Coupled best proximity point theorems for proximally gmeirkeelertypemappings in partially ordered metric spaces


 Barbra Cameron
 2 years ago
 Views:
Transcription
1 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 DOI /s R E S E A R C H Open Access Couple best proximity point theorems for proximally gmeirkeelertypemappings in partially orere metric spaces Ali Abkar *, Samaneh Ghos an Azizollah Azizi * Corresponence: Department of Mathematics, Imam Khomeini International University, Qazvin, 34149, Iran Abstract In this paper we first introuce the notion of proximally gmeirkeeler type mappings, then we stuy the existence an uniqueness of couple best proximity points for these mappings. This generalization is in line with Eelstein s generalization of MeirKeeler type mappings, as well as in line with the recent one use in Eshaghi Gorji in Math. Probl. Eng. 2012:150363, 2012). MSC: 47H10; 54H25; 47J25 Keywors: couple best proximity point; proximally gmeirkeeler type mapping; proximalmixestrictgmonotone property 1 Introuction The Banach contraction principle [1] is a classical an powerful tool in nonlinear analysis. This principle has been generalize in ifferent irections by many authors see, for example, [2 6] an the references therein). Afterwar, Bhaskar an Lakshmikantham [7] introuce the notion of couple fixe points of a given twovariable mapping F. They also establishe the uniqueness of couplefixepoint for the mapping F, an successfully applie their results to the problem of existence an uniqueness of solution for a perioic bounary value problem. Following their lines of research, some authors have extene these results in several irections see, for instance, [8, 9]). The wellknown best approximation theorem, ue to Fan [10], asserts that if A is a nonempty, compact an convex subset of a norme linear space X, ant is a continuous mapping from A to X, then there exists a point x A such that the istance of x to Tx is equal to the istance of Tx to A. Suchapointx is calle a best approximant of T in A. This result was in turn generalize by several authors see, for example, [11 13], an the references therein). In the sequel, X is a nonempty set, an X, ) is a metric space. In [2], Meir an Keeler generalize the wellknown Banach contraction principle. In 1969, Meir an Keeler efine weak uniformly strict contraction as follows: given ɛ >0,thereexistsδ >0suchthat ɛ x, y)<ɛ + δ Fx, Fy)<ɛ 2015 Abkar et al. This article is istribute uner the terms of the Creative Commons Attribution 4.0 International License which permits unrestricte use, istribution, an reprouction in any meium, provie you give appropriate creit to the original authors) an the source, provie a link to the Creative Commons license, an inicate if changes were mae.
2 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 2 of 16 for a selfmap F on X. They prove that every weakly uniformly strict contraction on a complete metric space X, ) hasauniquefixepoint.inthisway,theywereableto recapture earlier results ue to Eelstein, as well as that of Boy an Wong. Recently, Eshaghi Gorji et al. [14], efine the generalize gmeirkeeler type contractions an prove some couple fixe point theorems uner a generalize gmeirkeelercontractive conition. In this way, they improve results of Bhaskar an Lakshmikantham [7]. We shall recall their efinitions here. Definition 1.1 [14] LetX, ) be a partially orere set an be a metric on X. LetF : X X X an g : X X be two given mappings. We say that F is a generalize gmeir Keeler type contraction if, for every ɛ >0,thereexistsδɛ)>0suchthat,forallx, y, u, v X with gx) gu)angy) gv), ɛ 1 2[ gx), gu) ) + gy), gv) )] < ɛ + δɛ) Fx, y), Fu, v) ) < ɛ. They also efine the mixe strict gmonotone property. Definition 1.2 [14] LetX, ) be a partially orere set an F : X X X an g : X X be two given mappings. We say that F hasthe mixe strict gmonotone property if, for any x, y X, x 1, x 2 X, gx 1 )<gx 2 ) Fx 1, y)<fx 2, y), y 1, y 2 X, gy 1 )<gy 2 ) Fx, y 1 )>Fx, y 2 ). Since we shall be ealing with couple best proximity points, the following efinitions will be neee. Definition 1.3 Let A, B be nonempty subsets of a metric space X, ), an T : A B be a nonself mapping. A point x A is calle a best proximity point of T if x, Tx )) = A, B), where A, B):=inf { x, y):x A, y B }. In this paper we shall use the following symbols: A 0 = { x A : x, y)=a, B)forsomey B }, B 0 = { y B : x, y)=a, B)forsomex A }. It is well known that A 0 is containe in the bounary of A see, for instance, [15]). For more information on some recent results in this topic, we refer the intereste reaer to [16 20]. In [21], the authors efine the notion of a couple best proximity point, as follows. Definition 1.4 Let A, B be nonempty subsets of a metric space X, ) anf : A A B be a mapping. A point x 1, x 2 ) A A is calle a couple best proximity point of F if x 1, Fx 1, x 2 ) ) = x 2, Fx 2, x 1 ) ) = A, B).
