MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms associate with joint istributions Moment generating functions, an their close relatives (probability generating functions an characteristic functions) provie an alternative way of representing a probability istribution by means of a certain function of a single variable. These functions turn out to be useful in many ifferent ways: (a) They provie an easy way of calculating the moments of a istribution. (b) They provie some powerful tools for aressing certain counting an combinatorial problems. (c) They provie an easy way of characterizing the istribution of the sum of inepenent ranom variables. () They provie tools for ealing with the istribution of the sum of a ranom number of inepenent ranom variables. (e) They play a central role in the stuy of branching processes. (f) They play a key role in large eviations theory, that is, in stuying the asymptotics of tail probabilities of the form P(X c), when c is a large number. (g) They provie a brige between complex analysis an probability, so that complex analysis methos can be brought to bear on probability problems. (h) They provie powerful tools for proving limit theorems, such as laws of large numbers an the central limit theorem. 1

2 1 MOMENT GENERATING FUNCTIONS 1.1 Definition Definition 1. The moment generating function associate with a ranom variable X is a function M X : R [0, ] efine by M X (s) = E[e sx ]. The omain D X of M X is efine as the set D X = {s M X (s) < }. If X is a iscrete ranom variable, with PMF p X, then M X (s) = e sx p X (x). If X is a continuous ranom variable with PDF f X, then M X (s) = e sx f X (x) x. x Note that this is essentially the same as the efinition of the Laplace transform of a function f X, except that we are using s instea of s in the exponent. 1.2 The omain of the moment generating function Note that 0 D X, because M X (0) = E[e 0X ] = 1. For a iscrete ranom variable that takes only a finite number of ifferent values, we have D X = R. For example, if X takes the values 1, 2, an 3, with probabilities 1/2, 1/3, an 1/6, respectively, then M X (s) = e s + e 2s + e 3s, (1) which is finite for every s R. On the other han, for the Cauchy istribution, f X (x) = 1/(π(1 + x 2 )), for all x, it is easily seen that M X (s) =, for all s = 0. In general, D X is an interval (possibly infinite or semi-infinite) that contains zero. Exercise 1. Suppose that M X (s) < for some s > 0. Show that M X (t) < for all t [0, s]. Similarly, suppose that M X (s) < for some s < 0. Show that M X (t) < for all t [s, 0]. 2

3 Exercise 2. Suppose that log P(X > x) lim sup ν < 0. x x Establish that M X (s) < for all s [0, ν). 1.3 Inversion of transforms By inspection of the formula for M X (s) in Eq. (1), it is clear that the istribution of X is reaily etermine. The various powers e sx inicate the possible values of the ranom variable X, an the associate coefficients provie the corresponing probabilities. At the other extreme, if we are tol that M X (s) = for every s = 0, this is certainly not enough information to etermine the istribution of X. On this subject, there is the following funamental result. It is intimately relate to the inversion properties of Laplace transforms. Its proof requires sophisticate analytical machinery an is omitte. Theorem 1. Inversion theorem (a) Suppose that M X (s) is finite for all s in an interval of the form [ a, a], where a is a positive number. Then, M X etermines uniquely the CDF of the ranom variable X. (b) If M X (s) = M Y (s) <, for all s [ a, a], where a is a positive number, then the ranom variables X an Y have the same CDF. There are explicit formulas that allow us to recover the PMF or PDF of a ranom variable starting from the associate transform, but they are quite ifficult to use (e.g., involving contour integrals ). In practice, transforms are usually inverte by pattern matching, base on tables of known istribution-transform pairs. 1.4 Moment generating properties There is a reason why M X is calle a moment generating function. Let us consier the erivatives of M X at zero. Assuming for a moment we can interchange 3

