Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces

Size: px
Start display at page:

Download "Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces"

Transcription

1 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 DOI /s R E S E A R C H Open Access Couple best proximity point theorems for proximally g-meir-keelertypemappings in partially orere metric spaces Ali Abkar *, Samaneh Ghos an Azizollah Azizi * Corresponence: abkar@sci.ikiu.ac.ir Department of Mathematics, Imam Khomeini International University, Qazvin, 34149, Iran Abstract In this paper we first introuce the notion of proximally g-meir-keeler type mappings, then we stuy the existence an uniqueness of couple best proximity points for these mappings. This generalization is in line with Eelstein s generalization of Meir-Keeler type mappings, as well as in line with the recent one use in Eshaghi Gorji in Math. Probl. Eng. 2012:150363, 2012). MSC: 47H10; 54H25; 47J25 Keywors: couple best proximity point; proximally g-meir-keeler type mapping; proximalmixestrictg-monotone property 1 Introuction The Banach contraction principle [1] is a classical an powerful tool in nonlinear analysis. This principle has been generalize in ifferent irections by many authors see, for example, [2 6] an the references therein). Afterwar, Bhaskar an Lakshmikantham [7] introuce the notion of couple fixe points of a given two-variable mapping F. They also establishe the uniqueness of couplefixepoint for the mapping F, an successfully applie their results to the problem of existence an uniqueness of solution for a perioic bounary value problem. Following their lines of research, some authors have extene these results in several irections see, for instance, [8, 9]). The well-known best approximation theorem, ue to Fan [10], asserts that if A is a nonempty, compact an convex subset of a norme linear space X, ant is a continuous mapping from A to X, then there exists a point x A such that the istance of x to Tx is equal to the istance of Tx to A. Suchapointx is calle a best approximant of T in A. This result was in turn generalize by several authors see, for example, [11 13], an the references therein). In the sequel, X is a nonempty set, an X, ) is a metric space. In [2], Meir an Keeler generalize the well-known Banach contraction principle. In 1969, Meir an Keeler efine weak uniformly strict contraction as follows: given ɛ >0,thereexistsδ >0suchthat ɛ x, y)<ɛ + δ Fx, Fy)<ɛ 2015 Abkar et al. This article is istribute uner the terms of the Creative Commons Attribution 4.0 International License which permits unrestricte use, istribution, an reprouction in any meium, provie you give appropriate creit to the original authors) an the source, provie a link to the Creative Commons license, an inicate if changes were mae.

2 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 2 of 16 for a self-map F on X. They prove that every weakly uniformly strict contraction on a complete metric space X, ) hasauniquefixepoint.inthisway,theywereableto recapture earlier results ue to Eelstein, as well as that of Boy an Wong. Recently, Eshaghi Gorji et al. [14], efine the generalize g-meir-keeler type contractions an prove some couple fixe point theorems uner a generalize g-meir-keelercontractive conition. In this way, they improve results of Bhaskar an Lakshmikantham [7]. We shall recall their efinitions here. Definition 1.1 [14] LetX, ) be a partially orere set an be a metric on X. LetF : X X X an g : X X be two given mappings. We say that F is a generalize g-meir- Keeler type contraction if, for every ɛ >0,thereexistsδɛ)>0suchthat,forallx, y, u, v X with gx) gu)angy) gv), ɛ 1 2[ gx), gu) ) + gy), gv) )] < ɛ + δɛ) Fx, y), Fu, v) ) < ɛ. They also efine the mixe strict g-monotone property. Definition 1.2 [14] LetX, ) be a partially orere set an F : X X X an g : X X be two given mappings. We say that F hasthe mixe strict g-monotone property if, for any x, y X, x 1, x 2 X, gx 1 )<gx 2 ) Fx 1, y)<fx 2, y), y 1, y 2 X, gy 1 )<gy 2 ) Fx, y 1 )>Fx, y 2 ). Since we shall be ealing with couple best proximity points, the following efinitions will be neee. Definition 1.3 Let A, B be nonempty subsets of a metric space X, ), an T : A B be a non-self mapping. A point x A is calle a best proximity point of T if x, Tx )) = A, B), where A, B):=inf { x, y):x A, y B }. In this paper we shall use the following symbols: A 0 = { x A : x, y)=a, B)forsomey B }, B 0 = { y B : x, y)=a, B)forsomex A }. It is well known that A 0 is containe in the bounary of A see, for instance, [15]). For more information on some recent results in this topic, we refer the intereste reaer to [16 20]. In [21], the authors efine the notion of a couple best proximity point, as follows. Definition 1.4 Let A, B be nonempty subsets of a metric space X, ) anf : A A B be a mapping. A point x 1, x 2 ) A A is calle a couple best proximity point of F if x 1, Fx 1, x 2 ) ) = x 2, Fx 2, x 1 ) ) = A, B).

