fixed point ( The fixed point is also called as origin) and P is any point then OP is the position vector of the point P with respect the point O.

Size: px
Start display at page:

Download "fixed point ( The fixed point is also called as origin) and P is any point then OP is the position vector of the point P with respect the point O."

Transcription

1 Page 1 of 9 VECTORS 1 Scala Quantity: A scala quantity is that which has only magnitude Example: Volume, Aea, Tempeatue, wok done, time, density etc ae scala quantities as these quantities have no sense of diection Vecto Quantity: Quantity having magnitude and diection both is called as vecto Example: Foce, Velocity, Acceleation, Weight, Momentum, Displacement, electic field intensity etc ae vecto quantities 3 Diected line segment: A line segment is called as diected line segment if its initial point (stating point) and teminal point (initial point) ae specified ie If a line segment has initial point A and teminal point B then it is a diected line segment AB denoted as AB o simply by using small English alphabet such as a and is epesented as follows Length of the vecto epesents the magnitude of the vecto and is denoted as AB o a 4 Types of vectos (i) Position vecto: A vecto that epesents the position of a point with espect to given fixed point is called as position vecto of the given point ie if O is the fixed point ( The fixed point is also called as oigin) and P is any point then OP is the position vecto of the point P with espect the point O Note: A position vecto fixes the position of a point 5 Zeo Vecto: A vecto having zeo magnitude is called a zeo vecto Note: A zeo vecto has no paticula diection o it may be consideed to have any diection Example: AA is a zeo vecto Hee AA is nothing but the point A 6 Unit Vecto: A vecto having magnitude 1 is called as unit vecto Note: Unit vecto along the diection of a vecto: If a is a vecto then a unit vecto along it is given by a and is denoted by â ie a ˆ a a = a 7 Coinitial Vectos: Vectos having same initial point ae called as Coinitial Vectos Example: AB, AC, AD AE etc ae Coinitial Vectos 8 Collinea Vectos: Vectos which ae paallel to each othe iespective of thei magnitude and diections ae called as Collinea Vectos Example: The vectos AB, CD, and EF as shown in the figue ae collinea vectos 9 Negative of a vecto: Negative of a vecto is a vecto which has magnitude as that of the given vecto but diection opposite to the given vecto Example: If AB is a vecto then BA is it s negative vecto ie BA = AB o AB = BA Pepaed and designed by Ajay Mawaha Please tun ove

2 Page of 9 10 Equal vectos: Two o moe vectos ae said to be equal vectos iff they have same diection and same magnitude Example: In the figue AB = CD = EF Note: Equal vectos ae always collinea vectos 11 Fee Vectos: A vecto that can be displaced paallel to itself is called as fee vecto Note: We will conside the vectos in ou syllabus as fee vectos unless othewise stated ADDITION OF VECTORS Vectos can be added by two methods: METHOD1 Tiangle law of vecto addition: Addition of two vectos that can be epesented in magnitude and diection by the two sides of a tiangle in the same ode is the vecto epesented in magnitude and diection by the thid side of the tiangle in the evese ode Example: In the figue: AB + BC = AC Note: 1 Sum of the thee vecto that can be epesented in magnitude and diection by the thee sides of a tiangle in the same ode ( diection) is a zeo vecto ie AB + BC + CA = 0 If AB is any vecto then AB = OB OA = Position vecto of 'B' Postion vecto of 'A' As shown in the following figue: METHOD Paallelogam law of vecto addition: If two vectos can be epesented in magnitude and diection by the two adjacent sides of a paallelogam then thei addition is a vecto that can be epesented in magnitude and diection by the diagonal of the paallelogam Coinitial with the given vectos Example: In the figue: AB + AD = AC NOTE: In the above figue DB = AB AD and BD = AD AB Pepaed and designed by Ajay Mawaha Please tun ove

