 of A by column 2 of B: ( 3)( 7 ) + ( 4)( 3) So row 1, column 2 of the new Matrix is the element 33: 29 33?? For row 2, column 1 multiply row 2 of Matrix A and column 1 of Matrix B. For row 2, column 2 multiply row 2 of Matrix A and column 2 of matrix B: A (2)(1) (5)(8) B A B (2)( 7) (5)( 3) Hence: A* B 42 1 Example: Find A * B A [ ] B 2 1 A is order (1 x 3) and B is order (3 x 1), so the new matrix will be order (1 x 1): [?] There is only one element in the new matrix: the row 1, column 1 element. Multiply row 1 elements of Matrix A by column 1 elements of Matrix B and add the result. 4 A [ 1 5 3] B 2 (1)(4) + (5)( 2) + ( 3)(1) A * B [ 3]
8 Example: Find A * B A B A is order (2 x 3) and B is order (3 x 2), so the new matrix will be order (2 x 2): row1, column1 row1, column 2 row2, column1 row2, column 2 Row 1, Column 1: (1)(5) + (0)(1) + (4)(7) Row 1, Column 2: (1)(0) + (0)(6) + (4)( 2) Row 2, Column 1: ( 1)(5) + (2)(1) + (3)(7) Row 2, Column 2: ( 1)(0) + (2)(6) + (3)( 2) A * B
MATH Algebra for High School Teachers Units and Zero Divisors
MATH 57091  Algebra for High School Teachers Units and Zero Divisors Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 9 Examples
More informationMathematics IMA ( 1) ( 2)
Maths Learning Service: Revision Matrices Mathematics IA Mathematics IMA A matrix is an array of numbers, written within a set of pattern of rows and columns. For example: 4 5 6, 0 0 0, brackets, and arranged
More informationChapter 4. Systems of Linear Equations; Matrices. Addition and Subtraction of Matrices. Section 4 Matrices: Basic Operations
Chapter 4 Systems of Linear Equations; Matrices Section 4 Matrices: Basic Operations Addition and Subtraction of Matrices To add or subtract matrices, they must be of the same order, m n. To add matrices
More informationAbsolute Value. Example. Practice
Absolute Value The absolute value of a number is the distance between the origin of a number line and the point representing that number. Look at the number line below. Both 7 and 7 are 7 units from the
More informationFor almost every real number, there is another number such that their product is equal. is 1. Numbers such as these are called
. Matrix Inverses Question : What is a matrix inverse? Question : How do you find a matrix inverse? For almost every real number, there is another number such that their product is equal to one. For instance,
More information3.2 Matrix Multiplication
3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract
More informationand the same number of columns, or one of the matrices must be a scalar. Thus, if you have an a x b matrix, and you want to add this to another matrix
The joy of matrix maths Matrices matrix is a rectangle of numbers. For example: X = 4 X is a matrix with rows and columns, a x matrix. In general a matrix with a rows and b columns is an a x b matrix.
More informationMATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants.
MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted A T, is the matrix whose rows are columns of A (and
More informationMatrices: Basic Operations and Their Properties Dr.Hayk Melikyan Department of Mathematics and CS
Matrices: Basic Operations and Their Properties Dr.Hayk Melikyan Department of Mathematics and CS melikyan@nccu.edu H.Melikian/1210 1 Matrix A matrix with m rows and n columns is said to have SIZE m n.
More informationChapter 4. Systems of Linear Equations; Matrices. Identity Matrix for Multiplication. Section 5 Inverse of a Square Matrix
Chapter 4 Systems of Linear Equations; Matrices Section 5 Inverse of a Square Matrix Identity Matrix for Multiplication 1 is called the multiplicative identity for real numbers since a(1) = (1)a = a For
More informationMatrices Worksheet. Adding the results together, using the matrices, gives
Matrices Worksheet This worksheet is designed to help you increase your confidence in handling MATRICES. This worksheet contains both theory and exercises which cover. Introduction. Order, Addition and
More informationPut the following equations to slopeintercept form then use 2 points to graph
Tuesday September 23, 2014 Warmup: Put the following equations to slopeintercept form then use 2 points to graph 1. 4x  3y = 8 8 x 6y = 16 2. 2x + y = 4 2x + y = 1 Tuesday September 23, 2014 Warmup:
More informationMath Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
More informationAB = BA = I n. For example, the matrix has inverse Unit 1, Section 4: Inverses of Matrices Inverses of Matrices 2 B =
Inverses of Matrices We have seen that many ideas from the world of numbers, such as addition and multiplication, have analogues in matrix theory The tables below summarizes these ideas: Real numbers Matrices
More information3.4 Solving Matrix Equations with Inverses
3.4 Solving Matrix Equations with Inverses Question : How do you write a system of equations as a matrix equation? Question 2: How do you solve a matrix equation using the matrix inverse? Multiplicative
More informationGroups 1. Definition 1 A Group G is a set with an operation which satisfies the following: e a = a e = e. a a 1 = a 1 a = e.