3 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 3 of 16 It is easy to see that if A = B in Definition 1.4, thenacouplebestproximitypointisa couplefixepointoff. Pragaeeswarar et al. [22] efine a proximally couple contraction as follows. Definition 1.5 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X. A mapping F : A A B is sai to be a proximally couple contraction if there exists k 0, 1) such that whenever x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), it follows that u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Motivate by the results of [14]an[22], in this paper we first introuce the notions of proximal mixe strict monotone property an proximally Meir-Keeler type functions an prove the existence an uniqueness of couple best proximity point theorems for these mappings. This will be implemente in Section 2. InSection3, weshalliscusssome more generalizations of this notions. An example will be provie to illustrate our result. 2 Proximally Meir-Keeler type mappings In this section we will efine proximal mixe strict monotone property an proximally Meir-Keeler type mappings, an prove some theorems in this regar. In the next section we eal with some further generalizations of this topics. Therefore, we shall not provie any proof for the statements mae in this section, instea we will comment on how these facts can be inferre from their counterparts in Section 3; inee, the next section is evote to proximally g-meir-keeler type mappings, as well as to proximal mixe strict g-monotone property, so that if we put g = ientity, we get all the results state in Section 2. Definition 2.1 Let X,, ) be a partiallyorere metric space, A, B be nonempty subsets of X,anF : A A B be a given mapping. We say that F has the proximal mixe strict monotone property if, for all x, y A, x 1 < x 2, u 1, Fx 1, y)) = A, B), u 2, Fx 2, y)) = A, B), then u 1 < u 2 an if y 1 y 2, u 3, Fx, y 1 )) = A, B), u 4, Fx, y 2 )) = A, B), then u 4 u 3,wherex 1, x 2, y 1, y 2, u 1, u 2, u 3, u 4 A.

4 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 4 of 16 Definition 2.2 Let X,, ) be a partiallyorere metric space, A, B be nonempty subsets of X, anf : A A B be a given mapping. We say that F is a proximally Meir-Keeler type function if, for every ɛ >0,thereexistδɛ)>0ank 0, 1) such that whenever x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), then ɛ k 2[ x1, x 2 )+y 1, y 2 ) ] < ɛ + δɛ) u 1, u 2 )<ɛ, where x 1, x 2, y 1, y 2, u 1, u 2 A. Proposition 2.3 Let X,, ) be a partially orere metric space, A, B be nonempty subsets of X, an let F : A A B be a given mapping such that the conitions x 1 x 2, y 1 y 2, u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), imply k 0, 1); u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Then F is a proximally Meir-Keeler type function. From now on, we suppose that X,, ) is a partially orere metric space enowe with the following partial orering: for all x, y), u, v) X X, u, v) x, y) u < x, v y. Lemma 2.4 Let X,, ) be a partially orere metric space, A, B be nonempty subsets of X, an let F : A A B be a given mapping. If F is a proximally Meir-Keeler type function, an x 1, y 1 ) x 2, y 2 ), u 1, Fx 1, y 1 )) = A, B), u 2, Fx 2, y 2 )) = A, B), then k 0, 1); u 1, u 2 ) k 2[ x1, x 2 )+y 1, y 2 ) ], where x 1, x 2, y 1, y 2, u 1, u 2 A. Theorem 2.5 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B

5 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 5 of 16 be a given mapping satisfying the following conitions: a) F is continuous; b) F has the proximal mixe strict monotone property on A such that FA 0, A 0 ) B 0 ; c) F is a proximally Meir-Keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that x 1, Fx 0, y 0 )) = A, B) with x 0 < x 1, an y 1, Fy 0, x 0 )) = A, B) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Theorem 2.6 Let X,, ) be a partially orere complete metric space. Let A be a nonempty close subset of the metric space X, ). Let F : A A A be a given mapping satisfying the following conitions: a) F is continuous; b) F has the proximal mixe strict monotone property on A; c) F is a proximally Meir-Keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A A such that x 1 = Fx 0, y 0 ) with x 0 < x 1, an y 1 = Fy 0, x 0 ) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = 0 an y, Fy, x)) = 0. Theorem 2.7 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B be a given mapping satisfying the following conitions: a) if {x n } is a nonecreasing sequence in A such that such that x n x, then x n < x an if {y n } is a nonincreasing sequence in A such that y n y, then y n y; b) F has the proximal mixe strict monotone property on A such that FA 0, A 0 ) B 0 ; c) F is a proximally Meir-Keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that x 1, Fx 0, y 0 )) = A, B) with x 0 < x 1, an y 1, Fy 0, x 0 )) = A, B) with y 0 y 1. Then there exists x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Remark 2.8 Theorems 2.5 an 2.6 hol true, if we replace the continuity of F by the following. If {x n } is a nonecreasing sequence in A such that x n x, thenx n < x an if {y n } is a nonincreasing sequence in A such that y n y,theny n y. Now, we consier the prouct space A A with the following partial orering: for all x, y), u, v) A A, u, v) x, y) u < x, v y. Theorem 2.9 Suppose that all the hypotheses of Theorem 2.5 hol an, further, for all x, y), x, y ) A 0 A 0, there exists u, v) A 0 A 0 such that u, v) is comparable with x, y), x, y ). Then there exists a unique x, y) A Asuchthatx, Fx, y)) = A, B) an y, Fy, x)) = A, B). Example 2.10 Let X be the real numbers enowe with usual metric an consier the usual orering x, y) u, v) x u, y v.supposethata =[3,+ )anb =, 3].

