Limits and Continuity


 Joy Smith
 1 years ago
 Views:
Transcription
1 Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function f(x, y) : D IR 2 IR and a point (x 0, y 0 ) IR 2, we write lim f(x, y) = L, (x,y) (x 0,y 0) if and only if for all (x, y) D close enough in distance to (x 0, y 0 ) the values of f(x, y) approaches L.
2 Math 20C Multivariable Calculus Lecture 2 A tool to show that a limit does not exist is the following: Theorem (Side limits) If f(x, y) L along a path C as (x, y) (x 0, y 0 ), and f(x, y) L 2 along a path C 2 as (x, y) (x 0, y 0 ), with L L 2, then lim f(x, y) (x,y) (x 0,y 0) does not exist. Slide 3 A tool to prove that a limit exists is the following: Theorem 2 (Squeeze) Assume f(x, y) g(x, y) h(x, y) for all (x, y) near (x 0, y 0 ); Assume Then lim f(x, y) = L = lim h(x, y), (x,y) (x 0,y 0) (x,y) (x 0,y 0) lim g(x, y) = L. (x,y) (x 0,y 0) Example: How to use the side limit theorem. Does the following limit exist? lim (x,y) (0,0) 3x 2 x 2 + 2y 2. () So, the function is f(x, y) = (3x 2 )/(x 2 + 2y 2 ). Let pick the curve C as the xaxis, that is, y = 0. Then, f(x, 0) = 3x2 x 2 = 3, then lim f(x, 0) = 3. (x,0) (0,0) Let us now pick up the curve C 2 as the yaxis, that is, x = 0. Then, then Therefore, the limit in () does not exist. f(0, y) = 0, lim f(x, 0) = 0. (x,0) (0,0) Notice that in the above example one could compute the limit for arbitrary lines, that is, C m given by y = mx, with m a constant. Then f(x, mx) = 3x 2 x 2 + 2m 2 x 2 = 3 + 2m 2,
3 Math 20C Multivariable Calculus Lecture 3 so one has that lim f(x, mx) = 3 (x,mx) (0,0) + 2m 2 is different for each value of m. Example: How to use the squeeze theorem. Does the following limit exist? lim (x,y) (0,0) x 2 y x 2 + y 2. (2) Let us first try the side limit theorem, to try to prove that the limit does not exist. Consider the curves C m given by y = mx, with m a constant. Then so one has that f(x, mx) = x2 mx x 2 + m 2 x 2 = mx + m 2, lim f(x, mx) = 0, (x,mx) (0,0) m IR. Therefore, one cannot conclude that the limit does not exist. However, this argument does not prove that the limit actually exists.this can be done with the squeeze theorem. First notice that x 2 x 2 + y 2, (x, y) IR2, (x, y) (0, 0). (proof: 0 y 2, then x 2 (x 2 + y 2 ).) Therefore, one has the inequality y x2 y x 2 + y 2 y, (x, y) IR2, (x, y) (0, 0). Then, one knows that lim y 0 y = 0, therefore the squeeze theorem says that lim (x,y) (0,0) x 2 y x 2 + y 2 = 0.
4 Math 20C Multivariable Calculus Lecture 2 4 Limits and Continuity Limit laws for functions of a single variable also holds for functions of two variables. Slide 4 If the limits lim x x0 f and lim x x0 g exist, then ( ) ( ± lim (f ± g) = x x 0 lim f x x 0 lim g x x 0 ( ) ( ) lim (fg) = lim f lim g. x x 0 x x 0 x x 0 ), Definition 2 (Continuity) A function f(x, y) is continuous at (x 0, y 0 ) if lim f(x, y) = f(x 0, y 0 ). (x,y) (x 0,y 0) Continuity Examples of continuous functions: Polynomial functions are continuous in IR 2, for example P 2 (x, y) = a 0 + b x + b 2 y + c x 2 + c 2 xy + c 3 y 2. Slide 5 Rational functions are continuous on their domain, for example, f(x, y) = P n(x, y) Q m (x, y), f(x, y) = x2 + 3y x 2 y 2 + y 4 x 2 y 2, x ±y. Composition of continuous functions are continuous, example f(x, y) = cos(x 2 + y 2 ).
