Design of Digital Filters

Size: px
Start display at page:

Download "Design of Digital Filters"

Transcription

1 Chapter 8 Desig of Digital Filters Cotets Overview Geeral Cosideratios Desig of FIR Filters Desig of liear-phase FIR filters usig widows Time-delay i desired respose Sidelobes Hilbert trasform (9 phase shift) Desig of FIR filters by frequecy samplig Optimum equiripple liear-phase FIR filters Compariso of FIR methods Desig of IIR Filters from Aalog Filters IIR filter desig by biliear trasformatio Frequecy Trasformatios Desig of Digital Filters Based o Least-Squares Method Summary

2 8. c J. Fessler, May 7, 4, 3:8 (studet versio) So far our treatmet of DSP has focused primarily o the aalysis of discrete-time systems. Now we fially have the aalytical tools to begi to desig discrete-time systems. All LTI systems ca be thought of as filters, so, at least for LTI systems, to desig a system meas to desig a digital filter. (The desig of oliear or time-varyig systems is geerally more complicated, ad ofte more case specific.) Goal: give desired magitude respose H d () phase respose H d () tolerace specificatios (how far from ideal?), we wat to choose the filter parameters N, M, {a k }, {b k } such that the system fuctio H(z) = where a =, yields a frequecy respose H() H d (). M k= b kz N k= a kz = g i(z z i) j (z p j), Ratioal H(z), so LTI system described by a costat-coefficiet differece equatio, so ca be implemeted with fiite # of adds, multiplies, ad delays. I other words, filter desig meas choosig the umber ad locatios of the zeros ad poles, or equivaletly the umber ad values of the filter coefficiets, ad thus H(z), h[], H(). Overview N =, FIR or all-zero. liear passbad phase. N >, IIR. lower sidelobes for same umber of coefficiets. 8. Geeral Cosideratios Ideally would like N ad M or N + M to be as small as possible for miimal computatio / storage. Causal (for ow) Poles iside uit circle for stability 8.. Causality We will focus o desigig causal digital filters, sice those ca be implemeted i real time. Nocausal filter desig (e.g., for off-lie applicatios) is much easier ad may of the same priciples apply ayway. A LTI system is causal iff iput/output relatioship: y[] depeds oly o curret ad past iput sigal values. impulse respose: h[] = for < system fuctio: umber of fiite zeros umber of fiite poles frequecy respose: What ca we say about H()? Fact: if h[] is causal, the Paley-Wieer Theorem: H() caot be exactly zero over ay bad of frequecies. (Except i the trivial case where h[] =.) Furthermore, H() caot be flat (costat) over ay fiite bad. H R () ad H I () are Hilbert trasform pairs. Therefore they are ot idepedet. Hece magitude ad phase respose are iterdepedet. Thus those ideal filters with fiite bads of zero respose caot be implemeted with a causal filter. Istead, we must desig filters that approximate the desired frequecy respose H d ().

3 c J. Fessler, May 7, 4, 3:8 (studet versio) Characteristics of practical frequecy-selective filters No perfectly flat regios Fact: sice causal filters caot have a bad of frequecies with zero respose, or ca they have ay bad of frequecies over which the frequecy respose is a costat. Proof by cotradictio. Suppose H() = c for, with correspodig impulse respose h[]. Now defie a ew filter g[] = h[] c δ[]. The certaily g[] is also causal. But G() = H() c = for, which is impossible if g[] is causal. Causal filters caot have a bad of frequecies with zero respose. Nor ca they have a ifiitely sharp trasitio betwee the passbad ad the stopbad. Nor ca they have perfectly flat passbad. So a typical realistic magitude respose looks like the followig. H() + δ δ Passbad Ripple PSfrag replacemets Passbad Trasitio Bad δ Stopbad Ripple Stopbad p s π Practical filter desig meas choosig δ, δ, c ad s, ad the desigig N, M, {a k }, {b k } to satisfy those requiremets. Ofte oe must iterate. Ofte we plot H() usig db, i.e., log H(), ad express the ripple i db as well. Note that stopbad ripple is ot defied peak-to-peak, sice the highest magitude respose i the stopbad is more importat tha how wiggly the respose is i the stopbad. Example applicatio: CD digital crossover Separate woofer ad tweeter sigals digitally iside CD player, rather i aalog at speaker. Why is passbad ripple tolerable i this cotext (distortio)? Room acoustics act as aother filter. Speaker respose is ot perfectly flat. Keep filter ripple below these other effects. Now imagie that we have specified δ, δ, c ad s, ad we wish to desig N, M, {a k }, {b k } to satisfy those requiremets. As metioed above, we have two broad choices: FIR ad IIR. We focus first o FIR.