Groups 1 1 Introduction to Groups Definition 1 A Group G is a set with an operation which satisfies the following: 1. there is an identity element e G, such that for every a G e a = a e = e 2. every element
More informationMatrices A = n n
Chapter 3 Matrices 3.1 Overview 3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example, A x 4 3 4 3 x 3 x 4 The numbers (or functions) are called the elements or the entries
More informationMATH 304 Linear Algebra Lecture 9: Properties of determinants.
MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted
More informationLecture 12: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More informationChapter 1 Introductory Information and Review
SECTION 1.1 Numbers Chapter 1 Introductory Information and Review Section 1.1: Numbers Types of Numbers Order on a Number Line Types of Numbers Natural Numbers: MATH 1300 Fundamentals of Mathematics 1
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationA rational number is a number that can be written as where a and b are integers and b 0.
S E L S O N Rational Numbers Goal: Perform operations on rational numbers. Vocabulary Rational number: Additive inverse: A rational number is a number that can be a written as where a and b are integers
More informationAbout Fractions. Introduction
About Fractions TABLE OF CONTENTS About Fractions... 1 What is a FRACTION?... 1 Introduction... 1 Introduction... 1 Forms of Fractions... 1 Different Forms of Fractions... 1 Proper Fractions... 2 Improper
More informationMATRICES AND DETERMINANTS. A "matrix" is a special way of presenting numbers. Here are some examples:
MATRICES AND DETERMINANTS WHAT IS A MATRIX? A "matrix" is a special way of presenting numbers. Here are some examples: 3 6 ex.1) 2 8 5 7  The above is called a "matrix."  A matrix is always enclosed
More informationMath 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
More information9 Matrices, determinants, inverse matrix, Cramer s Rule
AAC  Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:
More informationMatrix Algebra in R A Minimal Introduction
A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering
More informationFinding equations of lines
Finding equations of lines A very typical question for a student in a math class will be to find the equation of a line. This worksheet will provide several examples of how to complete this task. Find
More informationBasic Matrix Manipulation with a Casio Graphing Calculator
Basic Matrix Manipulation with a Casio Graphing Calculator Often, a matrix may be too large or too complex to manipulate by hand. For these types of matrices, we can employ the help of graphing calculators
More informationMatrices and Matrix Operations Linear Algebra MATH 2010
Matrices and Matrix Operations Linear Algebra MATH 2010 Basic Definition and Notation for Matrices If m and n are positive integers, then an mxn matrix is a rectangular array of numbers (entries) a 11
More informationElementary Row Operations and Matrix Multiplication
Contents 1 Elementary Row Operations and Matrix Multiplication 1.1 Theorem (Row Operations using Matrix Multiplication) 2 Inverses of Elementary Row Operation Matrices 2.1 Theorem (Inverses of Elementary
More informationMATH 105: Finite Mathematics 26: The Inverse of a Matrix
MATH 05: Finite Mathematics 26: The Inverse of a Matrix Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline Solving a Matrix Equation 2 The Inverse of a Matrix 3 Solving Systems of
More informationNotes on Matrix Multiplication and the Transitive Closure
ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.
More informationHarvey Mudd College Math Tutorial: Matrix Algebra. We review here some of the basic definitions and elementary algebraic operations on matrices.
Harvey Mudd College Math Tutorial: Matrix Algebra We review here some of the basiefinitions and elementary algebraic operations on matrices There are many applications as well as much interesting theory
More informationChapter 2: Determinants 17
Chapter 2: Determinants 17 SECTION B Properties of a Determinant By the end of this section you will be able to prove that the determinant of a triangular or diagonal matrix is the product of the leading
More information1.3 Matrices and Matrix Operations
0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More informationChapter 4: Binary Operations and Relations
c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More informationrow row row 4
13 Matrices The following notes came from Foundation mathematics (MATH 123) Although matrices are not part of what would normally be considered foundation mathematics, they are one of the first topics
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More information(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.