6 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 6 of 16 Then A, B are nonempty close subsets of X. Also,wehaveA, B) =6,A 0 = {3} an B 0 = { 3}. Define a mapping F : A A B as follows: Fx, y)= x y. 2 Then F is continuous an F3, 3) = 3, i.e., FA 0, A 0 ) B 0. Note also that the other hypotheses of Theorem 2.9 are satisfie, then there exists a unique point 3, 3) A A such that 3, F3, 3)) = 6 = A, B). 3 Proximally g-meir-keeler type mappings Let X be a nonempty set. We recall that an element x, y) X X is calle a couple coincience point of two mappings F : X X X an g : X X provie that Fx, y)=gx)anfy, x)=gy) for all x, y X.Also,wesaythatF an g are commutative if gfx, y)) = Fgx), gy)) for all x, y X. We now present the following efinitions. Definition 3.1 Let X,, ) be a partiallyoreremetric space, A, B be nonempty subsets of X, anf : A A B an g : A A be two given mappings. We say that F has the proximal mixe strict g-monotone property provie that for all x, y A, if gx 1 )<gx 2 ), gu 1 ), Fgx 1 ), gy))) = A, B), gu 2 ), Fgx 2 ), gy))) = A, B), then gu 1 )<gu 2 ), an if gy 1 ) gy 2 ), gu 3 ), Fgx), gy 1 ))) = A, B), gu 4 ), Fgx), gy 2 ))) = A, B), then gu 4 ) gu 3 ), where x 1, x 2, y 1, y 2, u 1, u 2, u 3, u 4 A. Definition 3.2 Let X,, ) be a partiallyoreremetric space, A, B be nonempty subsets of X,anF : A A B an g : A A be two given mappings. We say that F is a proximally g-meir-keeler type function if, for every ɛ >0,thereexistδɛ)>0ank 0, 1) such that whenever gx 1 ) gx 2 ), gy 1 ) gy 2 ), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then ɛ k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] < ɛ + δɛ) gu 1 ), gu 2 ) ) < ɛ, where x 1, x 2, y 1, y 2, u 1, u 2 A. Proposition 3.3 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, an let F : A A Bang: A A be two given mappings such that the

7 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 7 of 16 conitions gx 1 ) gx 2 ), gy 1 ) gy 2 ), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), imply k 0, 1); gu 1 ), gu 2 ) ) k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], 1) where x 1, x 2, y 1, y 2, u 1, u 2 A. Then F is a proximally g-meir-keeler type function. Proof Suppose 1) issatisfie.foreveryɛ >0,wesetɛ 0 = ɛ/2 an δɛ 0 )=ɛ 0.Now,if ɛ 0 k 2 [gx 1), gx 2 )) + gy 1 ), gy 2 ))] < ɛ + δɛ), it follows from 1) thatgu 1 ), gu 2 )) k 2 [gx 1), gx 2 )) + gy 1 ), gy 2 ))] < ɛ 0 + δɛ 0 )=ɛ, i.e., gu 1 ), gu 2 )) < ɛ. Remark 3.4 If we set g = I, the ientity map, in Proposition 3.3, thenproposition2.3 follows. From now on, we suppose that X,, ) is a partially orere metric space enowe with the following partial orering: for all x, y), u, v) X X, u, v) x, y) u < x, v y. Lemma 3.5 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X an let F : A A Bang: A A be two given mappings. If F is a proximally g-meir-keeler type function, an gx 1 ), gy 1 )) gx 2 ), gy 2 )), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then k 0, 1); gu 1 ), gu 2 ) ) k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], where x 1, x 2, y 1, y 2, u 1, u 2 A. Proof Let x 1, x 2, y 1, y 2 A be such that gx 1 ), gy 1 )) gx 2 ), gy 2 )), gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), then gx 1 ), gx 2 )) + gy 1 ), gy 2 )) > 0. Let k 0 0, 1) be arbitrary. Since F is a proximally g-meir-keeler type function, for ɛ = k 0 [ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )], 2

8 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 8 of 16 there exist δɛ) >0ank = k 0 0, 1) such that for all x 1, x 2, y 1, y 2, u 1, u 2 A for which gx 1 ), gy 1 )) gx 2 ), gy 2 )), an { gu 1 ), Fgx 1 ), gy 1 ))) = A, B), gu 2 ), Fgx 2 ), gy 2 ))) = A, B), we have ɛ k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] < ɛ + δɛ) gu 1 ), gu 2 ) ) < ɛ, therefore, gu 1 ), gu 2 ) ) < k 0 [ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )] 2 = k 2[ gx1 ), gx 2 ) ) + gy 1 ), gy 2 ) )]. This completes the proof. Remark 3.6 If in Lemma 3.5,wesetg = I the ientity map, Lemma 2.4 follows. Lemma 3.7 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, A 0 an F : A A Bang: A A be two given mappings. If F has the proximal mixe strict g-monotone property, with ga 0 )=A 0, FA 0, A 0 ) B 0, an if gx 1 ), gy 1 )) gx 2 ), gy 2 )), gx 2 ), F gx 1 ), gy 1 ) )) = A, B), 2) gu), F gx 2 ), gy 2 ) )) = A, B), 3) where x 1, x 2, y 1, y 2, u A 0, then gx 2 )<gu). Proof Since ga 0 )=A 0, FA 0, A 0 ) B 0, it follows that Fgx 2 ), gy 1 )) B 0. Hence there exists gu 1 ) A 0 such that g u 1), F gx2 ), gy 1 ) )) = A, B). 4) Using the fact that F has the proximal mixe strict g-monotone property, together with 2)an4), we have gx 1 )<gx 2 ), gx 2 ), Fgx 1 ), gy 1 ))) = A, B), gu 1 ), Fgx 2), gy 1 ))) = A, B), then gx 2 )<g u 1). 5)