3 Page 3 of 9 Popeties of vecto additions 1 Vecto addition is commutative: ie a + b = b + a Vecto addition is associative: a + b + c = a + b + c ie ( ) ( ) 3 Zeo vecto is the additive identity ie 0 + a = a + 0 SCALAR MULTIPLICATION OF VECTOR Scala multiplication of a vecto is a vecto that is obtained by multiplying the vecto by a scala ie If a is any vecto and λ is a scala ie λ R then scala multiplication of the vecto a with the scala λ is the vecto λ a, whee (i) λ a = λ a (ii) If λ > 0 then a and λ a have same diection If λ < 0 then a and λ a have opposite diection Example: a, 1 a, a 1, a, a ae shown in the following figue: POSITION VECTOR OF A POINT IN CARTESIAN FORM: (I) In two dimension ( ie in D): If P(x,y) is a point on plane then OP (the position vecto of P) with espect to system of axis will be given by OP = xiˆ + yj ˆ as shown in the figue below: FIGURE ON NEXT PAGE Pepaed and designed by Ajay Mawaha Please tun ove

4 Page 4 of 9 OP = xiˆ + yj ˆ P(x, y) ˆ yj O ˆ xi A x-axis y-axis NOTE: OP = x + y (II) In thee dimension ( ie in 3D): If P(x,y,z) is a point on plane then OP (the position vecto of P) with espect to system of axis in the space will be given by OP = xiˆ + yj ˆ + zkˆ as shown in the figue below: In the above figue OP = OQ + QP ˆ ˆ ˆ 1 + P1 P = xi + yj + zk NOTE: OP = x + y + z RESULTS:, 1 If A ( x y ) and (, ) 1 1 B x y then OA = x ˆ ˆ 1i + y1 j and OB = x ˆ ˆ i + y j AB = OB OA = x x iˆ + y y ˆj Theefoe, ( ) ( ) NOTE: AB = ( x x ) + ( y y ) Pepaed and designed by Ajay Mawaha Please tun ove

5 Page 5 of 9 If A ( x, y, z ) and (,, ) B x y z then ˆ OA = x ˆ ˆ 1i + y1 j + z1k and OB = x ˆ ˆ ˆ i + y j + zk AB = OB OA = x ˆ ˆ ˆ x1 i + y y1 j + z z1 k AB = x x + y y + z z Theefoe, ( ) ( ) ( ) NOTE: ( ) ( ) ( ) ANGLE BETWEEN TWO VECTORS: Angle between two vectos is the angle between the Coinitial vectos displaced paallel to the given vectos ie If AB and CD ae two vectos then the angle between them is the angle PQR between the coinitial vectos QP and QR such that QP = AB and QR = CD DIRECTION COSINES AND DIRECTION RATIOS OF A VECTOR Let AB be any vecto in the space and OP be the vecto paallel to AB then angle between AB and x-axis, y-axis and z-axis is same as the angle between the vecto OP and x-axis, y-axis and z-axis espectively If ( α, β, γ ) ae the angles between the OP and x-axis, y-axis and z-axis espectively then diection cosines of the vecto AB ae ( cos α,cos β,cos γ ) espectively, also denoted as ( l, m, n) ie cos α = l, cos β = m and cos γ =n as shown in the figue below: NOTE: l + m + n = 1ie sum of the squaes of the diection cosines of a vecto is always one DIRECTION RATIOS OF A VECTOR: Diection atio of a vecto is the set of thee numbes which ae popotional to the diection cosines of a given vecto,, a, b, c is the set of ie if ( l m n ) ae the dc s (diection cosines) of a vecto and ( ) thee numbes such that l m n a b c (diection atios) of the given vecto = = then we say that (,, ) a b c ae the d-atio s Pepaed and designed by Ajay Mawaha Please tun ove