1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is onetoone
More informationProofs Homework Set 3
Proofs Homework Set 3 MATH 217 WINTER 2011 Due January 26 A few words about proofs This is our first set of proof problems There will be additional proof problems accompanying every assignment for the
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationMathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR
Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGrawHill The McGrawHill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,
More informationMatrices: 2.3 The Inverse of Matrices
September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.
More informationChapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationB such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix
Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.
More informationElementary Matrices and The LU Factorization
lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three
More informationLecture 11: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationMatrix Operations How Much Wood Would You Need?
Matrix Operations ACTIVITY 1.6 SUGGESTED LEARNING STRATEGIES: Marking the Text, Graphic Organizer, Vocabulary Organizer, Create Representations Monique and Shondra have created their own afterschool business
More informationAddition and Subtraction
10 17 0 7 7 2 11 17 5 11 10 12 6 14 12 20 7 3 9 19 4 14 5 0 5 7 0 2 1 2 11 7 8 4 4 10 12 3 9 0 10 11 9 1 8 0 10 12 1 3 9 11 7 8 7 18 1 12 11 12 0 10 3 13 1 5 10 4 8 2 9 7 Sheet 1 10 17 0 7 7 14 2 9 Add
More informationA = v = 1 3 5
Vectors and Matrices Firstoff,avectorcanbethoughtofasamatrixsowe are really studying matrices. A matrix is an array of numbers, 0 2 A = 2 2 00 97 5 is a matrix with 4 rows and 3 columns. It s a 4 3 matrix.
More informationMagic Mathematics. Randall Pyke SFUCMS Math Camp Surrey 2015
Magic Mathematics Randall Pyke rpyke@sfu.ca SFUCMS Math Camp Surrey 2015 Pick a number from 1,,9 (don t tell anybody!) Pick a number from 1,,9 (don t tell anybody!) Multiply it by 2 and then add 5 Pick
More informationTypical Linear Equation Set and Corresponding Matrices
EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of
More informationDefinition: Group A group is a set G together with a binary operation on G, satisfying the following axioms: a (b c) = (a b) c.
Algebraic Structures Abstract algebra is the study of algebraic structures. Such a structure consists of a set together with one or more binary operations, which are required to satisfy certain axioms.
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationMatrix Operations Using Mathcad Charles Nippert
Matrix Operations Using Mathcad Charles Nippert These notes describe how to use Mathcad to perform matrix operations. As an example you'll be able to solve a series of simultaneous linear equations using
More informationRow Operations and Inverse Matrices on the TI83
Row Operations and Inverse Matrices on the TI83 I. Elementary Row Operations 2 8 A. Let A =. 2 7 B. To interchange rows and 2 of matrix A: MATRIX MATH C:rowSwap( MATRIX NAMES :[A],, 2 ) ENTER. 2 7 The
More informationMATH 2030: ASSIGNMENT 3 SOLUTIONS
MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by
More informationRational Expressions  Complex Fractions
7. Rational Epressions  Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,
More informationRational Numbers CHAPTER Introduction
RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + = () is solved when x =, because this value
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationQuestion 1: How do you write a system of equations as a matrix equation?
Question : How do ou write a sstem of equations as a matrix equation? In section 3.2, ou learned how to multipl two matrices. This process involved multipling the entries in the row of one matrix b the
More informationDepartment of Mathematics Exercises G.1: Solutions
Department of Mathematics MT161 Exercises G.1: Solutions 1. We show that a (b c) = (a b) c for all binary strings a, b, c B. So let a = a 1 a 2... a n, b = b 1 b 2... b n and c = c 1 c 2... c n, where
More informationSystems of Linear Equations in Fields
Systems of Linear Equations in Fields Fields A field is a structure F = (F ; +, ;, ι; 0, ) such that () F is a set with at least two members (2) +,,, ι, 0, are operations on F (a) + (addition) and (multiplication)
More informationGaussian Elimination
Gaussian Elimination Simplest example Gaussian elimination as multiplication by elementary lower triangular and permutation matrices Lower/Upper triangular, Permutation matrices. Invariance properties.
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationExam. Name. Solve the system of equations by graphing. 1) 2x y 5 3x y 6. Solve the system of equations by substitution.
