TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

Size: px
Start display at page:

Download "TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications"

Transcription

1 JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy of: copyight 00 mayland metics/osg copoation

2 Scew Thead - 1 <Exteio featues of idge> (1) Flank : Thead face (excluding cest and oot of pofile) () Cest : The tap suface joining the two sides o flanks of a (3) Root : The bottom suface joining the flanks of two adjacent flanks (4) Angle of : Angle between adjacent flanks measued at the coss section of scew - including the axis of the scew (5) Flank angle : The angle between the individual flank and the pependicula to the axis of the measued in the axial plane (6) itch : The distance fom a point on one to a coesponding point on the next measued paallel to the axis (7) Lead : The distance a scew advances axially in one complete tun (8) Lead angle : Angle fomed by a helix passing a point on a flank Figue 1 Basic designation of (1) (Extenal ) Cest Root adius Extenal Root cleaance Intenal Cest cleaance Angle of alf angle of alf angle of and plane pependicula to the axis of the scew (applies to paallel ) (9) Majo diamete of extenal : Diamete of a vitual cylinde which touches the cest of the extenal (10) Mino diamete of intenal : Diamete of a vitual cylinde which touches the cest of the intenal (11) Mino diamete of extenal : Diamete of a vitual cylinde which touches the oot of the extenal (1) Majo diamete of intenal : Diamete of a vitual cylinde which touches the oot of the intenal (13) itch diamete : On a staight scew, the diamete of an imaginay cylinde whee the width of the and the width of the space s ae equal. (Intenal )Cest itch Extenal oot eight of fundamental tiangle Mino diamete of Intenal D1 Mino diamete of extenal d1 (Intenal ) Root itch diamete d D1 Majo diamete of extenal Thead ovelap 1 d Majo diamete of intenal D Figue Basic designation of () Majo diamete of extenal itch diamete Cest Mino diamete of extenal Flank Thead idge Lead angle Angle of Extenal Thead goove Intenal itch Mino diamete of intenal itch diamete Majo diamete of intenal

3 Scew Thead - (14) Simple pitch diamete : Diamete of an imaginay cylinde when a goove width, which is detemined by the diection of an axis of scew, equals half of the efeence pitch. Fo many standad taps, the simple pitch diamete equals the pitch diamete. (15) Vitual pitch diamete : Vitual pitch diamete of a with a efeence pitch and efeence flank angle that fit without intefeence and play in the ove the given engagement (16) eight of Thead : Distance between a vitual cylinde that touches a cest of the and a vitual cylinde that touches a oot; detemined by measuing pependicula to the axis of the scew. (17) eight of fundamental tiangle : Right angle distance between a vitual cylinde (including the helix) fomed by extending and intesecting flanks of to the diection of cest and a vitual cylinde fomed by extending and intesecting flanks of to the diection of oot (18) Cest tuncation : The distance measued pependicula to the axis, between the shap cest and the cylinde o cone which bounds the actual oot. (19) Root tuncation : The distance measued pependicula to the axis, between the shap oot and the cylinde o cone which bounds the actual oot. (0) Thead ovelap : Distance measued pependicula to the axis of the scew between the vitual cylinde of the majo diamete of extenal and the vitual cylinde of the mino diamete of intenal, in extenal and intenal which mutually fit in concentic. (1) ecentage of engagement : Ratio of ovelap in poduct against efeence of ovelap () Length of engagement :Length measued in the diection of the axis, when an extenal and intenal ae fit and mutually contact. Usually this length equals the length of intenal and includes the chamfes of both ends of the intenal (3) Theaded potion : Theaded potion of tap that can be effectively used fo scew. The incomplete chamfeed potion is included.