5 Math 20C Multivariable Calculus Lecture 2 5 Partial derivatives Slide 6 Definition of Partial derivatives. Higher derivatives. Examples of differential equations. Partial derivatives Definition 3 (Partial derivative) Consider a function f : D IR 2 R IR. Slide 7 The partial derivative of f(x, y) with respect to x at (a, b) D is denoted as f x (a, b) and is given by f x (a, b) = lim [f(a + h, b) f(a, b)]. h 0 h The partial derivative of f(x, y) with respect to y at (a, b) D is denoted as f y (a, b) and is given by f y (a, b) = lim [f(a, b + h) f(a, b)]. h 0 h
6 Math 20C Multivariable Calculus Lecture 2 6 So, to compute the partial derivative of f(x, y) with respect to x at (a, b), one can do the following: First, evaluate the function at y = b, that is compute f(x, b); second, compute the usual derivative of single variable functions; evaluate the result at x = a, and the result is f x (a, b). Example: Find the partial derivative of f(x, y) = x 2 + y 2 /4 with respect to x at (, 3).. f(x, 3) = x 2 + 9/4; 2. f x (x, 3) = 2x; 3. f x (, 3) = 2. To compute the partial derivative of f(x, y) with respect to y at (a, b), one follows the same idea: First, evaluate the function at x = a, that is compute f(a, y); second, compute the usual derivative of single variable functions; evaluate the result at y = b,, and the result is f y (a, b). Example: Find the partial derivative of f(x, y) = x 2 + y 2 /4 with respect to y at (, 3).. f(, y) = + y 2 /4; 2. f y (, y) = y/2; 3. f y (, 3) = 3/2. Discuss the geometrical meaning of the partial derivative using the graph of the function. Partial derivatives The partial derivatives of f computed at any point (x, y) D define the functions f x (x, y) and f y (x, y), the partial derivatives of f. More precisely: Slide 8 Definition 4 Consider a function f : D IR 2 R IR. The functions partial derivatives of f(x, y) are denoted by f x (x, y) and f y (x, y), and are given by the expressions f x (x, y) = lim [f(x + h, y) f(x, y)], h 0 h f y (x, y) = lim [f(x, y + h) f(x, y)]. h 0 h
7 Math 20C Multivariable Calculus Lecture 2 7 Examples: f(x, y) = ax 2 + by 2 + xy. f x (x, y) = 2ax y, = 2ax + y. f y (x, y) = 0 + 2by + x, = 2by + x. f(x, y) = x 2 ln(y), f x (x, y) = 2x ln(y), f y (x, y) = x2 y. f(x, y) = x 2 + y2 4, f x (x, y) = 2x, f y (x, y) = y 2. f(x, y) = 2x y x + 2y, f x (x, y) = = = f y (x, y) = = 2(x + 2y) (2x y) (x + 2y) 2, 2x + 4y 2x + y (x + 2y) 2, 5y (x + 2y) 2. (x + 2y) (2x y)2 (x + 2y) 2, 5x (x + 2y) 2. f(x, y) = x 3 e 2y + 3y, f x (x, y) = 3x 2 e 2y, f y (x, y) = 2x 3 e 2y + 3, f yy (x, y) = 4x 3 e 2y, f yyy (x, y) = 8x 3 e 2y, f xy = 6x 2 e 2y, f yx = 6x 2 e 2y.
8 Math 20C Multivariable Calculus Lecture 2 8 Higher derivatives Slide 9 Higher derivatives of a function f(x, y) are partial derivatives of its partial derivatives. For example, the second partial derivatives of f(x, y) are the following: f xx (x, y) = lim h 0 h [f x(x + h, y) f x (x, y)], f yy (x, y) = lim h 0 h [f y(x, y + h) f y (x, y)], f xy (x, y) = lim h 0 h [f x(x + h, y) f x (x, y)], f yx (x, y) = lim h 0 h [f y(x, y + h) f y (x, y)].