3 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 3 of 16 It is easy to see that if A = B in Definition 1.4, thenacouplebestproximitypointisa couplefixepointoff. Pragaeeswarar et al. [22] efine a proximally couple contraction as follows. Definition 1.5 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X. A mapping F : A A B is sai to be a proximally couple contraction if there exists k 0, 1) such that whenever x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), it follows that u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Motivate by the results of [14]an[22], in this paper we first introuce the notions of proximal mixe strict monotone property an proximally MeirKeeler type functions an prove the existence an uniqueness of couple best proximity point theorems for these mappings. This will be implemente in Section 2. InSection3, weshalliscusssome more generalizations of this notions. An example will be provie to illustrate our result. 2 Proximally MeirKeeler type mappings In this section we will efine proximal mixe strict monotone property an proximally MeirKeeler type mappings, an prove some theorems in this regar. In the next section we eal with some further generalizations of this topics. Therefore, we shall not provie any proof for the statements mae in this section, instea we will comment on how these facts can be inferre from their counterparts in Section 3; inee, the next section is evote to proximally gmeirkeeler type mappings, as well as to proximal mixe strict gmonotone property, so that if we put g = ientity, we get all the results state in Section 2. Definition 2.1 Let X,, ) be a partiallyorere metric space, A, B be nonempty subsets of X,anF : A A B be a given mapping. We say that F has the proximal mixe strict monotone property if, for all x, y A, x 1 < x 2, u 1, Fx 1, y)) = A, B), u 2, Fx 2, y)) = A, B), then u 1 < u 2 an if y 1 y 2, u 3, Fx, y 1 )) = A, B), u 4, Fx, y 2 )) = A, B), then u 4 u 3,wherex 1, x 2, y 1, y 2, u 1, u 2, u 3, u 4 A.
4 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 4 of 16 Definition 2.2 Let X,, ) be a partiallyorere metric space, A, B be nonempty subsets of X, anf : A A B be a given mapping. We say that F is a proximally MeirKeeler type function if, for every ɛ >0,thereexistδɛ)>0ank 0, 1) such that whenever x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), then ɛ k 2[ x1, x 2 )+y 1, y 2 ) ] < ɛ + δɛ) u 1, u 2 )<ɛ, where x 1, x 2, y 1, y 2, u 1, u 2 A. Proposition 2.3 Let X,, ) be a partially orere metric space, A, B be nonempty subsets of X, an let F : A A B be a given mapping such that the conitions x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), imply k 0, 1); u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Then F is a proximally MeirKeeler type function. From now on, we suppose that X,, ) is a partially orere metric space enowe with the following partial orering: for all x, y), u, v) X X, u, v) x, y) u < x, v y. Lemma 2.4 Let X,, ) be a partially orere metric space, A, B be nonempty subsets of X, an let F : A A B be a given mapping. If F is a proximally MeirKeeler type function, an x 1, y 1 ) x 2, y 2 ), u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), then k 0, 1); u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Theorem 2.5 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B
5 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 5 of 16 be a given mapping satisfying the following conitions: a) F is continuous; b) F has the proximal mixe strict monotone property on A such that FA 0, A 0 ) B 0 ; c) F is a proximally MeirKeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that x 1, Fx 0, y 0 )) = A, B) with x 0 < x 1, an y 1, Fy 0, x 0 )) = A, B) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Theorem 2.6 Let X,, ) be a partially orere complete metric space. Let A be a nonempty close subset of the metric space X, ). Let F : A A A be a given mapping satisfying the following conitions: a) F is continuous; b) F has the proximal mixe strict monotone property on A; c) F is a proximally MeirKeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A A such that x 1 = Fx 0, y 0 ) with x 0 < x 1, an y 1 = Fy 0, x 0 ) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = 0 an y, Fy, x)) = 0. Theorem 2.7 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B be a given mapping satisfying the following conitions: a) if {x n } is a nonecreasing sequence in A such that such that x n x, then x n < x an if {y n } is a nonincreasing sequence in A such that y n y, then y n y; b) F has the proximal mixe strict monotone property on A such that FA 0, A 0 ) B 0 ; c) F is a proximally MeirKeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that x 1, Fx 0, y 0 )) = A, B) with x 0 < x 1, an y 1, Fy 0, x 0 )) = A, B) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Remark 2.8 Theorems 2.5 an 2.6 hol true, if we replace the continuity of F by the following. If {x n } is a nonecreasing sequence in A such that x n x, thenx n < x an if {y n } is a nonincreasing sequence in A such that y n y,theny n y. Now, we consier the prouct space A A with the following partial orering: for all x, y), u, v) A A, u, v) x, y) u < x, v y. Theorem 2.9 Suppose that all the hypotheses of Theorem 2.5 hol an, further, for all x, y), x, y ) A 0 A 0, there exists u, v) A 0 A 0 such that u, v) is comparable with x, y), x, y ). Then there exists a unique x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Example 2.10 Let X be the real numbers enowe with usual metric an consier the usual orering x, y) u, v) x u, y v.supposethata =[3,+ )anb =, 3].