4 h h Scew Thead - 3 Type Symbol Basic ofile Equation fo Basic Size Metic scew JIS B005 (coase) JIS B007 (fine) M <Types and Applications> Extenal Intenal d o D d o D d1 o D1 = = d=d d1=d D=d D1=d1 D=d =itch D=Fo intenal Angle of is 60. The Cest is flat, and thee is cleaance at the oot. Extenal and intenal engage well. Lage oot adius and lowe height enable easy scew pocessing and incease scew stength. The Majo diamete of extenal and pitch ae specified by a simple numeical value (most commonly measued in millimetes). Unified scew JIS B006 (coase) JIS B008 (fine) U Extenal Intenal d o D d o D d1 o D1 5.4 = n = = d=d d1=d D=d D1=d1 D=d The pofile is same as fo metic. Majo diamete of extenal is measued in inches and the numbe idges is epesented by the numbe of idges pe inch. 5.4 = n aallel pipe JIS B00 (F) h Extenal Intenal d o D d o D d1 o D1 = = = d=d - h d1=d - h D=d D1=d1 D=d ipe mainly fo mechanical coupling. It is specified accoding to JIS and R8. Fo the US method, some s have a 60 angle. Tape pipe JIS B003 R Rc (T) h Intenal Extenal = = = ipe mainly fo tighte potion. Tape 1/16 and 55 angle. Fo the US method, some s have a 60 angle Note: JIS T = BST JIS F = BSF 16 1

5 Scew Thead - 4 <Toleance> The following ae the equiements fo pope extenal and intenal engagement: 1. Extenal and intenal must have sufficient contact at the flank. Extenal and intenal must have enough engagement. [SAME AS ABOVE!] In ode to meet these equiements, JIS uses classes to define the limits of size and toleance fo the majo and mino diamete of intenal, pitch diamete, and the majo and mino diamete of extenal. Toleance Class The eason fo setting toleance in is: 1. The ensue compatibility. Limit the quality within a given ange Factos that effect the quality of scew include: 1. mateial: type, heat pocessing, suface pocessing, unifomity, etc.... shape: oot adius, incomplete, oundness, suface oughness, concentation of stess 3. detentions: majo diamete, pitch diamete, and mino diamete. Toleance class of idge is pimaily detemined by dimensions. Table 3 Types Name oup Class Fist Second Thid Metic scew (M) Extenal Intenal JIS 4h 6g 8g 4, 5 5, 6 7 Unified scew Extenal JIS 3A A 1A (U) Intenal JIS 3B B 1B Whitwoth scew (W) Second Thid Fouth Use Confoming engagement Clamping geneal machine eneal sevice fo geneal machine Regula bolt

6 Scew Thead - 5 Angle Eo The diffeence between the actual angle of and the pescibed angle of. Angles lage than the pescibed angel ae " plus", while angles smalle than the pescibed angle ae "minus". It doubles half angle eo. Flank angle eo : Diffeence between the actual flank angle and pescibed flank angle alf angle eo of : Flank angle eo at point whee pofile is symmetical to the cente line of the idge. Figue 3 Angle Eo Examples Inclination Flank angle eo Angle eo of itch Eo escibed idge alf angle eo of alf angle eo of Axis of scew The diffeence between the actual pitch and the pescibed pitch. itch that is lage than the pescibed pitch is " plus", while pitch that is smalle than the pescibed pitch is "minus". eneally this is fo one pitch, but some is fo two pitches. itch eo includes: Simple pitch eo : itch eo fo one pitch Cumulative pitch eo : Total pitch eo between idges which mutually depat two pitches o moe. ogessive pitch eo : itch eo that simple pitch eo is positive o negative eiodical pitch eo : itch eo that simple pitch peiodically inceases and deceases. Figue 4 itch eo examples Refeence pitch Refeence pitch fo thee idges eiodical pitch eo (Fo one peiod) eiodical pitch eo (Fo two peiods) Simple pitch eo Cumulative pitch eo Measued scew