4 8.4 c J. Fessler, May 7, 4, 3:8 (studet versio) 8. Desig of FIR Filters A FIR filter of legth M is a LTI system with the followig differece equatio : y[] = M k= b k x[ k]. Note that the book chages the role of M here. Earlier, whe discussig ratioal system fuctios, M was the umber of zeros. Now M is the umber of ozero elemets of h[], which correspods to at most M zeros. (More precisely, we assume b M ad b, but some of the coefficiets i betwee could be zero.) The problem: give δ, δ, c, ad s, we wish to choose M ad {b k } M k= to achieve that goal. We focus o liear-phase FIR filters, because if liear phase is ot eeded, the IIR is probably preferable ayway. We focus o lowpass filters, sice trasformatios ca be made to form highpass, badpass from lowpass, as discussed previously. Impulse respose Clearly for a FIR filter h[] = { b, =,..., M, otherwise. So rather tha writig everythig i terms of b k s, we write it directly i terms of the impulse respose h[]. I fact, for FIR filter desig we usually desig h[] directly, rather tha startig from a pole-zero plot. (A exceptio would be otch filters.) 8.. Symmetric ad atisymmetric FIR filters I focus o the symmetric case. System fuctio: H(z) = M = h[] z. How do we make a filter have liear phase? We previously aswered this i the pole-zero domai. Now we examie it i the time domai. A FIR filter has liear phase if h[] = h[m ], =,,..., M. Example. For M = 5: h[] = {b, b, b, b, b }. Such a FIR filter is called symmetric. Cautio: this is ot eve symmetry though i the sese we discussed previously. This is related, but ot exactly the same as circular symmetry. { } Example. For M = 3 ad h[] = /,, /. Does this filter have liear phase? Is it lowpass or highpass? H() = + e j + e j = e j [ ej + + e j ] = e j ( + cos ), so sice + cos, H() =, which is liear phase. So it works for this particular example, but why does the symmetry coditio esure liear phase i geeral? Cautio. At this poit the book switches from M k= to M k= apparetly. This icosistet with MATLAB, so there are M factors that appear frequetly i the MATLAB calls. I thik that MATLAB is cosistet ad the book makes a udesirable switch of covetio here.

5 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.5 Symmetric real FIR filters, h[] = h[m ], =,..., M, are liear phase. Proof. Suppose M is eve: H(z) = = = = = M = M/ = M/ = M/ = M/ = h[] z h[] z + h[] z + h[] z + M =M/ M/ = M/ = h[] z ] h[] [z + z (M ) M/ = z (M )/ = Thus the frequecy respose is H() = H(z) z=e j M/ = e j(m )/ h[m ] z (M ) h[] z (M ) ] h[] [z (M )/ + z ((M )/ ) = M/ = e j(m )/ = = e j(m )/ H r () M/ [ ( M H r () = h[] cos Phase respose: = (split sum) ( = M ) (symmetry of h[]) (combie) (split phase). ] h[] [e j((m )/ ) + e j((m )/ ) [ ( )] M h[] cos { M H() =, H r () > M + π, H r () <. )]. (Real sice h[] is real.) The case for M odd is similar, ad leads to the same phase respose but with a slightly differet H r ().

6 8.6 c J. Fessler, May 7, 4, 3:8 (studet versio) I fact, the odd M case is eve easier by otig that h[ + (M )/] is a eve fuctio, so its DTFT is real, so the DTFT of h[] is e j(m )/ times a real fuctio. This proof does ot work for M eve sice the (M )/ is ot a iteger so we caot use the shift property. What about pole-zero plot? (We wat to be able to recogize FIR liear-phase filters from pole-zero plot.) From above, H(z) = z (M )/ M/ = h[] [ z (M )/ + z ((M )/ )] so H ( z ) = z (M )/ M/ = h[] [ z (M )/ + z ((M )/ )] = z M H(z). Thus H(z) = z (M ) H ( z ). So if q is a zero of H(z), the /q is also a zero of H(z). Furthermore, i the usual case where h[] is real, if q is a zero of H(z), the so is q. Example. Here are two pole-zero plots of such liear-phase filters. Im(z) Im(z) r r Re(z) 4 Re(z) What is differece betwee this ad all-pass filter? It was poles ad zeros i reciprocal relatioships for all-pass filter. Now we kow coditios for FIR filters to be liear phase. How do we desig oe? Delays I cotiuous time, the delay property of the Laplace trasform is x a (t τ) L e sτ X a (s). How do we build a circuit that delays a sigal? Sice e sτ is ot a ratioal fuctio, so it caot be implemeted exactly usig RLC circuits. So eve though a time delay system is a LTI system, we caot build it usig RLC compoets! We ca make a approximatio, e.g., which is ratioal i s, so we ca desig such a RLC circuit. e sτ sτ + s τ Or, we ca use more mechaical approaches to delay like a tape loop. Picture. write, read, erase head. delay / tape velocity. Aother approach is to rely o sigal propagatio time dow a log wire, ad tap ito the wire at various places for various delays. What about i discrete time? We just eed a digital latch or buffer (flip flops) to hold the bits represetig a digital sigal value util the ext time poit.