6 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 6 of 16 Then A, B are nonempty close subsets of X. Also,wehaveA, B) =6,A 0 = {3} an B 0 = { 3}. Define a mapping F : A A B as follows: Fx, y)= x y. 2 Then F is continuous an F3, 3) = 3, i.e., FA 0, A 0 ) B 0. Note also that the other hypotheses of Theorem 2.9 are satisfie, then there exists a unique point 3, 3) A A such that 3, F3, 3)) = 6 = A, B). 3 Proximally gmeirkeeler type mappings Let X be a nonempty set. We recall that an element x, y) X X is calle a couple coincience point of two mappings F : X X X an g : X X provie that Fx, y)=gx)anfy, x)=gy) for all x, y X.Also,wesaythatF an g are commutative if gfx, y)) = Fgx), gy)) for all x, y X. We now present the following efinitions. Definition 3.1 Let X,, ) be a partiallyoreremetric space, A, B be nonempty subsets of X, anf : A A B an g : A A be two given mappings. We say that F has the proximal mixe strict gmonotone property provie that for all x, y A, if gx 1 )<gx 2 ), gu 1 ), Fgx 1 ), gy))) = A, B), gu 2 ), Fgx 2 ), gy))) = A, B), then gu 1 )<gu 2 ), an if gy 1 ) gy 2 ), gu 3 ), Fgx), gy 1 ))) = A, B), gu 4 ), Fgx), gy 2 ))) = A, B), then gu 4 ) gu 3 ), where x 1, x 2, y 1, y 2, u 1, u 2, u 3, u 4 A. Definition 3.2 Let X,, ) be a partiallyoreremetric space, A, B be nonempty subsets of X,anF : A A B an g : A A be two given mappings. We say that F is a proximally gmeirkeeler type function if, for every ɛ >0,thereexistδɛ)>0ank 0, 1) such that whenever gx 1 ) gx 2 ), gy 1 ) gy 2 ), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then ɛ k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] < ɛ + δɛ) gu 1 ), gu 2 ) ) < ɛ, where x 1, x 2, y 1, y 2, u 1, u 2 A. Proposition 3.3 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, an let F : A A Bang: A A be two given mappings such that the
7 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 7 of 16 conitions gx 1 ) gx 2 ), gy 1 ) gy 2 ), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), imply k 0, 1); gu 1 ), gu 2 ) ) k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], 1) where x 1, x 2, y 1, y 2, u 1, u 2 A. Then F is a proximally gmeirkeeler type function. Proof Suppose 1) issatisfie.foreveryɛ >0,wesetɛ 0 = ɛ/2 an δɛ 0 )=ɛ 0.Now,if ɛ 0 k 2 [gx 1), gx 2 )) + gy 1 ), gy 2 ))] < ɛ + δɛ), it follows from 1) thatgu 1 ), gu 2 )) k 2 [gx 1), gx 2 )) + gy 1 ), gy 2 ))] < ɛ 0 + δɛ 0 )=ɛ, i.e., gu 1 ), gu 2 )) < ɛ. Remark 3.4 If we set g = I, the ientity map, in Proposition 3.3, thenproposition2.3 follows. From now on, we suppose that X,, ) is a partially orere metric space enowe with the following partial orering: for all x, y), u, v) X X, u, v) x, y) u < x, v y. Lemma 3.5 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X an let F : A A Bang: A A be two given mappings. If F is a proximally gmeirkeeler type function, an gx 1 ), gy 1 )) gx 2 ), gy 2 )), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then k 0, 1); gu 1 ), gu 2 ) ) k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], where x 1, x 2, y 1, y 2, u 1, u 2 A. Proof Let x 1, x 2, y 1, y 2 A be such that gx 1 ), gy 1 )) gx 2 ), gy 2 )), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then gx 1 ), gx 2 )) + gy 1 ), gy 2 )) > 0. Let k 0 0, 1) be arbitrary. Since F is a proximally gmeirkeeler type function, for ɛ = k 0 [ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], 2
8 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 8 of 16 there exist δɛ) >0ank = k 0 0, 1) such that for all x 1, x 2, y 1, y 2, u 1, u 2 A for which gx 1 ), gy 1 )) gx 2 ), gy 2 )), an { gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), we have ɛ k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] < ɛ + δɛ) gu 1 ), gu 2 ) ) < ɛ, therefore, gu 1 ), gu 2 ) ) < k 0 [ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] 2 = k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )]. This completes the proof. Remark 3.6 If in Lemma 3.5,wesetg = I the ientity map, Lemma 2.4 follows. Lemma 3.7 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, A 0 an F : A A Bang: A A be two given mappings. If F has the proximal mixe strict gmonotone property, with ga 0 )=A 0, FA 0, A 0 ) B 0, an if gx 1 ), gy 1 )) gx 2 ), gy 2 )), gx 2 ), F gx 1 ), gy 1 ) )) = A, B), 2) gu), F gx 2 ), gy 2 ) )) = A, B), 3) where x 1, x 2, y 1, y 2, u A 0, then gx 2 )<gu). Proof Since ga 0 )=A 0, FA 0, A 0 ) B 0, it follows that Fgx 2 ), gy 1 )) B 0. Hence there exists gu 1 ) A 0 such that g u 1), F gx2 ), gy 1 ) )) = A, B). 4) Using the fact that F has the proximal mixe strict gmonotone property, together with 2)an4), we have gx 1 )<gx 2 ), gx 2 ), Fgx 1 ), gy 1 ))) = A, B), gu 1 ), Fgx 2), gy 1 ))) = A, B), then gx 2 )<g u 1). 5)