9 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 9 of 16 Also, from the proximal mixe strict g-monotone propertyof F with 3), 5), we have gy 2 ) gy 1 ), gu), Fgx 2 ), gy 2 ))) = A, B), gu 1 ), Fgx 2), gy 1 ))) = A, B), then g u 1) gu). 6) Now from 5), 6)wegetgx 2 )<gu), hence the proof is complete. Lemma 3.8 Let X,, ) be a partially orere metric space an A, B be nonempty subsets of X, A 0, an F : A A Bang: A A be two given mappings. Let F have the proximal mixe strict g-monotone property, with ga 0 )=A 0, FA 0, A 0 ) B 0. If gx 1 ), gy 1 )) gx 2 ), gy 2 )), gy 2 ), Fgy 1 ), gx 1 ))) = A, B), gu), Fgy 2 ), gx 2 ))) = A, B), where x 1, x 2, y 1, y 2, u A 0, then gy 2 )>gu). Proof TheproofissimilartothatofLemma3.7, so we omit the etails. Theorem 3.9 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B an g : A Abetwogivenmappingssatisfyingthefollowingconitions: a) F an g are continuous; b) F has the proximal mixe strict g-monotone property on A such that ga 0 )=A 0, FA 0, A 0 ) B 0 ; c) F is a proximally g-meir-keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B) with gy 0 ) gy 1 ). Then there exists x, y) A Asuchthatgx), Fgx), gy))) = A, B) an gy), Fgy), gx))) = A, B). Proof Let x 0, y 0 ), x 1, y 1 ) A 0 A 0 be such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B)withgy 0 ) gy 1 ). Since FA 0, A 0 ) B 0, ga 0 )=A 0, there exists an element x 2, y 2 ) A 0 A 0 such that gx 2 ), Fgx 1 ), gy 1 ))) = A, B)angy 2 ), Fgy 1 ), gx 1 ))) = A, B). Hence from Lemma 3.7 an Lemma 3.8 we obtain gx 1 )<gx 2 )angy 1 )>gy 2 ). Continuing this process, we construct the sequences {x n } an {y n } in A 0 such that with gx n+1 ), F gx n ), gy n ) )) = A, B), n 0, gx 0 )<gx 1 )< < gx n )<gx n+1 )< 7)

10 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 10 of 16 an gy n+1 ), F gy n ), gx n ) )) = A, B), n 0, with gy 0 )>gy 1 )> > gy n )>gy n+1 )>. 8) Define δ n := gx n ), gx n+1 ) ) + gy n ), gy n+1 ) ). 9) Since F is a proximally g-meir-keeler type function, gx n ), Fgx n 1 ), gy n 1 ))) = A, B), an gx n+1 ), F gx n ), gy n ) )) = A, B), gx n 1 ) gx n ), gy n 1 ) gy n ), it follows from Lemma 3.5 that gx n ), gx n+1 ) ) k 2[ gxn 1 ), gx n ) ) + gy n 1 ), gy n ) )]. 10) We also have gy n ), Fgy n 1 ), gx n 1 ))) = A, B), an gy n+1 ), F gy n ), gx n ) )) = A, B), gx n 1 )<gx n ), gy n 1 )>gy n ), hence using the fact that F is a proximally g-meir-keeler type function, it follows from Lemma 3.5 that gy n ), gy n+1 ) ) k 2[ gyn 1 ), gy n ) ) + gx n 1 ), gx n ) )]. 11) It now follows from 9), 10), an 11)that δ n kδ n 1 ) k 2 δ n 2 ) k n δ 0 ) or δ n k n δ 0 ). 12) Now, we prove that {gx n )} an {gy n )} are Cauchy sequences. For n > m, it follows from the triangle inequality an 12)that gx n ), gx m ) ) + gy n ), gy m ) ) gx n ), gx n 1 ) ) + gy n ), gy n 1 ) ) + + gx m+1 ), gx m ) ) + gy m+1 ), gy m ) ) k n k m) δ 0 ) km 1 k δ 0).