Exam Name Solve the system of equations by graphing. 1) 2x y 5 3x y 6 10 y 1) 510 5 5 10 x 510 Var: 50 Objective: (4.1) Solve Systems of Linear Equations by Graphing Solve the system of equations by
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More information1 Matrices and matrix algebra
1 Matrices and matrix algebra 11 Examples of matrices Definition: A matrix is a rectangular array of numbers and/or variables For instance 4 2 0 3 1 A 5 12 07 x 3 π 3 4 6 27 is a matrix with 3 rows and
More informationSection 15.4 The Binomial Theorem. 4. Expand ( a b) n. Pascal s Triangle
918 Chapter 15 Sequences and Series Section 15.4 The Binomial Theorem Objectives 1. Expand ( a b) n Using Pascal s Triangle 2. Evaluate Factorials 3. Evaluate a n r b 4. Expand ( a b) n Using the Binomial
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationMath 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More informationMANCHESTER COLLEGE Department of Education. Length: 25 minutes Grade Intended: PreAlgebra (7 th )
LESSON PLAN by: Kyler Kearby Lesson: Multiplying and dividing integers MANCHESTER COLLEGE Department of Education Length: 25 minutes Grade Intended: PreAlgebra (7 th ) Academic Standard: 7.2.1: Solve
More informationHFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)
HFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example
More informationInverses. Stephen Boyd. EE103 Stanford University. October 25, 2016
Inverses Stephen Boyd EE103 Stanford University October 25, 2016 Outline Left and right inverses Inverse Solving linear equations Examples Pseudoinverse Left and right inverses 2 Left inverses a number
More information1.4 More Matrix Operations and Properties
8 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. More Matrix Operations Properties In this section, we look at the properties of the various operations on matrices. As we do so, we try to draw a parallel
More information6.1 Matrix Solutions to Linear Systems
6 Matrix Solutions to Linear Systems Section 6 Notes Page In this section we will talk about matrices Matrices help to organize data They can also be used to solve equations, which is what we will mainly
More informationDIVIDING COUNTING NUMBERS
me. divided by me. equals me. DIVIDING COUNTING NUMBERS The fifth scene in a series of articles on elementary mathematics. written by Eugene Maier designed and illustrated by Tyson Smith To find 15 3,
More informationProblem Set 3 Due: In class Thursday, Sept. 27 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L Kazdan Problem Set 3 Due: In class Thursday, Sept 27 Late papers will be accepted until 1:00 PM Friday These problems are intended to be straightforward with not much computation
More information10.1 Systems of Linear Equations: Substitution and Elimination
10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You
More informationDiscrete Mathematics. Stephen Perencevich
Discrete Mathematics Stephen Perencevich Stephen Perencevich Gonzaga College High School Washington, DC sperencevich@gonzaga.org c 0 All rights reserved. Algebra II: Discrete Mathematics Arithmetic Sequences
More information1.3. Properties of Real Numbers Properties by the Pound. My Notes ACTIVITY
Properties of Real Numbers SUGGESTED LEARNING STRATEGIES: Create Representations, Activating Prior Knowledge, Think/Pair/Share, Interactive Word Wall The local girls track team is strength training by
More informationMATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2
MATHEMATICS FO ENGINEES BASIC MATIX THEOY TUTOIAL This is the second of two tutorials on matrix theory. On completion you should be able to do the following. Explain the general method for solving simultaneous
More informationNumber Theory Vocabulary (For Middle School Teachers)
Number Theory Vocabulary (For Middle School Teachers) A Absolute value the absolute value of a real number is its distance from zero on the number line. The absolute value of any real number, a, written
More informationAlgebra I Station Activities for Common Core State Standards
Algebra I Station Activities for Common Core State Standards WALCH EDUCATION Table of Contents Standards Correlations...................................................... v Introduction..............................................................vii
More informationCramer s Rule and Gauss Elimination
Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationIf we apply Gaussian elimination then we get to a matrix U in echelon form
5. Gauss Jordan Elimination Gauss Jordan elimination is very similar to Gaussian elimination, except that one keeps going. To apply Gauss Jordan elimination, first apply Gaussian elimination until A is
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More informationMath Magic Surprising Tricks that Build Number Sense and Algebraic Reasoning
Teaching K8 April 2005 Math Column Michael Naylor Math Magic Surprising Tricks that Build Number Sense and Algebraic Reasoning Mathematics truly is magical, especially for students with strong number
More informationInverses. Stephen Boyd. EE103 Stanford University. October 27, 2015
Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudoinverse Left and right inverses 2 Left inverses a number
More information