7 Scew Thead - 6 < and Fome JIS fo ipe Thead> In 198 the JIS fo pipe s was evised and T and F which wee pescibed by that time, have been in the Appendix. R and ae included in the main body of the standad. Fo taps, as in the case with pipe s, T S and F have been in the Appendix. Rc, Rp, and ae in the main body of the standad. Compatibility between a tap, die, and gauge of each scew ae shown in the following table. Table 4 oup Types Symbol Compatibility Refeence Tap aallel intenal Tape intenal aallel intenal fo mechanical coupling Rc Rp Compatible using second class tap fo T - shot o long type Compatible using second class tap fo S Compatible using second class tap fo S ecision of scew can be compatible, but thee is a diffeence in the shape of the tap. Tape extenal R Compatible using die fo T Die aallel extenal fo mechanical coupling Compatible using die fo F Tape extenal R T incompatible auge aallel intenal Tape intenal aallel intenal fo mechanical coupling Rp Rc S incompatible (Judged by tapeed plug) T incompatible F incompatible Diffeent gauge pecision and shape aallel intenal fo mechanical coupling F incompatible Note: JIS T = BST JIS F = BSF copyight 00 mayland metics/osg copoation

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

CF CFS. MINICAM Series. The world-smallest MINICAM with a stud diameter of 2 mm is newly introduced! CAT-57115B

CF CFS. MINICAM Series. The world-smallest MINICAM with a stud diameter of 2 mm is newly introduced! CAT-57115B poducts ae avaiable fom: MARYLAD METRIS phones: ()- (00)- faxes: ()-12 (00)72-2 P.O.ox 21 Owings Mills, MD 21117 USA URL: http://mdmetic.com E-mail: sales@mdmetic.com MIIAM Seies FFS AT-711 The wold-smallest

More information

4.1 Cylindrical and Polar Coordinates

4.1 Cylindrical and Polar Coordinates 4.1 Cylindical and Pola Coodinates 4.1.1 Geometical Axisymmety A lage numbe of pactical engineeing poblems involve geometical featues which have a natual axis of symmety, such as the solid cylinde, shown

More information

Technical Data. 3. Boundary Dimensions and Bearing Number Codes. 3.1 Boundary dimensions A-16

Technical Data. 3. Boundary Dimensions and Bearing Number Codes. 3.1 Boundary dimensions A-16 Technical ata 3. ounday imensions and eaing Numbe odes 3.1 ounday dimensions To facilitate intenational intechangeability and economic beaing poduction, the bounday dimensions of olling beaings have been

More information

Algebra and Trig. I. A point is a location or position that has no size or dimension.

Algebra and Trig. I. A point is a location or position that has no size or dimension. Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite

More information

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer

CRRC-1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer CRRC- Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

XIIth PHYSICS (C2, G2, C, G) Solution

XIIth PHYSICS (C2, G2, C, G) Solution XIIth PHYSICS (C, G, C, G) -6- Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90 . Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Section 5-3 Angles and Their Measure

Section 5-3 Angles and Their Measure 5 5 TRIGONOMETRIC FUNCTIONS Section 5- Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

The Critical Angle and Percent Efficiency of Parabolic Solar Cookers

The Critical Angle and Percent Efficiency of Parabolic Solar Cookers The Citical Angle and Pecent Eiciency o Paabolic Sola Cookes Aiel Chen Abstact: The paabola is commonly used as the cuve o sola cookes because o its ability to elect incoming light with an incoming angle

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Magnetism: a new force!

Magnetism: a new force! -1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of E-field kq E-fields ae ceated by chages: E = 2 E-field exets a foce on othe

More information

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea Double Integals in Pola Coodinates In the lectue on double integals ove non-ectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example

More information

Instituto Superior Técnico Av. Rovisco Pais, 1 1049-001 Lisboa E-mail: virginia.infante@ist.utl.pt

Instituto Superior Técnico Av. Rovisco Pais, 1 1049-001 Lisboa E-mail: virginia.infante@ist.utl.pt FATIGUE LIFE TIME PREDICTIO OF POAF EPSILO TB-30 AIRCRAFT - PART I: IMPLEMETATIO OF DIFERET CYCLE COUTIG METHODS TO PREDICT THE ACCUMULATED DAMAGE B. A. S. Seano 1, V. I. M.. Infante 2, B. S. D. Maado