9 Math 20C Multivariable Calculus Lecture 2 9 Higher derivatives Slide 0 Theorem 3 (Partial derivatives commute) Consider a function f(x, y) in a domain D. Assume that f xy and f yx exists and are continuous in D. Then, f xy = f yx. Examples of differential equations Differential equations are equations where the unknown is a function, and where derivatives of the function enter into the equation. Examples: Laplace equation: Find φ(x, y, z) : D IR 3 IR solution of Slide φ xx + φ yy + φ zz = 0. Heat equation: Find a function T (t, x, y, z) : D IR 4 IR solution of T t = T xx + T yy + T zz. Wave equation: Find a function f(t, x, y, z) : D IR 4 IR solution of f tt = f xx + f yy + f zz.
10 Math 20C Multivariable Calculus Lecture 2 0 Exercises: Verify that the function T (t, x) = e t sin(x) satisfies the onespace dimensional heat equation T t = T xx. Verify that the function f(t, x) = (t x) 3 satisfies the onespace dimensional wave equation T tt = T xx. Verify that the function below satisfies Laplace Equation, φ(x, y, z) = x2 + y 2 + z 2.
Practice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationLecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if
Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationLIMITS AND CONTINUITY The following tables show values of f(x, y) and g(x, y), correct to three decimal places, for points (x, y) near the origin.
LIMITS AND Let s compare the behavior of the functions 14. Limits and Continuity In this section, we will learn about: Limits and continuity of various types of functions. sin( ) f ( x, y) and g( x, y)
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
More informationCalculus I Notes. MATH /Richards/
Calculus I Notes MATH 52154/Richards/10.1.07 The Derivative The derivative of a function f at p is denoted by f (p) and is informally defined by f (p)= the slope of the fgraph at p. Of course, the above
More informationSept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1
Sept, MATH 4: Calculus I Tutorial Solving Quadratics, Dividing Polynomials Problem Solve for x: ln(x ) =. ln(x ) = x = e x = e + Problem Solve for x: e x e x + =. Let y = e x. Then we have a quadratic
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationContinuity. DEFINITION 1: A function f is continuous at a number a if. lim
Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationHOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba
HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationDerivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):
Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if
More informationMTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages
MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem
More informationReview for Calculus Rational Functions, Logarithms & Exponentials
Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for
More informationFree Response Questions Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom
Free Response Questions 1969005 Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom 1 AP Calculus FreeResponse Questions 1969 AB 1 Consider the following functions
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationScalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationFourier Series Chapter 3 of Coleman
Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768183), who made important contributions
More informationDerivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.
Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More information56 The Remainder and Factor Theorems
Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Math 110 Review for Final Examination 2012 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the equation to the correct graph. 1) y = 
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More informationMA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationDefinition of derivative
Definition of derivative Contents 1. SlopeThe Concept 2. Slope of a curve 3. DerivativeThe Concept 4. Illustration of Example 5. Definition of Derivative 6. Example 7. Extension of the idea 8. Example
More informationMath 201 Lecture 23: Power Series Method for Equations with Polynomial
Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationHOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
More informationPractice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
More informationMATH301 Real Analysis Tutorial Note #3
MATH301 Real Analysis Tutorial Note #3 More Differentiation in Vectorvalued function: Last time, we learn how to check the differentiability of a given vectorvalued function. Recall a function F: is
More information2 Complex Functions and the CauchyRiemann Equations
2 Complex Functions and the CauchyRiemann Equations 2.1 Complex functions In onevariable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)
More informationLinear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
More informationSection 3.1 Worksheet NAME. f(x + h) f(x)
MATH 1170 Section 3.1 Worksheet NAME Recall that we have efine the erivative of f to be f (x) = lim h 0 f(x + h) f(x) h Recall also that the erivative of a function, f (x), is the slope f s tangent line
More informationMath 5311 Gateaux differentials and Frechet derivatives
Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationInverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a onetoone function if it never takes on the same value twice; that
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationMidterm I Review:
Midterm I Review: 1.1 .1 Monday, October 17, 016 1 1.11. Functions Definition 1.0.1. Functions A function is like a machine. There is an input (x) and an output (f(x)), where the output is designated
More informationIn this section, we ll review plotting points, slope of a line and different forms of an equation of a line.
Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationSection 8.4  Composite and Inverse Functions
Math 127  Section 8.4  Page 1 Section 8.4  Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =
More informationRational Polynomial Functions
Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of
More informationBasic Properties of Rational Expressions
Basic Properties of Rational Expressions A fraction is not defined when the denominator is zero! Examples: Simplify and use Mathematics Writing Style. a) x + 8 b) x 9 x 3 Solution: a) x + 8 (x + 4) x +
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationAsymptotes. Definition. The vertical line x = a is called a vertical asymptote of the graph of y = f(x) if
Section 2.1: Vertical and Horizontal Asymptotes Definition. The vertical line x = a is called a vertical asymptote of the graph of y = f(x) if, lim x a f(x) =, lim x a x a x a f(x) =, or. + + Definition.
More informationDifferentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if
Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if f(x)) f(x 0 ) x x 0 exists. If the it exists for all x 0 (a, b) then f is said
More informationExtra Problems for Midterm 2
Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,
More informationTwo Fundamental Theorems about the Definite Integral
Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than
More informationSection 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More informationSimplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 249x + 6 x  6 A) 1, x 6 B) 8x  1, x 6 x 
More informationPower Series. We already know how to express one function as a series. Take a look at following equation: 1 1 r = r n. n=0
Math 0 Calc Power, Taylor, and Maclaurin Series Survival Guide One of the harder concepts that we have to become comfortable with during this semester is that of sequences and series We are working with
More informationAnswer on Question #48173 Math Algebra
Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.
More informationH/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
More informationThe Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
More informationCHAPTER 3. Fourier Series
`A SERIES OF CLASS NOTES FOR 20052006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL
More informationVectors, Gradient, Divergence and Curl.
Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use
More informationx + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c
. Evaluate the given integral (a) 3xe x2 dx 3 2 e x2 + c (b) 3 x ln xdx 2x 3/2 ln x 4 3 x3/2 + c (c) x + 5 x 2 + x 2 dx ln x + 2 + 2 ln x + c (d) x sin (πx) dx x π cos (πx) + sin (πx) + c π2 (e) 3x ( +
More informationk=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =
Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More informationSeparable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationModule 3: SecondOrder Partial Differential Equations
Module 3: SecondOrder Partial Differential Equations In Module 3, we shall discuss some general concepts associated with secondorder linear PDEs. These types of PDEs arise in connection with various
More informationGRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
More informationSECONDORDER LINEAR DIFFERENTIAL EQUATIONS
SECONDORDER LINEAR DIFFERENTIAL EQUATIONS A secondorder linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
More informationKnow the following (or better yet, learn a couple and be able to derive the rest, quickly, from your knowledge of the trigonometric functions):
OCR Core Module Revision Sheet The C exam is hour 0 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet you
More informationx 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y
MA7  Calculus I for thelife Sciences Final Exam Solutions Spring May. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative
More informationNumerical methods for finding the roots of a function
Numerical methods for finding the roots of a function The roots of a function f (x) are defined as the values for which the value of the function becomes equal to zero. So, finding the roots of f (x) means
More informationSituation: Dividing Linear Expressions
Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product
More informationIntroduction to Calculus
Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative
More informationTrigonometric Limits. more examples of limits
Trigonometric Limits more examples of its Substitution Theorem for Trigonometric Functions laws for evaluating its Theorem A. For each point c in function s domain: x c x c x c sin x = sin c, tan x = tan
More informationSlant asymptote. This means a diagonal line y = mx + b which is approached by a graph y = f(x). For example, consider the function: 2x 2 8x.
Math 32 Curve Sketching Stewart 3.5 Man vs machine. In this section, we learn methods of drawing graphs by hand. The computer can do this much better simply by plotting many points, so why bother with
More informationQuotient Rings of Polynomial Rings
Quotient Rings of Polynomial Rings 87009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More informationi is a root of the quadratic equation.
13 14 SEMESTER EXAMS 1. This question assesses the student s understanding of a quadratic function written in vertex form. y a x h k where the vertex has the coordinates V h, k a) The leading coefficient
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationx 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.
Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing
More informationList the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationThe Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationDERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Realvalued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationSets and functions. {x R : x > 0}.
Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationPolynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if
1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c
More information20 Applications of Fourier transform to differential equations
20 Applications of Fourier transform to differential equations Now I did all the preparatory work to be able to apply the Fourier transform to differential equations. The key property that is at use here
More information