7 c J. Fessler, May 7, 4, 3:8 (studet versio) Desig of liear-phase FIR filters usig widows Perhaps the simplest approach to FIR filter desig is to take the ideal impulse respose h d [] ad trucate it, which meas multiplyig it by a rectagular widow, or more geerally, to multiply h d [] by some other widow fuctio, where h d [] = π H d () e j d. π π Typically h d [] will be ocausal or at least o-fir. {, c, Example. As show previously, if H d () =, otherwise, We ca create a FIR filter by widowig the ideal respose: ( = rect ) c the h d [] = c π sic ( c π ). h[] = w[] h d [] = where the widow fuctio w[] is ozero oly for =,..., M. What is the effect o the frequecy respose? W() = { hd [] w[], =,..., M, otherwise, M = w[] e j ad by time-domai multiplicatio property of DTFT, aka the widowig theorem: where π deotes π-periodic covolutio. H() = W() π H d () = π π π H d (λ) W( λ) dλ, (8-) I words, the ideal frequecy respose H d () is smeared out by the frequecy respose W() of the widow fuctio. What would the frequecy respose of the ideal widow be? W() = π δ() = impulse. Such a widow would cause o smearig of the ideal frequecy respose. However, the correspodig widow fuctio would be w[] =, which is ocausal ad o-fir. So i practice we must make tradeoffs. Example. rectagular widow. w[] = {, =,...,, otherwise, So by the shift property of the DTFT: h d [] = sic ( ( ) ) ad h[] = So the resultig frequecy respose is H() = e j [ + 4 π cos()]. Picture This is oly a 3-tap desig. Let us geeralize ext. k= with H d () = e j rect ( ) π, i.e., c = π/. { sic ( ( ),, sic π δ( πk), a Dirac ) } where sic ( ) = /π.64.

8 8.8 c J. Fessler, May 7, 4, 3:8 (studet versio) Example. rectagular widow. W() = M = w[] = {, =,..., M, otherwise, e j = = e j(m )/ W r (), where W r () = si(m/) si(/), M, =. I this case the ideal frequecy respose is smeared out by a sic-like fuctio, because W r () M sic ( M π ). The fuctio si(m/) M si(/) is available i MATLAB as the diric fuctio: the Dirichlet or periodic sic fuctio. How much is the ideal frequecy respose smeared out? The width of the mai lobe of W() is 4π/M, because the first zeros of W r () are at = ±π/m. As M icreases, width of mai lobe W() decreases, so arrower trasitio bad. Example. Here is the case c = π/4 for various values of M. Rectagular Widow Widow Respose Magitude Respose.8 w[] W r () / M.6.4. H() π π. π π Rectagular Widow Widow Respose Magitude Respose.8 w[] W r () / M.6.4. H() π π. π π How did I make these figures? Usig H = freqz(h,, om) sice b = h for causal FIR filters.

9 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.9 Time-delay i desired respose The term e j(m )/ i W() above comes from the fact that the rectagular widow is ot cetered aroud =, but rather is time-shifted to be cetered aroud = (M )/. This phase term will cause additioal distortio of H d (), uless H d () is also phase-shifted to compesate. For a lowpass filter with cutoff c, widowed by a legth-m widow fuctio, the appropriate desired respose is: H d () = { e j(m )/, c,, otherwise, = H d () = {, c,, otherwise, so that This is illustrated below. Note that from (8-), H() = π π π H d (λ) W( λ) dλ = π h d [] = ( [ c π sic c M ]). π c e jλ(m )/ j( λ)(m )/ si(( λ) M/) e dλ c si(( λ) /) = e j(m )/ c si(( λ) M/) dλ. π c si(( λ) /) Thus there is a overall delay of (M )/ samples from such a legth-m causal FIR filter. Without the phase term, the covolutio itegral is severely affected Audio applicatio, F s = 44kHz ad say M = 45. The delay i samples is (M )/ =. The time delay is M T = /44kHz =.5msec. The speed of soud i air is about 33meters / secod, so 3.3 meters away takes about msec. Thus a.5msec delay is well withi the tolerable rage for audio. Ideal Frequecy Respose.3.5 Ideal Impulse Respose H d () h d [] π π. Magitude Respose.3 Causal FIR Filter H() π π h[] Magitude Respose.3 Causal FIR Filter Shifted by (M )/ H().6 h[] π π.