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle Tigonomet Module T2 Tigonometic Functions of An Angle Copight This publication The Nothen Albeta Institute of Technolog 2002. All Rights Reseved. LAST REVISED Decembe, 2008 Tigonometic Functions of An

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Agenda. Exchange Rates, Business Cycles, and Macroeconomic Policy in the Open Economy, Part 2. The supply of and demand for the dollar

Agenda. Exchange Rates, Business Cycles, and Macroeconomic Policy in the Open Economy, Part 2. The supply of and demand for the dollar Agenda Exchange Rates, Business Cycles, and Macoeconomic Policy in the Open Economy, Pat 2 How Exchange Rates ae Detemined (again) The IS-LM Model fo an Open Economy Macoeconomic Policy in an Open Economy

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

92.131 Calculus 1 Optimization Problems

92.131 Calculus 1 Optimization Problems 9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle

More information

867 Product Transfer and Resale Report

867 Product Transfer and Resale Report 867 Poduct Tansfe and Resale Repot Functional Goup ID=PT Intoduction: This X12 Tansaction Set contains the fomat and establishes the data contents of the Poduct Tansfe and Resale Repot Tansaction Set (867)

More information

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968)

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968) Poblems of the nd ntenational Physics Olympiads (Budapest Hungay 968) Péte Vankó nstitute of Physics Budapest Univesity of Technical Engineeing Budapest Hungay Abstact Afte a shot intoduction the poblems

More information

THERMAL ISOLATION TECHNIQUES FOR CURE MONITORING USING FBG OPTICAL SENSORS

THERMAL ISOLATION TECHNIQUES FOR CURE MONITORING USING FBG OPTICAL SENSORS THERMAL OLATION TECHNIQUES FOR CURE MONITORING USING FBG OPTICAL SENSORS E.K.G. Boateng, P.J. Schubel, N.A. Waio Polyme Composites Goup Division of Mateials, Mechanics and Stuctues Faculty of Engineeing

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Chapter 6. Gradually-Varied Flow in Open Channels

Chapter 6. Gradually-Varied Flow in Open Channels Chapte 6 Gadually-Vaied Flow in Open Channels 6.. Intoduction A stea non-unifom flow in a pismatic channel with gadual changes in its watesuface elevation is named as gadually-vaied flow (GVF). The backwate

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation

More information

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds. Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of

More information

Strength Analysis and Optimization Design about the key parts of the Robot

Strength Analysis and Optimization Design about the key parts of the Robot Intenational Jounal of Reseach in Engineeing and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Pint): 2320-9356 www.ijes.og Volume 3 Issue 3 ǁ Mach 2015 ǁ PP.25-29 Stength Analysis and Optimization Design

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Modelling and Simulation of Four Quadrant Operation of Three Phase Brushless DC Motor With Hysteresis Current Controller

Modelling and Simulation of Four Quadrant Operation of Three Phase Brushless DC Motor With Hysteresis Current Controller ISSN (Pint) : 30 375 Vol., Issue, June 03 Modelling and Simulation of Fou Quadant Opeation of Thee Phase Bushless DC Moto With Hysteesis Cuent Contolle Sanita C S, J T Kuncheia PG Student [IDAC], Dept.

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

9.5 Volume of Pyramids

9.5 Volume of Pyramids Page of 7 9.5 Volume of Pyamids and Cones Goal Find the volumes of pyamids and cones. Key Wods pyamid p. 49 cone p. 49 volume p. 500 In the puzzle below, you can see that the squae pism can be made using

More information

International Monetary Economics Note 1

International Monetary Economics Note 1 36-632 Intenational Monetay Economics Note Let me biefly ecap on the dynamics of cuent accounts in small open economies. Conside the poblem of a epesentative consume in a county that is pefectly integated