11 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 11 of 16 Let ɛ >0begiven.ChooseanaturalnumberN such that km 1 k δ 0)<ɛ,form > N.Thus, gx n ), gx m ) ) + gy n ), gy m ) ) < ɛ, n > m. Therefore, {gx n )} an {gy n )} are Cauchy sequences. Since A is a close subset of the complete metric space X,thereexistx 1, y 1 A such that lim n gx n)=x 1, lim gy n)=y 1. n Note that x n, y n A 0, ga 0 )=A 0,sothatgx n ), gy n ) A 0.SinceA 0 is close, we conclue that x 1, y 1 ) A 0 A 0, i.e.,thereexistx, y A 0 such that gx)=x 1, gy)=y 1. Therefore gx n ) gx), gy n ) gy). 13) Since {gx n )} is monotone increasing an {gy n )} is monotone ecreasing, we have gx n )<gx), gy n )>gy). 14) From 7), 8), gx n+1 ), F gx n ), gy n ) )) = A, B) 15) an gy n+1 ), F gy n ), gx n ) )) = A, B). 16) Since F is continuous, we have, from 13), F gx n ), gy n ) ) F gx), gy) ) an F gy n ), gx n ) ) F gy), gx) ). Thus, the continuity of the metric implies that gx n+1 ), F gx n ), gy n ) )) gx), F gx), gy) )) 17) an gy n+1 ), F gy n ), gx n ) )) gy), F gy), gx) )). 18) Therefore from 15), 16), 17), 18), gx), F gx), gy) )) = A, B), gy), F gy), gx) )) = A, B). Remark 3.10 If we set g = I in Theorem 3.9,Theorem2.5 follows.

12 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 12 of 16 Corollary 3.11 Let X,, ) be a partially orere complete metric space. Let A be a nonempty close subsets of the metric space X, ). Let F : A A Aang: A Abe two given mappings satisfying the following conitions: a) F an g are continuous; b) F has the proximal mixe strict g-monotone property on A such that FgA), ga)) ga); c) F is a proximally g-meir-keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A A such that gx 1 )=Fgx 0 ), gy 0 )) with gx 0 )<gx 1 ), an gy 1 )=Fgy 0 ), gx 0 )) with gy 0 ) gy 1 ). Then there exists x, y) A Asuchthat gx), F gx), gy) )) =0, gy), F gy), gx) )) =0. Theorem 3.12 Let X,, ) be a partially orere complete metric space. Let A, Bbe nonempty close subsets of the metric space X, ) such that A 0. Let F : A A B an g : A Abetwogivenmappingssatisfyingthefollowingconitions: a) g is continuous; b) F has the proximal mixe strict g-monotone property on A such that FA 0, A 0 ) B 0, ga 0 )=A 0 ; c) F is a proximally g-meir-keeler type function; ) there exist elements x 0, y 0 ), x 1, y 1 ) A 0 A 0 such that gx 1 ), Fgx 0 ), gy 0 ))) = A, B) with gx 0 )<gx 1 ), an gy 1 ), Fgy 0 ), gx 0 ))) = A, B) with gy 0 ) gy 1 ); e) if {x n } is a nonecreasing sequence in A such that x n x, then x n < x an if {y n } is a nonincreasing sequence in A such that y n y, then y n y. Then there exists x, y) A Asuchthat gx), F gx), gy) )) = A, B), gy), F gy), gx) )) = A, B). Proof As in the proof of Theorem 3.9,thereexistsequences{x n } an {y n } in A 0 such that gx n+1 ), Fgx n ), gy n ))) = A, B)with gx n )<gx n+1 ), n 0, 19) an gy n+1 ), Fgy n ), gx n ))) = A, B)with gy n )>gy n+1 ), n 0. 20) Also, gx n ) gx)angy n ) gy). From e), we get gx n )<gx), an gy n ) gy). Since FA 0, A 0 ) B 0, it follows that Fgx), gy)) an Fgy), gx)) are in B 0. Therefore, there exists x 1, y 1 ) A 0 A 0 such that x 1, Fgx), gy))) = A, B)any 1, Fgy), gx))) = A, B). Since ga 0 )=A 0,thereexistx, y A 0 such that gx )=x 1, gy )=y 1.Hence, g x ), F gx), gy) )) = A, B) 21)

13 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 13 of 16 an g y ), F gy), gx) )) = A, B). 22) Since gx n )<gx), gy n ) gy)anf is a proximally g-meir-keeler type function, it follows from Lemma 3.5,19), an 21)that gx n+1 ), g x )) k 2[ gxn ), gx) ) + gy n ), gy) )]. Similarly, from Lemma 3.5 an 20)an22)weobtain gy n+1 ), g y )) k 2[ gyn ), gy) ) + gx n ), gx) )]. By taking the limit of the above two inequalities, we get gx)=gx )angy)=gy ). Remark 3.13 Corollary 3.11 holstrueifwereplacethecontinuityoff by the following statement. If {x n } is a nonecreasing sequence in A such that x n x, thenx n < x an if {y n } is a nonincreasing sequence in A such that y n y,theny n y. We now consier the prouct space A A with the following partial orering: for all x, y), u, v) A A, u, v) x, y) u < x, v y. Theorem 3.14 Suppose that all the hypotheses of Theorem 3.9 hol an, further, for all x, y), x, y ) A 0 A 0, there exists u, v) A 0 A 0 such that u, v) is comparable to x, y), x, y )with respect to the orering in A A). Then there exists a unique x, y) A A such that gx), Fgx), gy))) = A, B) an gy), Fgy), gx))) = A, B). Proof By Theorem 3.9, there exists an element x, y) A A such that gx), F gx), gy) )) = A, B) 23) an gy), F gy), gx) )) = A, B). 24) Now, suppose that there exists an element x, y ) A A such that gx ), Fgx ), gy ))) = A, B)angy ), Fgy ), gx ))) = A, B). First, let gx), gy)) be comparable to gx ), gy )) with respect to the orering in A A. Since gx), Fgx), gy))) = A, B), an gx ), Fgx ), gy ))) = A, B), it follows from Lemma 3.5 that k 0, 1); gx), g x )) k 2[ gx), g x )) + gy), g y ))]. 25)