9 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 9 of 16 Also, from the proximal mixe strict gmonotone propertyof F with 3), 5), we have gy 2 ) gy 1 ), gu), Fgx 2 ), gy 2 ))) = A, B), gu 1 ), Fgx 2), gy 1 ))) = A, B), then g u 1) gu). 6) Now from 5), 6)wegetgx 2 )<gu), hence the proof is complete. Lemma 3.8 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, A 0, an F : A A Bang: A A be two given mappings. Let F have the proximal mixe strict gmonotone property, with ga 0 )=A 0, FA 0, A 0 ) B 0. If gx 1 ), gy 1 )) gx 2 ), gy 2 )), gy 2 ), Fgy 1 ), gx 1 ))) = A, B), gu), Fgy 2 ), gx 2 ))) = A, B), where x 1, x 2, y 1, y 2, u A 0, then gy 2 )>gu). Proof TheproofissimilartothatofLemma3.7, so we omit the etails. Theorem 3.9 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B an g : A Abetwogivenmappingssatisfyingthefollowingconitions: a) F an g are continuous; b) F has the proximal mixe strict gmonotone property on A such that ga 0 )=A 0, FA 0, A 0 ) B 0 ; c) F is a proximally gmeirkeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B) with gy 0 ) gy 1 ). Then there exists x, y) A Asuchthatgx), Fgx), gy))) = A, B) an gy), Fgy), gx))) = A, B). Proof Let x 0, y 0 ), x 1, y 1 ) A 0 A 0 be such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B)withgy 0 ) gy 1 ). Since FA 0, A 0 ) B 0, ga 0 )=A 0, there exists an element x 2, y 2 ) A 0 A 0 such that gx 2 ), Fgx 1 ), gy 1 ))) = A, B)angy 2 ), Fgy 1 ), gx 1 ))) = A, B). Hence from Lemma 3.7 an Lemma 3.8 we obtain gx 1 )<gx 2 )angy 1 )>gy 2 ). Continuing this process, we construct the sequences {x n } an {y n } in A 0 such that with gx n+1 ), F gx n ), gy n ) )) = A, B), n 0, gx 0 )<gx 1 )< < gx n )<gx n+1 )< 7)
10 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 10 of 16 an gy n+1 ), F gy n ), gx n ) )) = A, B), n 0, with gy 0 )>gy 1 )> > gy n )>gy n+1 )>. 8) Define δ n := gx n ), gx n+1 ) ) + gy n ), gy n+1 ) ). 9) Since F is a proximally gmeirkeeler type function, gx n ), Fgx n 1 ), gy n 1 ))) = A, B), an gx n+1 ), F gx n ), gy n ) )) = A, B), gx n 1 ) gx n ), gy n 1 ) gy n ), it follows from Lemma 3.5 that gx n ), gx n+1 ) ) k 2[ gxn 1 ), gx n ) ) + gy n 1 ), gy n ) )]. 10) We also have gy n ), Fgy n 1 ), gx n 1 ))) = A, B), an gy n+1 ), F gy n ), gx n ) )) = A, B), gx n 1 )<gx n ), gy n 1 )>gy n ), hence using the fact that F is a proximally gmeirkeeler type function, it follows from Lemma 3.5 that gy n ), gy n+1 ) ) k 2[ gyn 1 ), gy n ) ) + gx n 1 ), gx n ) )]. 11) It now follows from 9), 10), an 11)that δ n kδ n 1 ) k 2 δ n 2 ) k n δ 0 ) or δ n k n δ 0 ). 12) Now, we prove that {gx n )} an {gy n )} are Cauchy sequences. For n > m, it follows from the triangle inequality an 12)that gx n ), gx m ) ) + gy n ), gy m ) ) gx n ), gx n 1 ) ) + gy n ), gy n 1 ) ) + + gx m+1 ), gx m ) ) + gy m+1 ), gy m ) ) k n k m) δ 0 ) km 1 k δ 0).
11 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 11 of 16 Let ɛ >0begiven.ChooseanaturalnumberN such that km 1 k δ 0)<ɛ,form > N.Thus, gx n ), gx m ) ) + gy n ), gy m ) ) < ɛ, n > m. Therefore, {gx n )} an {gy n )} are Cauchy sequences. Since A is a close subset of the complete metric space X,thereexistx 1, y 1 A such that lim n gx n)=x 1, lim gy n)=y 1. n Note that x n, y n A 0, ga 0 )=A 0,sothatgx n ), gy n ) A 0.SinceA 0 is close, we conclue that x 1, y 1 ) A 0 A 0, i.e.,thereexistx, y A 0 such that gx)=x 1, gy)=y 1. Therefore gx n ) gx), gy n ) gy). 13) Since {gx n )} is monotone increasing an {gy n )} is monotone ecreasing, we have gx n )<gx), gy n )>gy). 14) From 7), 8), gx n+1 ), F gx n ), gy n ) )) = A, B) 15) an gy n+1 ), F gy n ), gx n ) )) = A, B). 16) Since F is continuous, we have, from 13), F gx n ), gy n ) ) F gx), gy) ) an F gy n ), gx n ) ) F gy), gx) ). Thus, the continuity of the metric implies that gx n+1 ), F gx n ), gy n ) )) gx), F gx), gy) )) 17) an gy n+1 ), F gy n ), gx n ) )) gy), F gy), gx) )). 18) Therefore from 15), 16), 17), 18), gx), F gx), gy) )) = A, B), gy), F gy), gx) )) = A, B). Remark 3.10 If we set g = I in Theorem 3.9,Theorem2.5 follows.