10 8. c J. Fessler, May 7, 4, 3:8 (studet versio) Sidelobes The rectagular widow has high sidelobes i W(), ad the sidelobe amplitude is relatively uaffected by M. Sidelobes cause large passbad ripple, related to Gibbs pheomea. Sidelobes caused by abrupt discotiuity at edge of widow. Solutio: use some other widow fuctio. Examples: Bartlett, Blackma, Haig, Hammig, Kaiser, Laczos, Tukey. MATLAB s widow fuctio has 6 choices! All have lower sidelobes tha rectagular, hece less passbad ripple. Tradeoff? Wider trasitio bad for the same M compared to rectagular widow. Example. Haig widow: w[] = ( ) π cos. M What is the frequecy respose W()? Somewhat messy. How do we plot W()? W = freqz(w,, om) which i tur uses the DFT/FFT with N M via zero paddig. Cautio: this is the ha fuctio i MATLAB, ot the haig fuctio! Rectagular Widow 3 Norm. Widow Respose w[] M=9 W() / W() (db) π π Haig Widow 3 Norm. Widow Respose w[] M=9 W() / W() (db) π π Hammig Widow 3 Norm. Widow Respose w[] M=7 W() / W() (db) π π As M icreases, mai lobe width decreases. As M icreases, some of the sidelobe amplitudes decrease, but peak sidelobe amplitude remais approximately costat. Agai, the price is eed larger M tha for rectagular widow for same trasitio width. The various widows tradeoff mai lobe width with peak sidelobe amplitude. Haig mai lobe width is 8π/M, but peak sidelobe is -3dB compared with -3dB for rectagular.

11 c J. Fessler, May 7, 4, 3:8 (studet versio) 8. Example. Suppose we wat a FIR filter desig of a lowpass filter with H d () = widow with M = 5. The the desired impulse respose is: h d [] = 4 sic ( 4 ( (M )/) ). {, < π/4, otherwise, desiged usig the Haig I MATLAB, here is how we compute ad display the impulse respose ad the frequecy respose. % fig_wi_example.m M = 5; = [:(M-)]; om = lispace(-pi, pi, ); % for displayig frequecy respose oc = pi/4; % cutoff frequecy % desired impulse respose: hd = ilie( oc/pi * sic(oc/pi*(-(m-)/)),, oc, M ); Hd = ilie( *(abs(om) < oc), om, oc ); h = hd(, oc, M).* ha(m) ; % Haig widow applied to ideal impulse resp. clf, subplot(3) stem(, h, filled ), stem_fix axis([ M- -.,.3]), xlabel, ylabel h[] title(spritf( Haig Lowpass, M=%d, M)) subplot(3) H = freqz(h,, om); plot(om, *log(abs(h)), -, om, *log(max(hd(om,oc),eps)), -- ) xlabel \omega, ylabel H(\omega) (db) title Magitude Respose axisy(-8, ), xaxis_pi -p p/4 p % savefig fig_wi_example.3 Haig Lowpass, M=5 Magitude Respose.5. h[].5..5 H() (db) π π/4 π If we are usatisfied with the width of the trasitio bad, or the sidelobe amplitude, or the passbad ripple, the what could we do? Icrease M, try other widow fuctios, ad/or try other filter desig methods. Filter desig by widowig i MATLAB The fir commad i MATLAB is its tool for widow-based FIR filter desig. I the precedig example, we could have simply typed h = fir(4,.5, ha(5), oscale ) to get exactly the same desig.

12 8. c J. Fessler, May 7, 4, 3:8 (studet versio) Example. Digital phaser or flage. Time varyig pole locatios i cascade of st ad d-order allpass filters, Sum output of allpass cascade with origial sigal, creatig time-varyig otches FIR differetiator H d () = j skim 8..6 Hilbert trasform (9 phase shift) H d () = j sg() skip 8..3 Desig of FIR filters by frequecy samplig For the frequecy samplig method of FIR filter desig, to desig a M-poit FIR filter we specify the desired frequecy respose at a set of equally-spaced frequecy locatios: H d (), k =,..., M. = π M k I other words, we provide equally spaced samples over [, π). Picture Recall from the DTFT formula that if h d [] is ozero oly for =,..., M, the Thus, at the give frequecy locatios, we have H d () = M = h d [] e j. ( ) M π H d M k = h d [] e j π M k, k =,..., M. = This is the formula for the M-poit DFT discussed i Ch. 5 (ad i EECS 6). So we ca determie h d [] from { ( H π d M k)} M by usig the iverse DFT formula (or h = ifft(h) i MATLAB): k= h d [] = M M k= ( ) π H d M k e j π M k. This will be the impulse respose of the FIR filter as desiged by the frequecy samplig method. If we wat( h d [] to be real, the H d () must be Hermitia symmetric, i.e., Hd () = H d( ) = H d (π ). So if we specify H π d M k) to be some value, we kow that Hd( π M k) ( = H d π π M k) ( = H π d M (M k)) (, so H π d M (M k)) is also specified. Thus, software such as MATLAB s fir commad oly requires ( H d () oly o the iterval [, π]. If h d [] is to be real, the it also follows that H d (π) = H π ) M d M must be real valued whe M is eve. If you choose H d () to be liear phase, the the desiged h[] will be liear phase. But you are ot required to choose H d () to be liear phase! The book discusses may further details, but the above big picture is sufficiet for this class.