4 the orer of integration an ifferentiation, we obtain M X (s) = E[e sx ] = E[Xe sx ] = E[X], s s=0 s s=0 s=0 m M X (s) = m E[e sx sx ] = E[X m e ] = E[X m ] s m s=0 s m s=0 s=0 Thus, knowlege of the transform M X allows for an easy calculation of the moments of a ranom variable X. Justifying the interchange of the expectation an the ifferentiation oes require some work. The steps are outline in the following exercise. For simplicity, we restrict to the case of nonnegative ranom variables. Exercise 3. Suppose that X is a nonnegative ranom variable an that M X (s) < for all s (, a], where a is a positive number. (a) Show that E[X k ] <, for every k. (b) Show that E[X k e sx ] <, for every s < a. (c) Show that (e hx 1)/h Xe hx. () Use the DCT to argue that hx e 1 E[e hx ] 1 E[X] = E lim = lim. h 0 h h 0 h 1.5 The probability generating function For iscrete ranom variables, the following probability generating function is sometimes useful. It is efine by g X (s) = E[s X ], with s usually restricte to positive values. It is of course closely relate to the moment generating function in that, for s > 0, we have g X (s) = M X (log s). One ifference is that when X is a positive ranom variable, we can efine g X (s), as well as its erivatives, for s = 0. So, suppose that X has a PMF p X (m), for m = 1,.... Then, g X (s) = s m p X (m), m=1 resulting in m g X (s) = m! p X (m). s m s=0 (The interchange of the summation an the ifferentiation nees justification, but is inee legitimate for small s.) Thus, we can use g X to easily recover the PMF p X, when X is a positive integer ranom variable. 4

5 1.6 Examples Example : X = Exp(λ). Then, λ, s < λ; M X (s) = e sx λe λx x = λ s 0, otherwise. Example : X = Ge(p) es p M X (s) = e sm p(1 p) m 1 1 (1 p)e, e s < 1/(1 p); s, otherwise. m=1 In this case, we also fin g X (s) = ps/(1 (1 p)s), s < 1/(1 p) an g X (s) =, otherwise. Example : X = N(0, 1). Then, 1 x 2 M X (s) = exp(sx) exp( )x 2π 2 = exp(s2 /2) exp( x2 + 2sx s 2 )x 2π 2 = exp(s 2 /2). 1.7 Properties of moment generating functions We recor some useful properties of moment generating functions. Theorem 2. (a) If Y = ax + b, then M Y (s) = e sb M X (as). (b) If X an Y are inepenent, then M X+Y (s) = M X (s)m Y (s). (c) Let X an Y be inepenent ranom variables. Let Z be equal to X, with probability p, an equal to Y, with probability 1 p. Then, M Z (s) = pm X (s) + (1 p)m Y (s). Proof: For part (a), we have M X (ax + b) = E[exp(saX + sb)] = exp(sb)e[exp(sax)] = exp(sb)m X (as). 5

6 For part (b), we have M X+Y (s) = E[exp(sX + sy )] = E[exp(sX)]E[exp(sY )] = M X (s)m Y (s). For part (c), by conitioning on the ranom choice between X an Y, we have M Z (s) = E[e sz ] = pe[e sx ] + (1 p)e[e sy ] = pm X (s) + (1 p)m Y (s). Example : (Normal ranom variables) (a) Let X be a stanar normal ranom variable, an let Y = σx + µ, which we know to have a N (µ, σ 2 ) istribution. We then fin that M Y (s) = exp(sµ s2 σ 2 ). (b) Let X = N(µ1, σ 2 1 ) an Y = N(µ 2, σ 2 2 ). Then, 1 M X+Y (s) = exp( s(µ 1 + µ 2 ) + s 2 2 (σ σ 2 2 ). Using the inversion property of transforms, we conclue that X + Y = N (µ µ 2, σ 1 + σ 2 2 ), thus corroborating a result we first obtaine using convolutions. 2 SUM OF A RANDOM NUMBER OF INDEPENDENT RANDOM VARI ABLES Let X 1, X 2,... be a sequence of i.i.. ranom variables, with mean µ an variance σ 2. Let N be another inepenent ranom variable that takes nonnegative integer values. Let Y = N i=1 X i. Let us erive the mean, variance, an moment generating function of Y. We have E[Y ] = E[E[Y N]] = E[Nµ] = E[N]E[X]. Furthermore, using the law of total variance, var(y ) = E var(y N) + var E[Y N] Finally, note that = E[Nσ 2 ] + var(nµ) = E[N]σ 2 + µ 2 var(n). E[exp(sY ) N = n] = M n (s) = exp(n log M X (s)), X 6