12 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 12 of 16 Corollary 3.11 Let X,, ) be a partially orere complete metric space. Let A be a nonempty close subsets of the metric space X, ). Let F : A A Aang: A Abe two given mappings satisfying the following conitions: a) F an g are continuous; b) F has the proximal mixe strict gmonotone property on A such that FgA), ga)) ga); c) F is a proximally gmeirkeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A A such that gx 1 )=Fgx 0 ), gy 0 )) with gx 0 )<gx 1 ), an gy 1 )=Fgy 0 ), gx 0 )) with gy 0 ) gy 1 ). Then there exists x, y) A Asuchthat gx), F gx), gy) )) =0, gy), F gy), gx) )) =0. Theorem 3.12 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B an g : A Abetwogivenmappingssatisfyingthefollowingconitions: a) g is continuous; b) F has the proximal mixe strict gmonotone property on A such that FA 0, A 0 ) B 0, ga 0 )=A 0 ; c) F is a proximally gmeirkeeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B) with gy 0 ) gy 1 ); e) if {x n } is a nonecreasing sequence in A such that x n x, then x n < x an if {y n } is a nonincreasing sequence in A such that y n y, then y n y. Then there exists x, y) A Asuchthat gx), F gx), gy) )) = A, B), gy), F gy), gx) )) = A, B). Proof As in the proof of Theorem 3.9,thereexistsequences{x n } an {y n } in A 0 such that gx n+1 ), Fgx n ), gy n ))) = A, B)with gx n )<gx n+1 ), n 0, 19) an gy n+1 ), Fgy n ), gx n ))) = A, B)with gy n )>gy n+1 ), n 0. 20) Also, gx n ) gx)angy n ) gy). From e), we get gx n )<gx), an gy n ) gy). Since FA 0, A 0 ) B 0, it follows that Fgx), gy)) an Fgy), gx)) are in B 0. Therefore, there exists x 1, y 1 ) A 0 A 0 such that x 1, Fgx), gy))) = A, B)any 1, Fgy), gx))) = A, B). Since ga 0 )=A 0,thereexistx, y A 0 such that gx )=x 1, gy )=y 1.Hence, g x ), F gx), gy) )) = A, B) 21)
13 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 13 of 16 an g y ), F gy), gx) )) = A, B). 22) Since gx n )<gx), gy n ) gy)anf is a proximally gmeirkeeler type function, it follows from Lemma 3.5,19), an 21)that gx n+1 ), g x )) k 2[ gxn ), gx) ) + gy n ), gy) )]. Similarly, from Lemma 3.5 an 20)an22)weobtain gy n+1 ), g y )) k 2[ gyn ), gy) ) + gx n ), gx) )]. By taking the limit of the above two inequalities, we get gx)=gx )angy)=gy ). Remark 3.13 Corollary 3.11 holstrueifwereplacethecontinuityoff by the following statement. If {x n } is a nonecreasing sequence in A such that x n x, thenx n < x an if {y n } is a nonincreasing sequence in A such that y n y,theny n y. We now consier the prouct space A A with the following partial orering: for all x, y), u, v) A A, u, v) x, y) u < x, v y. Theorem 3.14 Suppose that all the hypotheses of Theorem 3.9 hol an, further, for all x, y), x, y ) A 0 A 0, there exists u, v) A 0 A 0 such that u, v) is comparable to x, y), x, y )with respect to the orering in A A). Then there exists a unique x, y) A A such that gx), Fgx), gy))) = A, B) an gy), Fgy), gx))) = A, B). Proof By Theorem 3.9, there exists an element x, y) A A such that gx), F gx), gy) )) = A, B) 23) an gy), F gy), gx) )) = A, B). 24) Now, suppose that there exists an element x, y ) A A such that gx ), Fgx ), gy ))) = A, B)angy ), Fgy ), gx ))) = A, B). First, let gx), gy)) be comparable to gx ), gy )) with respect to the orering in A A. Since gx), Fgx), gy))) = A, B), an gx ), Fgx ), gy ))) = A, B), it follows from Lemma 3.5 that k 0, 1); gx), g x )) k 2[ gx), g x )) + gy), g y ))]. 25)
14 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 14 of 16 Similarly, from gy), Fgy), gx))) = A, B), gy ), Fgy ), gx ))) = A, B) anlemma 3.5,wehave gy), g y )) k 2[ gx), g x )) + gy), g y ))]. 26) Aing 25)an26), weget gx), g x )) + gy), g y )) k [ gx), g x )) + gy), g y ))]. 27) It follows that gx), gx )) + gy), gy )) = 0 an so gx)=gx )angy)=gy ). Secon, let gx), gy)) is not comparable to gx ), gy )), then there exists gu 1 ), gv 1 )) in A 0 A 0 which is comparable to gx), gy)) an gx ), gy )). Since FA 0, A 0 ) B 0 an ga 0 )=A 0,thereexistsgu 2 ), gv 2 )) A 0 A 0 such that gu 2 ), Fgu 1 ), gv 1 ))) = A, B) an gv 2 ), Fgv 1 ), gu 1 ))) = A, B). Without loss of generality assume that gu 1 ), gv 1 )) gx), gy)), i.e., gu 1 )<gx) an gv 1 ) gy). Therefore gy), gx)) gv 1 ), gu 1 )). Now, from Lemmas 3.7 an 3.8,wehave gu 1 ), gv 1 )) gx), gy)), gu 2 ), Fgu 1 ), gv 1 ))) = A, B), gx), Fgx), gy))) = A, B) =A, B), then gu 2 )<gx)aninthesameway gu 1 ), gv 1 )) gx), gy)), gv 2 ), Fgv 1 ), gu 1 ))) = A, B), gy), Fgy), gx))) = A, B) =A, B), then gv 2 )>gy). Continuing this process, we obtain sequences {x n } an {y n } such that gu n )<gx), gv n )> gy), gu n+1 ), F gu n ), gv n ) )) = A, B), 28) gv n+1 ), F gv n ), gu n ) )) = A, B). 29) Since F is a proximally gmeirkeeler type function, from Lemma 3.5,23), 28), k 0, 1); gu n+1 ), gx) ) k 2[ gun ), gx) ) + gv n ), gy) )], n 0. 30) Similarly from Lemma 3.5,24), 29), we have gv n+1 ), gy) ) k 2[ gvn ), gy) ) + gu n ), gx) )], n 0. 31) Aing 30)an31), we have gu n+1 ), gx) ) + gv n+1 ), gy) ) k [ gu n ), gx) ) + gv n ), gy) )]
15 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 15 of 16 k 2[ gu n 1 ), gx) ) + gv n 1 ), gy) )] k n+1[ gu 0 ), gx) ) + gv 0 ), gy) )]. As n,wegetgu n+1 ), gx)) + gv n+1 ), gy)) 0, i.e., gu n ) gx) angv n ) gy). Similarly, we can prove gu n ) gx )angv n ) gy ). Hence, gx) =gx )an gy)=gy ) an the proof is complete. We shall illustrate the above theorem by the following example. Example 3.15 Let X be the real numbers enowe with usual metric an consier the usual orering x, y) u, v) x u, y v.supposethata =[2,+ )anb =, 2]. Then A, B are nonempty close subsets of X. Also,wehaveA, B)=4anA 0 = {2} an B 0 = { 2}. Define the mappings F : A A B an g : A A as follows: Fx, y)= x y 4 4 an gx)=2x 2. Then F an g are continuous an F2, 2) = 2 an g2) = 2, i.e., FA 0, A 0 ) B 0 an ga 0 )=A 0. Note also that the other hypotheses of Theorem 3.14 are satisfie, then there exists a unique point 2, 2) A A such that g2), Fg2), g2))) = 4 = A, B). Competing interests The authors eclare that they have no competing