14 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 14 of 16 Similarly, from gy), Fgy), gx))) = A, B), gy ), Fgy ), gx ))) = A, B) anlemma 3.5,wehave gy), g y )) k 2[ gx), g x )) + gy), g y ))]. 26) Aing 25)an26), weget gx), g x )) + gy), g y )) k [ gx), g x )) + gy), g y ))]. 27) It follows that gx), gx )) + gy), gy )) = 0 an so gx)=gx )angy)=gy ). Secon, let gx), gy)) is not comparable to gx ), gy )), then there exists gu 1 ), gv 1 )) in A 0 A 0 which is comparable to gx), gy)) an gx ), gy )). Since FA 0, A 0 ) B 0 an ga 0 )=A 0,thereexistsgu 2 ), gv 2 )) A 0 A 0 such that gu 2 ), Fgu 1 ), gv 1 ))) = A, B) an gv 2 ), Fgv 1 ), gu 1 ))) = A, B). Without loss of generality assume that gu 1 ), gv 1 )) gx), gy)), i.e., gu 1 )<gx) an gv 1 ) gy). Therefore gy), gx)) gv 1 ), gu 1 )). Now, from Lemmas 3.7 an 3.8,wehave gu 1 ), gv 1 )) gx), gy)), gu 2 ), Fgu 1 ), gv 1 ))) = A, B), gx), Fgx), gy))) = A, B) =A, B), then gu 2 )<gx)aninthesameway gu 1 ), gv 1 )) gx), gy)), gv 2 ), Fgv 1 ), gu 1 ))) = A, B), gy), Fgy), gx))) = A, B) =A, B), then gv 2 )>gy). Continuing this process, we obtain sequences {x n } an {y n } such that gu n )<gx), gv n )> gy), gu n+1 ), F gu n ), gv n ) )) = A, B), 28) gv n+1 ), F gv n ), gu n ) )) = A, B). 29) Since F is a proximally g-meir-keeler type function, from Lemma 3.5,23), 28), k 0, 1); gu n+1 ), gx) ) k 2[ gun ), gx) ) + gv n ), gy) )], n 0. 30) Similarly from Lemma 3.5,24), 29), we have gv n+1 ), gy) ) k 2[ gvn ), gy) ) + gu n ), gx) )], n 0. 31) Aing 30)an31), we have gu n+1 ), gx) ) + gv n+1 ), gy) ) k [ gu n ), gx) ) + gv n ), gy) )]

15 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 15 of 16 k 2[ gu n 1 ), gx) ) + gv n 1 ), gy) )] k n+1[ gu 0 ), gx) ) + gv 0 ), gy) )]. As n,wegetgu n+1 ), gx)) + gv n+1 ), gy)) 0, i.e., gu n ) gx) angv n ) gy). Similarly, we can prove gu n ) gx )angv n ) gy ). Hence, gx) =gx )an gy)=gy ) an the proof is complete. We shall illustrate the above theorem by the following example. Example 3.15 Let X be the real numbers enowe with usual metric an consier the usual orering x, y) u, v) x u, y v.supposethata =[2,+ )anb =, 2]. Then A, B are nonempty close subsets of X. Also,wehaveA, B)=4anA 0 = {2} an B 0 = { 2}. Define the mappings F : A A B an g : A A as follows: Fx, y)= x y 4 4 an gx)=2x 2. Then F an g are continuous an F2, 2) = 2 an g2) = 2, i.e., FA 0, A 0 ) B 0 an ga 0 )=A 0. Note also that the other hypotheses of Theorem 3.14 are satisfie, then there exists a unique point 2, 2) A A such that g2), Fg2), g2))) = 4 = A, B). Competing interests The authors eclare that they have no competing interests. Authors contributions All authors contribute equally an significantly in writing this paper. All authors rea an approve the final manuscript. Acknowlegements This research was one while the first author was on a sabbatical leave at State University of New York at Albany SUNYA); he wishes to thank SUNYA for its hospitality an Imam Khomeini International University for the financial support. Receive: 25 March 2015 Accepte: 17 June 2015 References 1. Banach, S: Sur les operations ans les ensembles abstraits et leur application aux equations integrales. Funam. Math. 3, ) 2. Meir,A,Keeler,E:Atheoremoncontractionmappings.J.Math.Anal.Appl.28, ) 3. Nieto, JJ, Roriguez-Lopez, R: Contractive mapping theorems in partially orere sets an applications to orinary ifferential equations. Orer 22, ) 4. Suzuki, T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007, Article ID ). oi: /2007/ Suzuki, T: A generalize Banach contraction principle which characterizes metric completeness. Proc. Am. Math. Soc. 136, ) 6. Suzuki, T: Fixe point theorems an convergence theorems for some generalize nonexpansive mappings. J. Math. Anal. Appl. 340, ) 7. Bhaskar, TG, Lakshmikantham, V: Fixe point theorems in partially orere metric spaces an applications. Nonlinear Anal. 65, ) 8. Lakshmikantham, V, Ćirić, LB: Couple fixe point theorems for nonlinear contractions in partially orere metric spaces. Nonlinear Anal. 70, ) 9. Samet, B: Couple fixe point theorems for a generalize Meir-Keeler contraction in partially orere metric spaces. Nonlinear Anal. 72, ) 10. Fan, K: Extensions of two fixe point theorems of F.E. Brower. Math. Z. 122, ) 11. Samet, B: Some results on best proximity points. J. Optim. Theory Appl. 159, ) 12. Abkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, ) 13. Abkar, A, Gabeleh, M: Generalize cyclic contractions in partially orere metric spaces. Optim. Lett. 68), )