7 implying that M Y (s) = exp(n log M X (s))p(n = n) = M N (log M X (s)). n=1 The reaer is encourage to take the erivative of the above expression, an evaluate it at s = 0, to recover the formula E[Y ] = E[N]E[X]. Example : Suppose that each X i is exponentially istribute, with parameter λ, an that N is geometrically istribute, with parameter p (0, 1). We fin that e log M X (s) p pλ/(λ s) λp M Y (s) = = = 1 e log M X (s) (1 p) 1 λ(1 p)/(λ s) λp s which we recognize as a moment generating function of an exponential ranom variable with parameter λp. Using the inversion theorem, we conclue that Y is exponentially istribute. In view of the fact that the sum of a fixe number of exponential ranom variables is far from exponential, this result is rather surprising. An intuitive explanation will be provie later in terms of the Poisson process. 3 TRANSFORMS ASSOCIATED WITH JOINT DISTRIBUTIONS If two ranom variables X an Y are escribe by some joint istribution (e.g., a joint PDF), then each one is associate with a transform M X (s) or M Y (s). These are the transforms of the marginal istributions an o not convey information on the epenence between the two ranom variables. Such information is containe in a multivariate transform, which we now efine. Consier n ranom variables X 1,..., X n relate to the same experiment. Let s 1,..., s n be real parameters. The associate multivariate transform is a function of these n parameters an is efine by M X1,...,X n (s 1,..., s n ) = E e s 1X 1 + +s nx n. The inversion property of transforms iscusse earlier extens to the multivariate case. That is, if Y 1,..., Y n is another set of ranom variables an M X1,...,X n (s 1,..., s n ), M Y1,...,Y n (s 1,..., s n ) are the same functions of s 1,..., s n, in a neighborhoo of the origin, then the joint istribution of X 1,..., X n is the same as the joint istribution of Y 1,..., Y n. 7

8 Example : (a) Consier two ranom variables X an Y. Their joint transform is M X,Y (s, t) = E[e sx e ty ] = E[e sx+ty ] = M Z (1), where Z = sx+ty. Thus, calculating a multivariate transform essentially amounts to calculating the univariate transform associate with a single ranom variable that is a linear combination of the original ranom variables. (b) If X an Y are inepenent, then M X,Y (s, t) = M X (s)m Y (t). 8

9 MIT OpenCourseWare J / J Funamentals of Probability Fall 2008 For information about citing these materials or our Terms of Use, visit:

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Section 3.1 Worksheet NAME. f(x + h) f(x)

Section 3.1 Worksheet NAME. f(x + h) f(x) MATH 1170 Section 3.1 Worksheet NAME Recall that we have efine the erivative of f to be f (x) = lim h 0 f(x + h) f(x) h Recall also that the erivative of a function, f (x), is the slope f s tangent line

More information

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

arcsine (inverse sine) function

arcsine (inverse sine) function Inverse Trigonometric Functions c 00 Donal Kreier an Dwight Lahr We will introuce inverse functions for the sine, cosine, an tangent. In efining them, we will point out the issues that must be consiere

More information

FOURIER TRANSFORM TERENCE TAO

FOURIER TRANSFORM TERENCE TAO FOURIER TRANSFORM TERENCE TAO Very broaly speaking, the Fourier transform is a systematic way to ecompose generic functions into a superposition of symmetric functions. These symmetric functions are usually

More information

P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )

P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i ) Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Sensitivity Analysis of Non-linear Performance with Probability Distortion

Sensitivity Analysis of Non-linear Performance with Probability Distortion Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 24-29, 214 Sensitivity Analysis of Non-linear Performance with Probability Distortion

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

2 HYPERBOLIC FUNCTIONS

2 HYPERBOLIC FUNCTIONS HYPERBOLIC FUNCTIONS Chapter Hyperbolic Functions Objectives After stuying this chapter you shoul unerstan what is meant by a hyperbolic function; be able to fin erivatives an integrals of hyperbolic functions;

More information

Chapter 3 Joint Distributions

Chapter 3 Joint Distributions Chapter 3 Joint Distributions 3.6 Functions of Jointly Distributed Random Variables Discrete Random Variables: Let f(x, y) denote the joint pdf of random variables X and Y with A denoting the two-dimensional

More information

Lecture 13: Differentiation Derivatives of Trigonometric Functions

Lecture 13: Differentiation Derivatives of Trigonometric Functions Lecture 13: Differentiation Derivatives of Trigonometric Functions Derivatives of the Basic Trigonometric Functions Derivative of sin Derivative of cos Using the Chain Rule Derivative of tan Using the