interests. Authors contributions All authors contribute equally an significantly in writing this paper. All authors rea an approve the final manuscript. Acknowlegements This research was one while the first author was on a sabbatical leave at State University of New York at Albany SUNYA); he wishes to thank SUNYA for its hospitality an Imam Khomeini International University for the financial support. Receive: 25 March 2015 Accepte: 17 June 2015 References 1. Banach, S: Sur les operations ans les ensembles abstraits et leur application aux equations integrales. Funam. Math. 3, ) 2. Meir,A,Keeler,E:Atheoremoncontractionmappings.J.Math.Anal.Appl.28, ) 3. Nieto, JJ, RoriguezLopez, R: Contractive mapping theorems in partially orere sets an applications to orinary ifferential equations. Orer 22, ) 4. Suzuki, T: MeirKeeler contractions of integral type are still MeirKeeler contractions. Int. J. Math. Math. Sci. 2007, Article ID ). oi: /2007/ Suzuki, T: A generalize Banach contraction principle which characterizes metric completeness. Proc. Am. Math. Soc. 136, ) 6. Suzuki, T: Fixe point theorems an convergence theorems for some generalize nonexpansive mappings. J. Math. Anal. Appl. 340, ) 7. Bhaskar, TG, Lakshmikantham, V: Fixe point theorems in partially orere metric spaces an applications. Nonlinear Anal. 65, ) 8. Lakshmikantham, V, Ćirić, LB: Couple fixe point theorems for nonlinear contractions in partially orere metric spaces. Nonlinear Anal. 70, ) 9. Samet, B: Couple fixe point theorems for a generalize MeirKeeler contraction in partially orere metric spaces. Nonlinear Anal. 72, ) 10. Fan, K: Extensions of two fixe point theorems of F.E. Brower. Math. Z. 122, ) 11. Samet, B: Some results on best proximity points. J. Optim. Theory Appl. 159, ) 12. Abkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, ) 13. Abkar, A, Gabeleh, M: Generalize cyclic contractions in partially orere metric spaces. Optim. Lett. 68), )
16 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 16 of Eshaghi Gorji, M, Cho, YJ, Ghos, S, Ghos, M, Haian Dehkori, M: Couple fixepoint theorems for contractions in partially orere metric spaces an applications. Math. Probl. Eng. 2012,ArticleID ) 15. Saiq Basha, S, Veeramani, P: Best proximity pair theorems for multifunctions with open fibers. J. Approx. Theory 103, ) 16. Abkar, A, Gabeleh, M: A note on some best proximity point theorems prove uner Pproperty. Abstr. Appl. Anal. 2013, Article ID ) 17. Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, ) 18. Gabeleh, M: Proximal weakly contractive an proximal nonexpansive nonself mappings in metric an Banach spaces. J. Optim. Theory Appl. 158, ) 19. Gabeleh, M: Best proximity point theorems via proximal nonself mappings. J. Optim. Theory Appl. 164, ) 20. Karapinar, E, Agarwal, RP: A note on couple fixe point theorems for αψcontractivetype mappings in partially orere metric spaces. Fixe Point Theory Appl. 2013, ) 21. Sintunavarat, W, Kumam, P: Couple best proximity point theorem in metric spaces. Fixe Point Theory Appl. 2012, ) 22. Pragaeeswarar, V, Maruai, M, Kumam, P, Sitthithakerngkiet, K: The existence an uniqueness of couple best proximity point for proximally couple contraction in a complete orere metric space. Abstr. Appl. Anal. 2014, Article ID )
TRIPLE FIXED POINTS IN ORDERED METRIC SPACES
Bulletin of Mathematical Analysis and Applications ISSN: 18211291, URL: http://www.bmathaa.org Volume 4 Issue 1 (2012., Pages 197207 TRIPLE FIXED POINTS IN ORDERED METRIC SPACES (COMMUNICATED BY SIMEON
More informationQuasi Contraction and Fixed Points
Available online at www.ispacs.com/jnaa Volume 2012, Year 2012 Article ID jnaa00168, 6 Pages doi:10.5899/2012/jnaa00168 Research Article Quasi Contraction and Fixed Points Mehdi Roohi 1, Mohsen Alimohammady
More informationCourse 221: Analysis Academic year , First Semester
Course 221: Analysis Academic year 200708, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationFurther Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationBV has the bounded approximation property
The Journal of Geometric Analysis volume 15 (2005), number 1, pp. 17 [version, April 14, 2005] BV has the boune approximation property G. Alberti, M. Csörnyei, A. Pe lczyński, D. Preiss Abstract: We prove
More informationPooja Sharma and R. S. Chandel FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES. 1. Introduction
F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Pooja Sharma and R. S. Chandel FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES Abstract. This paper presents some fixed point
More informationCOMMON FIXED POINTS OF FOUR MAPS USING GENERALIZED WEAK CONTRACTIVITY AND WELLPOSEDNESS
Int. J. Nonlinear Anal. Appl. (011) No.1, 73 81 ISSN: 00868 (electronic) http://www.ijnaa.com COMMON FIXED POINTS OF FOUR MAPS USING GENERALIZED WEAK CONTRACTIVITY AND WELLPOSEDNESS MOHAMED AKKOUCHI
More informationM147 Practice Problems for Exam 2
M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work
More informationNotes on weak convergence (MAT Spring 2006)
Notes on weak convergence (MAT4380  Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p
More informationLecture 13: Differentiation Derivatives of Trigonometric Functions
Lecture 13: Differentiation Derivatives of Trigonometric Functions Derivatives of the Basic Trigonometric Functions Derivative of sin Derivative of cos Using the Chain Rule Derivative of tan Using the
More informationSumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION
F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION Abstract. In this paper we generalize and extend
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationMSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUMLIKELIHOOD ESTIMATION
MAXIMUMLIKELIHOOD ESTIMATION The General Theory of ML Estimation In orer to erive an ML estimator, we are boun to make an assumption about the functional form of the istribution which generates the
More informationThis chapter describes set theory, a mathematical theory that underlies all of modern mathematics.
Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.
More informationDifferentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
More information(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i
An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of
More informationChapter 2 Review of Classical Action Principles
Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger
More informationFixed Point Theorems
Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation
More informationResearch Article Stability Analysis for HigherOrder Adjacent Derivative in Parametrized Vector Optimization
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for HigherOrder Adjacent Derivative
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
More informationON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction
ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity
More informationNotes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
More informationOn common approximate fixed points of monotone nonexpansive semigroups in Banach spaces
Bachar and Khamsi Fixed Point Theory and Applications (215) 215:16 DOI 1.1186/s1366315453 R E S E A R C H Open Access On common approximate fixed points of monotone nonexpansive semigroups in Banach
More informationPythagorean Triples Over Gaussian Integers
International Journal of Algebra, Vol. 6, 01, no., 5564 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok
More informationThe wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let
1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.
More informationTHE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
More informationA sufﬁcient and necessary condition for the convergence of the sequence of successive approximations to a unique ﬁxed point II
Suzuki and Alamri Fixed Point Theory and Applications (2015) 2015:59 DOI 10.1186/s1366301503029 RESEARCH Open Access A sufﬁcient and necessary condition for the convergence of the sequence of successive
More informationON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction
ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZPÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that
More informationModule MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions
Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective
More informationMATH 125: LAST LECTURE
MATH 5: LAST LECTURE FALL 9. Differential Equations A ifferential equation is an equation involving an unknown function an it s erivatives. To solve a ifferential equation means to fin a function that
More informationF. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More information6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )
6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a nonempty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points
More informationFOURIER TRANSFORM TERENCE TAO
FOURIER TRANSFORM TERENCE TAO Very broaly speaking, the Fourier transform is a systematic way to ecompose generic functions into a superposition of symmetric functions. These symmetric functions are usually
More informationAnswers to the Practice Problems for Test 2
Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan
More informationSOME TYPES OF CONVERGENCE OF SEQUENCES OF REAL VALUED FUNCTIONS
Real Analysis Exchange Vol. 28(2), 2002/2003, pp. 43 59 Ruchi Das, Department of Mathematics, Faculty of Science, The M.S. University Of Baroda, Vadodara  390002, India. email: ruchid99@yahoo.com Nikolaos
More informationIntroduction to Integration Part 1: AntiDifferentiation
Mathematics Learning Centre Introuction to Integration Part : AntiDifferentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction
More informationAND. Dimitri P. Bertsekas and Paul Tseng
SET INTERSECTION THEOREMS AND EXISTENCE OF OPTIMAL SOLUTIONS FOR CONVEX AND NONCONVEX OPTIMIZATION Dimitri P. Bertsekas an Paul Tseng Math. Programming Journal, 2007 NESTED SET SEQUENCE INTERSECTIONS Basic
More informationMATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π
MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f
More informationWitt#5e: Generalizing integrality theorems for ghostwitt vectors [not completed, not proofread]
Witt vectors. Part 1 Michiel Hazewinkel Sienotes by Darij Grinberg Witt#5e: Generalizing integrality theorems for ghostwitt vectors [not complete, not proofrea In this note, we will generalize most of
More informationProblem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS
Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection
More informationA Generalization of Sauer s Lemma to Classes of LargeMargin Functions
A Generalization of Sauer s Lemma to Classes of LargeMargin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/
More informationDivisor graphs have arbitrary order and size
Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G
More informationCompactness in metric spaces
MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the
More informationON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5th st, Abu Dhabi, 112612, UAE
International Journal of Pure and Applied Mathematics Volume 101 No. 3 2015, 401405 ISSN: 13118080 (printed version); ISSN: 13143395 (online version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i3.7
More informationDigital barrier option contract with exponential random time
IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun
More informationMath 317 HW #5 Solutions
Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show
More informationMannheim curves in the threedimensional sphere
Mannheim curves in the threeimensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.
More informationRelatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations
Wang and Agarwal Advances in Difference Equations (2015) 2015:312 DOI 10.1186/s1366201506500 R E S E A R C H Open Access Relatively dense sets, corrected uniformly almost periodic functions on time
More information1 Fixed Point Iteration and Contraction Mapping Theorem
1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function
More informationProf. Girardi, Math 703, Fall 2012 Homework Solutions: Homework 13. in X is Cauchy.