16 Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 Page 16 of Eshaghi Gorji, M, Cho, YJ, Ghos, S, Ghos, M, Haian Dehkori, M: Couple fixe-point theorems for contractions in partially orere metric spaces an applications. Math. Probl. Eng. 2012,ArticleID ) 15. Saiq Basha, S, Veeramani, P: Best proximity pair theorems for multifunctions with open fibers. J. Approx. Theory 103, ) 16. Abkar, A, Gabeleh, M: A note on some best proximity point theorems prove uner P-property. Abstr. Appl. Anal. 2013, Article ID ) 17. Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, ) 18. Gabeleh, M: Proximal weakly contractive an proximal nonexpansive non-self mappings in metric an Banach spaces. J. Optim. Theory Appl. 158, ) 19. Gabeleh, M: Best proximity point theorems via proximal non-self mappings. J. Optim. Theory Appl. 164, ) 20. Karapinar, E, Agarwal, RP: A note on couple fixe point theorems for α-ψ-contractive-type mappings in partially orere metric spaces. Fixe Point Theory Appl. 2013, ) 21. Sintunavarat, W, Kumam, P: Couple best proximity point theorem in metric spaces. Fixe Point Theory Appl. 2012, ) 22. Pragaeeswarar, V, Maruai, M, Kumam, P, Sitthithakerngkiet, K: The existence an uniqueness of couple best proximity point for proximally couple contraction in a complete orere metric space. Abstr. Appl. Anal. 2014, Article ID )

Quasi Contraction and Fixed Points

Quasi Contraction and Fixed Points Available online at www.ispacs.com/jnaa Volume 2012, Year 2012 Article ID jnaa-00168, 6 Pages doi:10.5899/2012/jnaa-00168 Research Article Quasi Contraction and Fixed Points Mehdi Roohi 1, Mohsen Alimohammady

More information

Pooja Sharma and R. S. Chandel FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES. 1. Introduction

Pooja Sharma and R. S. Chandel FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Pooja Sharma and R. S. Chandel FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPPINGS IN FUZZY METRIC SPACES Abstract. This paper presents some fixed point

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

BV has the bounded approximation property

BV has the bounded approximation property The Journal of Geometric Analysis volume 15 (2005), number 1, pp. 1-7 [version, April 14, 2005] BV has the boune approximation property G. Alberti, M. Csörnyei, A. Pe lczyński, D. Preiss Abstract: We prove

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION Abstract. In this paper we generalize and extend

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

More information

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let 1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

Pythagorean Triples Over Gaussian Integers

Pythagorean Triples Over Gaussian Integers International Journal of Algebra, Vol. 6, 01, no., 55-64 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok

More information

A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point II

A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point II Suzuki and Alamri Fixed Point Theory and Applications (2015) 2015:59 DOI 10.1186/s13663-015-0302-9 RESEARCH Open Access A sufficient and necessary condition for the convergence of the sequence of successive

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces

On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces Bachar and Khamsi Fixed Point Theory and Applications (215) 215:16 DOI 1.1186/s13663-15-45-3 R E S E A R C H Open Access On common approximate fixed points of monotone nonexpansive semigroups in Banach

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

Digital barrier option contract with exponential random time

Digital barrier option contract with exponential random time IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE

ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE International Journal of Pure and Applied Mathematics Volume 101 No. 3 2015, 401-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i3.7

More information

Mannheim curves in the three-dimensional sphere

Mannheim curves in the three-dimensional sphere Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations

Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations Wang and Agarwal Advances in Difference Equations (2015) 2015:312 DOI 10.1186/s13662-015-0650-0 R E S E A R C H Open Access Relatively dense sets, corrected uniformly almost periodic functions on time

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by,

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by, Theorem Simple Containers Theorem) Let G be a simple, r-graph of average egree an of orer n Let 0 < δ < If is large enough, then there exists a collection of sets C PV G)) satisfying: i) for every inepenent

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

An intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations

An intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations This page may be remove to conceal the ientities of the authors An intertemporal moel of the real exchange rate, stock market, an international ebt ynamics: policy simulations Saziye Gazioglu an W. Davi

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s13661-015-0508-0 R E S E A R C H Open Access Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Mathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition

Mathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition Mathematical Moels of Therapeutical Actions Relate to Tumour an Immune System Competition Elena De Angelis (1 an Pierre-Emmanuel Jabin (2 (1 Dipartimento i Matematica, Politecnico i Torino Corso Duca egli