13 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.3 Example. The treble boost revisited. Double the amplitude of all frequecy compoets above c = π/. % fig_freq_sample.m Hd = ilie( exp(-i*om*(m-)/).* ( + (abs(om) > pi/)), om, M ); M = 9; ok = [:(M-)]/M * *pi; Hk = Hd(mod(ok+pi,*pi)-pi, M); % trick: [-pi,pi] specificatio of H(\omega) h = ifft(hk); h = reale(h, war ); % h = fir(m-, [.5.5 ], [ ], boxcar(m) ); om = lispace(-pi,pi,); clf, pl = 3; subplot(pl+), plot(om, abs(hd(om,m))) hold o, stem(ok(ok >= ), abs(hk(ok >= )), filled ), stem_fix, hold off xlabel \omega, ylabel H_d(\omega) axisy([.5]), xaxis_pi -p p/ p subplot(pl+), stem(:(m-), h, filled ), stem_fix, title(spritf( M=%d,M)) xlabel, ylabel h[], axis([ M ]) H = freqz(h,, om); subplot(pl+3), plot(om, abs(h), -, om, abs(hd(om,m)), --, ok, abs(hk), o ) xlabel \omega, ylabel H(\omega), axisy([.5]), xaxis_pi -p p/ p % savefig fig_freq_sample.5.5 M=9.5 H d ().5 h[].5 H() π π/ π π π/ π I MATLAB, use h = fir(m-, [.5.5 ], [ ], boxcar(m) ) to desig (almost) the above filter.

14 8.4 c J. Fessler, May 7, 4, 3:8 (studet versio) 8..4 Optimum equiripple liear-phase FIR filters The widow method has a mior disadvatage, that it is difficult to precisely specify p ad s, sice these two result from the smearig. All we really specify is c, the cutoff. A ideal liear-phase desig procedure would be as follows. Specify p, s, δ, δ, ad ru a algorithm that returs the miimum M that achieves that desig goal, as well as the impulse respose h[], =,..., M, where, for liear phase, h[] = h[m ]. To my kowledge, there is o such procedure that is guarateed to do this perfectly. However, we ca come close usig the followig iterative procedure. Choose M, ad fid the liear-phase h[] whose frequecy respose is as close to H d () as possible. If it is ot close eough, the icrease M ad repeat. How ca we measure closeess of two frequecy respose fuctios? Pictures of H d () ad H(). Possible optios iclude the followig. π π π H d() H() d, average absolute error π π π H d() H() d, average squared error π π π H d() H() W() d, average weighted squared error [ ] π /p, π H d() H() p W() d weighted Lp error, p π max H d () H(), maximum error (p = ) max W(H d () H()), maximum weighted error (p = ) I this sectio, we focus o the last choice, the maximum weighted error betwee the desired respose ad the actual frequecy respose of a FIR filter. We wat to fid the FIR filter that miimizes this error. How to fid this? Not by brute force search or trial ad error, but by aalysis! If W() the Cosider the case of a lowpass filter. Note that H d () = E() = W(H d () H()) = W() H d () H(). { e j(m )/, c,, > c = e j(m )/ H dr () where H dr () = Also recall that for M eve ad h[] liear phase ad symmetric, So H r () is the sum of M/ cosies. The error ca be simplified as follows: H() = e j(m )/ H r (), where H r () = M/ = {, c,, > c. ( ( )) M h[] cos. E() = W() H d () H() = W() e j(m )/ H dr () e j(m )/ H r () = W() H dr () H r (). Thus we oly eed to cosider the real parts of the desired vs actual frequecy respose.