Homework 13 Let (X, d) and (Y, ρ) be metric spaces. Consider a function f : X Y. 13.1. Prove or give a counterexample. f preserves convergent sequences if {x n } n=1 is a convergent sequence in X then
More informationCartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
More information2r 1. Definition (Degree Measure). Let G be a rgraph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by,
Theorem Simple Containers Theorem) Let G be a simple, rgraph of average egree an of orer n Let 0 < δ < If is large enough, then there exists a collection of sets C PV G)) satisfying: i) for every inepenent
More informationInverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
More informationBOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS. Muhammad N. Islam
Opuscula Math. 35, no. 2 (215), 181 19 http://dx.doi.org/1.7494/opmath.215.35.2.181 Opuscula Mathematica BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS Muhammad
More information1 Derivatives of Piecewise Defined Functions
MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.
More informationChap2: The Real Number System (See Royden pp40)
Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x
More informationOn the Spaces of λconvergent and Bounded Sequences
Thai Journal of Mathematics Volume 8 2010 Number 2 : 311 329 www.math.science.cmu.ac.th/thaijournal Online ISSN 16860209 On the Spaces of λconvergent and Bounded Sequences M. Mursaleen 1 and A.K. Noman
More informationMathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition
Mathematical Moels of Therapeutical Actions Relate to Tumour an Immune System Competition Elena De Angelis (1 an PierreEmmanuel Jabin (2 (1 Dipartimento i Matematica, Politecnico i Torino Corso Duca egli
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationLecture 17: Implicit differentiation
Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we
More informationFactoring Dickson polynomials over finite fields
Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationLagrangian and Hamiltonian Mechanics
Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying
More informationJON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT
OPTIMAL INSURANCE COVERAGE UNDER BONUSMALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More informationConvergent Sequence. Definition A sequence {p n } in a metric space (X, d) is said to converge if there is a point p X with the following property:
Convergent Sequence Definition A sequence {p n } in a metric space (X, d) is said to converge if there is a point p X with the following property: ( ɛ > 0)( N)( n > N)d(p n, p) < ɛ In this case we also
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More information{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...
44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it
More informationCancelling an a on the left and a b on the right, we get b + a = a + b, which is what we want. Note the following identity.
15. Basic Properties of Rings We first prove some standard results about rings. Lemma 15.1. Let R be a ring and let a and b be elements of R. Then (1) a0 = 0a = 0. (2) a( b) = ( a)b = (ab). Proof. Let
More informationThe HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line
The HenstockKurzweilStieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,
More informationDouble Sequences and Double Series
Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine Email: habil@iugaza.edu Abstract This research considers two traditional important questions,
More informationA PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of RouHuai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of RouHuai Wang 1. Introduction In this note we consider semistable
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationNo: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
More informationIntegral Regular Truncated Pyramids with Rectangular Bases
Integral Regular Truncate Pyramis with Rectangular Bases Konstantine Zelator Department of Mathematics 301 Thackeray Hall University of Pittsburgh Pittsburgh, PA 1560, U.S.A. Also: Konstantine Zelator
More informationOn the Algebraic Structures of Soft Sets in Logic
Applied Mathematical Sciences, Vol. 8, 2014, no. 38, 18731881 HIKARI Ltd, www.mhikari.com http://dx.doi.org/10.12988/ams.2014.43127 On the Algebraic Structures of Soft Sets in Logic Burak Kurt Department
More information19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes
First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is socalle because we rearrange the equation
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationSome remarks on PhragménLindelöf theorems for weak solutions of the stationary Schrödinger operator
Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s1366101505080 R E S E A R C H Open Access Some remarks on PhragménLindelöf theorems for weak solutions of the stationary Schrödinger operator
More informationCHAPTER 5 : CALCULUS
Dr Roger Ni (Queen Mary, University of Lonon)  5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationRieszFredhölm Theory
RieszFredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A AscoliArzelá Result 18 B Normed Spaces
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationAn intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations
This page may be remove to conceal the ientities of the authors An intertemporal moel of the real exchange rate, stock market, an international ebt ynamics: policy simulations Saziye Gazioglu an W. Davi
More informationDegree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
More informationFIXED POINT SETS OF FIBERPRESERVING MAPS
FIXED POINT SETS OF FIBERPRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 email: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics
More informationMath 2602 Finite and Linear Math Fall 14. Homework 9: Core solutions
Math 2602 Finite and Linear Math Fall 14 Homework 9: Core solutions Section 8.2 on page 264 problems 13b, 27a27b. Section 8.3 on page 275 problems 1b, 8, 10a10b, 14. Section 8.4 on page 279 problems
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationx if x 0, x if x < 0.
Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationMath 230.01, Fall 2012: HW 1 Solutions
Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The
More informationSection 3.1 Worksheet NAME. f(x + h) f(x)
MATH 1170 Section 3.1 Worksheet NAME Recall that we have efine the erivative of f to be f (x) = lim h 0 f(x + h) f(x) h Recall also that the erivative of a function, f (x), is the slope f s tangent line
More informationMath 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko
Math 563 Measure Theory Project (Funky Functions Group) Luis Zerón, Sergey Dyachenko 34 Let C and C be any two Cantor sets (constructed in Exercise 3) Show that there exists a function F: [,] [,] with
More informationChapter 2 Sequences and Series
Chapter 2 Sequences and Series 2. Sequences A sequence is a function from the positive integers (possibly including 0) to the reals. A typical example is a n = /n defined for all integers n. The notation
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More information