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. We study and characterize the integral multilinear operators on a product of C(K) spaces in terms of the

More information

On the Algebraic Structures of Soft Sets in Logic

On the Algebraic Structures of Soft Sets in Logic Applied Mathematical Sciences, Vol. 8, 2014, no. 38, 1873-1881 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43127 On the Algebraic Structures of Soft Sets in Logic Burak Kurt Department

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Sensitivity Analysis of Non-linear Performance with Probability Distortion

Sensitivity Analysis of Non-linear Performance with Probability Distortion Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 24-29, 214 Sensitivity Analysis of Non-linear Performance with Probability Distortion

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

FIXED POINT SETS OF FIBER-PRESERVING MAPS

FIXED POINT SETS OF FIBER-PRESERVING MAPS FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific

More information

A Comparison of Performance Measures for Online Algorithms

A Comparison of Performance Measures for Online Algorithms A Comparison of Performance Measures for Online Algorithms Joan Boyar 1, Sany Irani 2, an Kim S. Larsen 1 1 Department of Mathematics an Computer Science, University of Southern Denmark, Campusvej 55,

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

The mean-field computation in a supermarket model with server multiple vacations

The mean-field computation in a supermarket model with server multiple vacations DOI.7/s66-3-7-5 The mean-fiel computation in a supermaret moel with server multiple vacations Quan-Lin Li Guirong Dai John C. S. Lui Yang Wang Receive: November / Accepte: 8 October 3 SpringerScienceBusinessMeiaNewYor3

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,

More information

Search Advertising Based Promotion Strategies for Online Retailers

Search Advertising Based Promotion Strategies for Online Retailers Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit Mehra@isb.eu ABSTRACT Web site aresses of small on line retailers are often unknown

More information

Optimal Control Of Production Inventory Systems With Deteriorating Items And Dynamic Costs

Optimal Control Of Production Inventory Systems With Deteriorating Items And Dynamic Costs Applie Mathematics E-Notes, 8(2008), 194-202 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.eu.tw/ amen/ Optimal Control Of Prouction Inventory Systems With Deteriorating Items

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

Chapter 7. Continuity

Chapter 7. Continuity Chapter 7 Continuity There are many processes and eects that depends on certain set of variables in such a way that a small change in these variables acts as small change in the process. Changes of this

More information

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

More information

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic

More information

1 Introduction, Notation and Statement of the main results

1 Introduction, Notation and Statement of the main results XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 (pp. 1 6) Skew-product maps with base having closed set of periodic points. Juan

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Modelling and Resolving Software Dependencies

Modelling and Resolving Software Dependencies June 15, 2005 Abstract Many Linux istributions an other moern operating systems feature the explicit eclaration of (often complex) epenency relationships between the pieces of software

More information

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

WEAKLY DISSIPATIVE SEMILINEAR EQUATIONS OF VISCOELASTICITY. Monica Conti. Vittorino Pata. (Communicated by Alain Miranville)

WEAKLY DISSIPATIVE SEMILINEAR EQUATIONS OF VISCOELASTICITY. Monica Conti. Vittorino Pata. (Communicated by Alain Miranville) COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume, Number, January 25 pp. 1 16 WEAKLY DISSIPATIVE SEMILINEAR EQUATIONS OF VISCOELASTICITY Monica Conti Dipartimento i Matematica

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks Low-Complexity an Distribute Energy inimization in ulti-hop Wireless Networks Longbi Lin, Xiaojun Lin, an Ness B. Shroff Center for Wireless Systems an Applications (CWSA) School of Electrical an Computer

More information

ON ROUGH (m, n) BI-Γ-HYPERIDEALS IN Γ-SEMIHYPERGROUPS

ON ROUGH (m, n) BI-Γ-HYPERIDEALS IN Γ-SEMIHYPERGROUPS U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 1, 2013 ISSN 1223-7027 ON ROUGH m, n) BI-Γ-HYPERIDEALS IN Γ-SEMIHYPERGROUPS Naveed Yaqoob 1, Muhammad Aslam 1, Bijan Davvaz 2, Arsham Borumand Saeid 3 In this

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

Left Jordan derivations on Banach algebras

Left Jordan derivations on Banach algebras Iranian Journal of Mathematical Sciences and Informatics Vol. 6, No. 1 (2011), pp 1-6 Left Jordan derivations on Banach algebras A. Ebadian a and M. Eshaghi Gordji b, a Department of Mathematics, Faculty

More information

1. Let X and Y be normed spaces and let T B(X, Y ).

1. Let X and Y be normed spaces and let T B(X, Y ). Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH

UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH UNIFIED BIJECTIONS FOR MAPS WITH PRESCRIBED DEGREES AND GIRTH OLIVIER BERNARDI AND ÉRIC FUSY Abstract. This article presents unifie bijective constructions for planar maps, with control on the face egrees

More information

CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

More information

There is no degree invariant half-jump

There is no degree invariant half-jump There is no degree invariant half-jump Rod Downey Mathematics Department Victoria University of Wellington P O Box 600 Wellington New Zealand Richard A. Shore Mathematics Department Cornell University

More information