6 Page 6 of 9 RESULTS: 1 If ˆ a = a ˆ ˆ 1i + a j + a3k and b = b ˆ ˆ ˆ 1i + b j + b3k then a = b iff a1 = b1, a = b, and a3 = b3 If a = a ˆ ˆ ˆ 1i + a j + a3k then ( a1, a, a3 ) ae the diection atios of a and its d- cosines ae given by: a1 a a3 l =, m = and n = a a a 3 Whee, a = a1 + a + a3 3 If a = a ˆ ˆ ˆ 1i + a j + a3k then a1ˆ i, a ˆ j and a ˆ 3k ae called as the components of a 4 Popeties of scala multiplication: If k and m ae any two eal numbes then (i) ka + ma = ( k + m) a (ii) k ( ma ) = ( km ) a k a + b = ka + kb (iii) ( ) l m n ae the d-cosines of a vecto a then a unit vecto â along a is given by â liˆ mj ˆ zkˆ a = a liˆ + mj ˆ + nkˆ 5 If (,, ) = + + also ( ) SECTION FORMULAE: If P and Q ae two points with position vectos a and b then position vecto of a point R which CASE I: Divides the vecto PQ intenally in the atio of m : n is given by mb + na OR = m + n NOTE: Position vecto of mid point R of PQ, whee P and Q ae two points with position vectos a and b a + b is given by OR = CASE II: Divides the vecto PQ extenally in the atio of m : n is given by mb na OR = m n Pepaed and designed by Ajay Mawaha Please tun ove

7 Page 7 of 9 DOT PRODUCT (SCALAR PRODUCT OF TWO VECTORS) Scala poduct of two vectos a and b is defined as a b = a b cosθ Whee, θ is angle between a andb with 0 θ π RESULTS: 1 a b is a eal numbe Let a and b be two nonzeo vectos, then a b = 0 if and only if a and b ae pependicula to each othe ie If a 0 andb 0 then a b = 0 a b 3 If θ = 0,then a b = a b NOTE: a = a a = a,as θ in this case is 0 4 If θ = π then a b = a b a a = a as in this case θ = π NOTE: ( ) 5 As iˆ, ˆj & kˆ ae unit vectos ae pependicula to each othe theefoe iˆ iˆ = ˆj ˆj = kˆ kˆ = 1 & iˆ ˆj = ˆj kˆ = kˆ iˆ = 0 6 The angle θ between two nonzeo vectos a and b is given by a b cosθ = 1 a b,o θ = cos a b a b Popeties of scala poduct 1 The scala poduct is commutative ie a b = b a The scala poduct is associative ie a b + c = a b + a c ( ) 3 Let a and b be any two vectos, and λ be any scala Then λ a b = λ a b = a λ b ( ) ( ) ( ) Pepaed and designed by Ajay Mawaha Please tun ove

8 Page 8 of 9 PROJECTION OF A VECTOR ON A LINE / VECTOR 1 Pojection of a vecto on a line: Pojection p of a vecto a on a line l is given by: p = a cosθ o p = AB cosθ Pojection of a o AB on a line is the intecept of the pependiculas to the line though the end points of the vecto AB The pojections of vecto AB in diffeent diections ae shown as follows: RESULTS: 1 If ˆp is the unit vecto along a line l, then the pojection of a vecto a on the line l is given by a pˆ Pojection of a vecto a on othe vectob, is given by b 1 aˆ b o a, o ( a b ) b b 3 Ifθ = 0, then the pojection vecto of AB will be AB itself and if,θ = π then the pojection vecto of AB will be BA π 3π 4 If θ = oθ =, then the pojection vecto of AB will be zeo vecto VECTOR (OR CROSS) PRODUCT OF TWO VECTORS The vecto poduct of two nonzeo vectos a andb, is denoted by a b and defined as a b = a b sinθ nˆ Whee θ is the angle between a and b,0 θ π and ˆn is a unit vecto pependicula to both a and b, such that a,b and ˆn fom a ight handed system ie the ight handed system otated fom a tob moves in the diection of ˆn Pepaed and designed by Ajay Mawaha Please tun ove