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

PY1052 Problem Set 3 Autumn 2004 Solutions

PY1052 Problem Set 3 Autumn 2004 Solutions PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

The transport performance evaluation system building of logistics enterprises

The transport performance evaluation system building of logistics enterprises Jounal of Industial Engineeing and Management JIEM, 213 6(4): 194-114 Online ISSN: 213-953 Pint ISSN: 213-8423 http://dx.doi.og/1.3926/jiem.784 The tanspot pefomance evaluation system building of logistics

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

ON NEW CHALLENGES FOR CFD SIMULATION IN FILTRATION

ON NEW CHALLENGES FOR CFD SIMULATION IN FILTRATION ON NEW CHALLENGES FOR CFD SIMULATION IN FILTRATION Michael Dedeing, Wolfgang Stausbeg, IBS Filtan, Industiestasse 19 D-51597 Mosbach-Lichtenbeg, Gemany. Oleg Iliev(*), Zaha Lakdawala, Faunhofe Institut

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 1-5 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE

More information

Introduction to Stock Valuation. Background

Introduction to Stock Valuation. Background Intoduction to Stock Valuation (Text efeence: Chapte 5 (Sections 5.4-5.9)) Topics backgound dividend discount models paamete estimation gowth oppotunities pice-eanings atios some final points AFM 271 -

More information

ESCAPE VELOCITY EXAMPLES

ESCAPE VELOCITY EXAMPLES ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs

More information

Trigonometry in the Cartesian Plane

Trigonometry in the Cartesian Plane Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom

More information

LAL Update. Letter From the President. Dear LAL User:

LAL Update. Letter From the President. Dear LAL User: LAL Update ASSOCIATES OF CAPE COD, INCORPORATED OCTOBER 00 VOLUME 0, NO. Lette Fom the Pesident Dea LAL Use: This Update will claify some of the statistics used with tubidimetic and chomogenic LAL tests.

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Magnetic Bearing with Radial Magnetized Permanent Magnets

Magnetic Bearing with Radial Magnetized Permanent Magnets Wold Applied Sciences Jounal 23 (4): 495-499, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich

More information

9. Mathematics Practice Paper for Class XII (CBSE) Available Online Tutoring for students of classes 4 to 12 in Physics, Chemistry, Mathematics

9. Mathematics Practice Paper for Class XII (CBSE) Available Online Tutoring for students of classes 4 to 12 in Physics, Chemistry, Mathematics Available Online Tutoing fo students of classes 4 to 1 in Physics, 9. Mathematics Class 1 Pactice Pape 1 3 1. Wite the pincipal value of cos.. Wite the ange of the pincipal banch of sec 1 defined on the

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Solutions to Homework Set #5 Phys2414 Fall 2005

Solutions to Homework Set #5 Phys2414 Fall 2005 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Supplementary Material for EpiDiff

Supplementary Material for EpiDiff Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

More information

Seventh Edition DYNAMICS 15Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

Seventh Edition DYNAMICS 15Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Seenth 15Fedinand P. ee E. Russell Johnston, J. Kinematics of Lectue Notes: J. Walt Ole Texas Tech Uniesity Rigid odies CHPTER VECTOR MECHNICS FOR ENGINEERS: YNMICS 003 The McGaw-Hill Companies, Inc. ll

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions.

LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions. Facts about the LS Design LATIN SQUARE DESIGN (LS) -With the Latin Squae design you ae able to contol vaiation in two diections. -Teatments ae aanged in ows and columns -Each ow contains evey teatment.

More information

Gauss s law relates to total electric flux through a closed surface to the total enclosed charge.