15 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.5 The logical approach to specifyig the error weightig fuctio W() is as follows: /δ, c pass bad W() =, c < < s trasitio bad /δ, s < < π stop bad. However, the effect of the weightig will be the same if we multiply W() by a costat, such as δ. So the followig weightig fuctio has the same effect: δ /δ, c W() =, c < < s, s < < π. A small δ value meas we wat very low sidelobes, ad are willig to sacrifice uiformity over the passbad, so less weight is give to the errors i the passbad. As a desiger you choose H dr (), the filter legth M, the ratio δ /δ, ad the passbad ad stopbads, i.e., c ad s. The procedure fids the impulse respose that miimizes the maximum weighted error betwee the desired respose ad the actual respose. Mathematically, the mi-max or Chebyshev desig uses the followig criterio: mi {h[]} M/ = max E(). Usig the alteratio theorem, from the theory of Chebyshev approximatio, Parks ad McClella i 97 showed that a ecessary ad sufficiet coditio for a M-tap filter to be optimal (i the maximum weighted error sese) is that the error E() must reach its maximum at least M/ + poit over the itervals where W(). This theorem guaratees that there is a uique optimal filter. It also tells us that the error will alterate back ad forth, i.e., there will be ripples i passbad ad stopbad. The resultig filters are called equiripple because all ripples i passbad have the same peak-to-peak amplitude, ad likewise for the stop bad. The actual procedure for fidig the best filter is iterative, ad it called the Remez exchage algorithm. It is implemeted by the remez fuctio i Matlab. The algorithm first guesses where the extremal frequecies are, ad the computes H r () from that, the fids ew estimates of the extremal frequecies ad iterates. Icreasig M reduces passbad ripple ad icreases stopbad atteuatio MATLAB s remezord commad gives approximatio to required M, based o (8..95): ˆM = D (δ, δ ) f f(δ, δ ) f +, where f = ( s p )/(π) ad D ad f(δ, δ ) are defied i text ( ). Aother formula is also give i text: log 3 (δ ˆM = δ ) f As trasitio bad f decreases, M icreases As ripples δ j decrease, M icreases This ca be explored graphically usig MATLAB s fdatool or filtdes.

16 8.6 c J. Fessler, May 7, 4, 3:8 (studet versio) Example. digital crossover for audio F s = 44kHz F pass = 4.4kHz p = πf pass /F s =.π F stop = 6.6kHz s = πf stop /F s =.3π 3 bads: pass, trasitio, stop M = 6 for ow; revisit shortly. % fig_remez_example.m M = 6; f = [..3 ]; Hdr = [ ]; W = [ ]; h = remez(m-, f, Hdr, W); stem(:m-, h, filled ) freqz(h,, ) Equiripple (zoom).5. M=6 h[].5..5 H() (db) H() π π.4. π.4 π Haig widow (zoom).5. h[].5..5 H() (db) H() π π.4. π.4 π

17 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.7 Further illustratios of the tradeoffs. The error has to go somewhere: passbad(s), stopbad(s), ad/or trasitio bad(s). 3 W() 3 W() 3 W() /π.4.5 /π.4.5 /π.374 H(), M=3.6 H(), M=3.78 H(), M= /π /π /π 3 W() 3 W() 3 W() /π.4.5 /π.4.55 /π H(), M=3 H(), M=7 H(), M= /π /π /π 8..7 Compariso of FIR methods skim

18 8.8 c J. Fessler, May 7, 4, 3:8 (studet versio) 8.3 Desig of IIR Filters from Aalog Filters Why IIR? With IIR desigs we ca get the same approximatio accuracy (of the magitude respose) as FIR but with a lower order filter. The tradeoff is oliear phase. Aalog filter desig is a mature field. There are well kow methods for selectig RLC combiatios to approximate some desired frequecy respose H d (F ). Geerally, the more (passive) compoets used, the closer oe ca approximate H d (F ), (to withi compoet toleraces). Essetially all aalog filters are IIR, sice the solutios to liear differetial equatios ivolve ifiite-duratio terms of the form t m e λt u(t). Oe way to desig IIR digital filters is to piggyback o this wealth of desig experiece for aalog filters. What do aalog filters look like? Ay RLC etwork is describe by a liear costat coefficiet differetial equatio of the form N k= α k d k dt k y a(t) = M k= β k d k dt k x a(t) with correspodig system fuctio (Laplace trasform of the impulse respose) M k= H a (s) = β ks k N k= α ks. k Each combiatio of N, M, {α k }, {β k } correspods to some arragemet of RLCs. Those implemetatio details are uimportat to us here. The frequecy respose of a geeral aalog filter is H a (F ) = H a (s). s=jπf Overview Desig N, M, {α k }, {β k } usig existig methods. Map from s plae to z-plae somehow to get a k s ad b k s, i.e., a ratioal system fuctio correspodig to a discrete-time liear costat coefficiet differece equatio. Ca we achieve liear phase with a IIR filter? We should be able to use our aalysis tools to aswer this. Recall that liear phase implies that H(z) = z N H ( z ), so if z is a pole of the system fuctio H(z), the z is also a pole. So ay fiite poles (i.e., other tha or ) would lead to istability. There are o causal stable IIR filters with liear phase. Thus we desig for the magitude respose, ad see what phase respose we get IIR by approximatio of derivatives skim s = z T 8.3. IIR by impulse ivariace skim h[] = h a (T ) z = e st