9 Page 9 of 9 RESULTS 1 a b is avcto a = 0 ob = 0 then a b = 0 3 Let a and b be two nonzeo vectos Then a b = 0 if and only if a and b ae paallel (o collinea) to each othe ie, If a 0 and b 0 then a b = 0 a P b 4 a a = 0 and a ( a ) = 0, since in the fist situation, θ = 0 and in the second one, θ = π, making the value of sinθ to be 0 π 5 If θ = then a b = a b 6 Fo the unit vectos iˆ, ˆj and ˆk, we have iˆ iˆ = ˆj ˆj = kˆ kˆ = 0 iˆ ˆj = kˆ, ˆj kˆ = iˆ, kˆ iˆ = ˆj 7 In tems of vecto poduct, the angle between two vectos a and b may be given a b a b 1 as sinθ = o θ = sin a b a b 8 Vecto poduct is not commutative, infact a b = b a 9 If a and b epesent the adjacent sides of a tiangle then its aea is given as 1 a b 10 If a and b epesent the adjacent sides of a paallelogam, then its aea is given as a b 11 If ˆ a = a ˆ ˆ 1i + a j + a3k andb = b ˆ ˆ ˆ 1i + b j + b3k then î j kˆ a b = a a a Popeties: 1 a ( b + c ) = a b + a c λ a b = λ a b = a λ b ( ) ( ) ( ) 1 3 b b b 1 3 3, whee λ is any scala Pepaed and designed by Ajay Mawaha Please tun ove

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a. VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy

More information

SHORT REVISION SOLUTIONS OF TRIANGLE

SHORT REVISION SOLUTIONS OF TRIANGLE FREE Download Study Package fom website: wwwtekoclassescom SHORT REVISION SOLUTIONS OF TRINGLE I SINE FORMUL : In any tiangle BC, II COSINE FORMUL : (i) b + c a bc a b c sin sinb sin C o a² b² + c² bc

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLASS XI Anneue I CHAPTER.6. Poofs and Simple Applications of sine and cosine fomulae Let ABC be a tiangle. By angle A we mean te angle between te sides AB and AC wic lies between 0 and 80. Te angles B

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Saturated and weakly saturated hypergraphs

Saturated and weakly saturated hypergraphs Satuated and weakly satuated hypegaphs Algebaic Methods in Combinatoics, Lectues 6-7 Satuated hypegaphs Recall the following Definition. A family A P([n]) is said to be an antichain if we neve have A B

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

SQA Higher Mathematics Unit 3

SQA Higher Mathematics Unit 3 SCHOLAR Study Guide SQA Higher Mathematics Unit 3 Jane Paterson Heriot-Watt University Dorothy Watson Balerno High School Heriot-Watt University Edinburgh EH14 4AS, United Kingdom. First published 2001

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

PES 1110 Fall 2013, Spendier Lecture 27/Page 1

PES 1110 Fall 2013, Spendier Lecture 27/Page 1 PES 1110 Fall 2013, Spendier Lecture 27/Page 1 Today: - The Cross Product (3.8 Vector product) - Relating Linear and Angular variables continued (10.5) - Angular velocity and acceleration vectors (not

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Chapter 7. Cartesian Vectors. By the end of this chapter, you will

Chapter 7. Cartesian Vectors. By the end of this chapter, you will Chapter 7 Cartesian Vectors Simple vector quantities can be expressed geometrically. However, as the applications become more complex, or involve a third dimension, you will need to be able to express

More information

Section 10.4 Vectors

Section 10.4 Vectors Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Chapter 4: Matrix Norms

Chapter 4: Matrix Norms EE448/58 Vesion.0 John Stensby Chate 4: Matix Noms The analysis of matix-based algoithms often equies use of matix noms. These algoithms need a way to quantify the "size" of a matix o the "distance" between

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information