Gauss s law relates to total electric flux through a closed surface to the total enclosed charge. Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flu. lectic Flu Φ though an aea ~ Numbe of Field Lines

More information

Chapter 8, Rotational Kinematics. Angular Displacement

Chapter 8, Rotational Kinematics. Angular Displacement Chapte 8, Rotational Kinematics Sections 1 3 only Rotational motion and angula displacement Angula velocity and angula acceleation Equations of otational kinematics 1 Angula Displacement! B l A The length

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Software Engineering and Development

Software Engineering and Development I T H E A 67 Softwae Engineeing and Development SOFTWARE DEVELOPMENT PROCESS DYNAMICS MODELING AS STATE MACHINE Leonid Lyubchyk, Vasyl Soloshchuk Abstact: Softwae development pocess modeling is gaining

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Radians At school we usually lean to measue an angle in degees. Howeve, thee ae othe ways of measuing an angle. One that we ae going to have a look at hee is measuing angles in units called adians. In

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

The Detection of Obstacles Using Features by the Horizon View Camera

The Detection of Obstacles Using Features by the Horizon View Camera The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit aa@am.info.gifu-u.ac.jp

More information

Avoided emissions kgco 2eq /m 2 Reflecting surfaces 130

Avoided emissions kgco 2eq /m 2 Reflecting surfaces 130 ANALYSIS OF GLOBAL WARMING MITIGATION BY WHITE REFLECTING SURFACES Fedeico Rossi, Andea Nicolini Univesity of Peugia, CIRIAF Via G.Duanti 67 0615 Peugia, Italy T: +9-075-585846; F: +9-075-5848470; E: fossi@unipg.it

More information

Manual ultrasonic inspection of thin metal welds

Manual ultrasonic inspection of thin metal welds Manual ultasonic inspection of thin metal welds Capucine Capentie and John Rudlin TWI Cambidge CB1 6AL, UK Telephone 01223 899000 Fax 01223 890689 E-mail capucine.capentie@twi.co.uk Abstact BS EN ISO 17640

More information

Bearings for Mining Machinery

Bearings for Mining Machinery eaings fo Mining Machiney Tough beaings offe longe sevice life unde demanding mining conditions though NSK s wealth of outstanding technologies. Choose NSK NSK beaings offe mine opeatos longe sevice life

More information

LINES AND TANGENTS IN POLAR COORDINATES

LINES AND TANGENTS IN POLAR COORDINATES LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

875 Grocery Products Purchase Order

875 Grocery Products Purchase Order 875 Gocey Poducts Puchase Ode Functional Goup ID=OG Intoduction: This X12 Tansaction Set contains the fomat establishes the data contents of the Gocey Poducts Puchase Ode Tansaction Set (875) fo use within

More information

L19 Geomagnetic Field Part I

L19 Geomagnetic Field Part I Intoduction to Geophysics L19-1 L19 Geomagnetic Field Pat I 1. Intoduction We now stat the last majo topic o this class which is magnetic ields and measuing the magnetic popeties o mateials. As a way o

More information

An Epidemic Model of Mobile Phone Virus

An Epidemic Model of Mobile Phone Virus An Epidemic Model of Mobile Phone Vius Hui Zheng, Dong Li, Zhuo Gao 3 Netwok Reseach Cente, Tsinghua Univesity, P. R. China zh@tsinghua.edu.cn School of Compute Science and Technology, Huazhong Univesity

More information

YIELD TO MATURITY ACCRUED INTEREST QUOTED PRICE INVOICE PRICE

YIELD TO MATURITY ACCRUED INTEREST QUOTED PRICE INVOICE PRICE YIELD TO MATURITY ACCRUED INTEREST QUOTED PRICE INVOICE PRICE Septembe 1999 Quoted Rate Teasuy Bills [Called Banke's Discount Rate] d = [ P 1 - P 1 P 0 ] * 360 [ N ] d = Bankes discount yield P 1 = face

More information

SHORT REVISION SOLUTIONS OF TRIANGLE

SHORT REVISION SOLUTIONS OF TRIANGLE FREE Download Study Package fom website: wwwtekoclassescom SHORT REVISION SOLUTIONS OF TRINGLE I SINE FORMUL : In any tiangle BC, II COSINE FORMUL : (i) b + c a bc a b c sin sinb sin C o a² b² + c² bc

More information