19 c J. Fessler, May 7, 4, 3:8 (studet versio) IIR filter desig by biliear trasformatio Suppose we have used existig aalog filter desig methods to desig a IIR aalog filter with system fuctio M k= H a (s) = β ks k N k= α ks. k For a samplig period T s, we ow make the biliear trasformatio s = T s z + z. This trasformatio ca be motivated by the trapezoidal formula for umerical itegratio. See text for the derivatio. Defie the discrete-time system fuctio H(z) = H a (s) s= z. T s + z This trasformatio yields a ratioal system fuctio, i.e., a ratio of polyomials i z. This H(z) is a system fuctio whose frequecy respose is related to the frequecy respose of the aalog IIR filter. Example. Cosider a st-order aalog filter with a sigle pole at s = α Picture where α >, with system fuctio H a (s) = α + s. How would you build this? Usig the followig RL voltage divider, where V out (s) = i(t) R R+sL V i(s) = H a (s) = R/L R/L+s. vi(t) + R vout(t) L Applyig the biliear trasformatio to the above (Laplace domai) system fuctio yields: + z H(z) = H a (s) s= z = = T s + z α( + z ) + = ( z ) T s = α + z T s + z α + /T s + z /T s α /T s + α z = α + /T s + z (α + /T s ) + (α /T s )z + z [ pz = α + /T s p + + /p ] pz, where p = αt ) s (, ). What is h[]? h[] = + αt α+/t s ( p δ[] +( + /p)p u[]. s Im(z) p Re(z) Where did zero at z = come from?

20 8. c J. Fessler, May 7, 4, 3:8 (studet versio) Solvig biliear trasformatio for z i terms of s yields: z = + st s st s, so zero at s = maps to z =. Note also that pole at s = α maps to z = p. I geeral, the (fiite) poles ad zeros follow the mappig. Poles (or zeros) at s = map to z =. Real poles ad zeros remai real, complex-cojugate pairs remai pairs. What type of filters are H a (s) ad H(z)? Both are poor lowpass filters. This illustrates the method, but ot the power! The utility is for more sophisticated aalog IIR desigs. Picture : more s-domai poles ad correspodig z-domai poles The biliear trasformatio More geerally, if the system fuctio H a (s) is ratioal, i.e., H a (s) = g s p T s z + z p =... = T s so we will have oe root at z = +pts pt s ad aother oe at z =. See plot o ext page. real(s) > maps to z outside uit circle real(s) < maps to z iside uit circle s = jπf maps to z o uit circle i(s si) j (s pj), the for each term of the form s p we have ( pt s z = + st s st s, s = T s z + z. z = + jπf T s = r ejφ jπf T s r e jφ = ejφ, where r = + jπf T s ad φ = ( + jπf T s ) = arcta ( πf T s ). ( ) πf Thus z = e j, where = φ, so = ta Ts. Coversely, if z = e j the ) z +pt s pt s, z + s = e j T s + e j = e j/ e j/ T s e j/ + e = j si / j/ T s cos / = j ) ta( = F = ) ta(. T s πt s This is a oliear relatioship betwee the aalog frequecy ad the digital frequecy. It is called frequecy warpig. See plot o ext page. Because of this oliearity, a typical desig procedure goes as follows. Determie desired frequecy respose i terms of aalog frequecies, e.g., Hz. Covert the desired frequecies ito digital frequecies usig = πf/f s, yieldig p, s, etc. Map those digital frequecies ito aalog frequecies F = πt s ta(/). We ca use ay coveiet T s for this, e.g., T s =. Desig a aalog filter for those frequecies. Trasform aalog filter ito digital filter usig the biliear trasformatio with that same T s. This is all built ito commads such as MATLAB s cheby routie. Use MATLAB s filtdemo to experimet with various filter types. The Chebyshev Type I filters are all-pole aalog filters with equiripple behavior i the passbad ad mootoic i the stopbad. { ( H a (F ) = + ε TN (F/F where T N (x) = cos N cos x ), x pass) cosh(n cosh x), x > is the Nth order Chebyshev polyomial. There is ripple i the passbad of amplitude /( + ε ) that is user-cotrolled.

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

B1. Fourier Analysis of Discrete Time Signals

B1. Fourier Analysis of Discrete Time Signals B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Fourier Series and the Wave Equation Part 2

Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Tagore Engineering College Department of Electrical and Electronics Engineering EC 2314 Digital Signal Processing University Question Paper Part-A

Tagore Engineering College Department of Electrical and Electronics Engineering EC 2314 Digital Signal Processing University Question Paper Part-A Tagore Egieerig College Departmet of Electrical ad Electroics Egieerig EC 34 Digital Sigal Processig Uiversity Questio Paper Part-A Uit-I. Defie samplig theorem?. What is kow as Aliasig? 3. What is LTI

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa Fourier Aalysis I our Mathematics classes, we have bee taught that complicated uctios ca ote be represeted as a log series o terms whose sum closely approximates the actual uctio. aylor series is oe very

More information

Chapter 25. Waveforms

Chapter 25. Waveforms Chapter 5 Nosiusoidal Waveforms Waveforms Used i electroics except for siusoidal Ay periodic waveform may be expressed as Sum of a series of siusoidal waveforms at differet frequecies ad amplitudes 1 Waveforms

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

13 Fast Fourier Transform (FFT)

13 Fast Fourier Transform (FFT) 13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.

More information

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

The Binomial Multi- Section Transformer

The Binomial Multi- Section Transformer 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

FIR Filter Design Techniques

FIR Filter Design Techniques M.Tech. credit semiar report,electroic Systems Group, EE Dept, IIT Bombay, submitted November2002 FIR Filter Desig Techiques Arojit Roychowdhury (Roll No: 02307424) Supervisor: Prof P.C. Padey Abstract

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

The Field of Complex Numbers

The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

Confidence Intervals for One Mean with Tolerance Probability

Confidence Intervals for One Mean with Tolerance Probability Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

More information

5KHz low pass filter. unity at sample 1. Aligned with coeff. 3

5KHz low pass filter. unity at sample 1. Aligned with coeff. 3 Copyright 997, Lavry Egieerig Uderstadig FIR (Fiite Impulse Respose) Filters - A Ituitive Approach by Da Lavry, Lavry Egieerig People less familiar with digital sigal processig, ofte view the theory as

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

3. Continuous Random Variables

3. Continuous Random Variables Statistics ad probability: 3-1 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay

More information

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE: Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

More information

Understanding IIR (Infinite Impulse Response) Filters - An Intuitive Approach by Dan Lavry, Lavry Engineering

Understanding IIR (Infinite Impulse Response) Filters - An Intuitive Approach by Dan Lavry, Lavry Engineering Copyright 997, Lavry Egieerig Uderstadig IIR (Ifiite Impulse Respose) Filters - A Ituitive Approach by Da Lavry, Lavry Egieerig People less familiar with mathematics or etwork theory, ofte ted to assume

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

Lecture Notes CMSC 251

Lecture Notes CMSC 251 We have this messy summatio to solve though First observe that the value remais costat throughout the sum, ad so we ca pull it out frot Also ote that we ca write 3 i / i ad (3/) i T () = log 3 (log ) 1

More information

A BILINEAR TRANSFORMATION METHOD OF ELLIPTIC IIR LOWPASS FILTER (LPF) DESIGN

A BILINEAR TRANSFORMATION METHOD OF ELLIPTIC IIR LOWPASS FILTER (LPF) DESIGN IJRRAS 8 () August 0 www.arpapress.com/volumes/vol8issue/ijrras_8 3.pdf A BILINEAR TRANSFORMATION METHOD OF ELLIPTIC IIR LOWPASS FILTER (LPF) DESIGN Umar,. & Kwaha, B. J. Departmet of SLT, Federal Polytechic,

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Measurable Functions

Measurable Functions Measurable Fuctios Dug Le 1 1 Defiitio It is ecessary to determie the class of fuctios that will be cosidered for the Lebesgue itegratio. We wat to guaratee that the sets which arise whe workig with these

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

1 State-Space Canonical Forms

1 State-Space Canonical Forms State-Space Caoical Forms For ay give system, there are essetially a ifiite umber of possible state space models that will give the idetical iput/output dyamics Thus, it is desirable to have certai stadardized

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Introductory Explorations of the Fourier Series by

Introductory Explorations of the Fourier Series by page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S, Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

The shaded region above represents the region in which z lies.

The shaded region above represents the region in which z lies. GCE A Level H Maths Solutio Paper SECTION A (PURE MATHEMATICS) (i) Im 3 Note: Uless required i the questio, it would be sufficiet to just idicate the cetre ad radius of the circle i such a locus drawig.

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Descriptive statistics deals with the description or simple analysis of population or sample data.

Descriptive statistics deals with the description or simple analysis of population or sample data. Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small

More information

Power Factor in Electrical Power Systems with Non-Linear Loads

Power Factor in Electrical Power Systems with Non-Linear Loads Power Factor i Electrical Power Systems with No-Liear Loads By: Gozalo Sadoval, ARTECHE / INELAP S.A. de C.V. Abstract. Traditioal methods of Power Factor Correctio typically focus o displacemet power

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Solving Divide-and-Conquer Recurrences

Solving Divide-and-Conquer Recurrences Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr. Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Numerical Solution of Equations

Numerical Solution of Equations School of Mechaical Aerospace ad Civil Egieerig Numerical Solutio of Equatios T J Craft George Begg Buildig, C4 TPFE MSc CFD- Readig: J Ferziger, M Peric, Computatioal Methods for Fluid Dyamics HK Versteeg,

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Section 7-3 Estimating a Population. Requirements

Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

Confidence Intervals for the Mean of Non-normal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Confidence Intervals for the Mean of Non-normal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Cofidece Itervals for the Mea of No-ormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio

More information

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

2.7 Sequences, Sequences of Sets

2.7 Sequences, Sequences of Sets 2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information