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

n-parameter families of curves

n-parameter families of curves 1 n-parameter families of curves For purposes of this iscussion, a curve will mean any equation involving x, y, an no other variables. Some examples of curves are x 2 + (y 3) 2 = 9 circle with raius 3,

More information

4. Joint Distributions of Two Random Variables

4. Joint Distributions of Two Random Variables 4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint

More information

6. Jointly Distributed Random Variables

6. Jointly Distributed Random Variables 6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.

More information

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: C-Ring 512 My office: C-Ring 533A (Stats Dept corrior)

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Topic 4: Multivariate random variables. Multiple random variables

Topic 4: Multivariate random variables. Multiple random variables Topic 4: Multivariate random variables Joint, marginal, and conditional pmf Joint, marginal, and conditional pdf and cdf Independence Expectation, covariance, correlation Conditional expectation Two jointly

More information

Aggregate Loss Models

Aggregate Loss Models Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

More information

20. Product rule, Quotient rule

20. Product rule, Quotient rule 20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

More information

Ch 10. Arithmetic Average Options and Asian Opitons

Ch 10. Arithmetic Average Options and Asian Opitons Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options

More information

Exercises with solutions (1)

Exercises with solutions (1) Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

The mean-field computation in a supermarket model with server multiple vacations

The mean-field computation in a supermarket model with server multiple vacations DOI.7/s66-3-7-5 The mean-fiel computation in a supermaret moel with server multiple vacations Quan-Lin Li Guirong Dai John C. S. Lui Yang Wang Receive: November / Accepte: 8 October 3 SpringerScienceBusinessMeiaNewYor3

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

More information

Proof of the Power Rule for Positive Integer Powers

Proof of the Power Rule for Positive Integer Powers Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive

More information

Lecture 17: Implicit differentiation

Lecture 17: Implicit differentiation Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we

More information

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

Definition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2.

Definition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2. Chapter 6 Brownian Motion 6. Normal Distribution Definition 6... A r.v. X has a normal distribution with mean µ and variance σ, where µ R, and σ > 0, if its density is fx = πσ e x µ σ. The previous definition

More information

Solutions of Laplace s equation in 3d

Solutions of Laplace s equation in 3d Solutions of Laplace s equation in 3 Motivation The general form of Laplace s equation is: Ψ = 0 ; it contains the laplacian, an nothing else. This section will examine the form of the solutions of Laplaces

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

4 Sums of Random Variables

4 Sums of Random Variables Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms .5 / -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de.5 Transforms Using different summation and integral transformations pmf, pdf and cdf/ccdf can be transformed in such a way, that even

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Mathematics Review for Economists

Mathematics Review for Economists Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school

More information

Digital barrier option contract with exponential random time

Digital barrier option contract with exponential random time IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun

More information

On Adaboost and Optimal Betting Strategies

On Adaboost and Optimal Betting Strategies On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is so-calle because we rearrange the equation

More information

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

More information

The Bivariate Normal Distribution

The Bivariate Normal Distribution The Bivariate Normal Distribution This is Section 4.7 of the st edition (2002) of the book Introduction to Probability, by D. P. Bertsekas and J. N. Tsitsiklis. The material in this section was not included

More information

Chapter 4. Multivariate Distributions

Chapter 4. Multivariate Distributions 1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

Chapter 2 Review of Classical Action Principles

Chapter 2 Review of Classical Action Principles Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let 1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

MATH 125: LAST LECTURE

MATH 125: LAST LECTURE MATH 5: LAST LECTURE FALL 9. Differential Equations A ifferential equation is an equation involving an unknown function an it s erivatives. To solve a ifferential equation means to fin a function that

More information

Data Center Power System Reliability Beyond the 9 s: A Practical Approach

Data Center Power System Reliability Beyond the 9 s: A Practical Approach Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of mission-critical

More information

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by,

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by, Theorem Simple Containers Theorem) Let G be a simple, r-graph of average egree an of orer n Let 0 < δ < If is large enough, then there exists a collection of sets C PV G)) satisfying: i) for every inepenent

More information

Measures of distance between samples: Euclidean

Measures of distance between samples: Euclidean 4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

More information

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions... MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

More information

Solutions for the exam for Matematisk statistik och diskret matematik (MVE050/MSG810). Statistik för fysiker (MSG820). December 15, 2012.

Solutions for the exam for Matematisk statistik och diskret matematik (MVE050/MSG810). Statistik för fysiker (MSG820). December 15, 2012. Solutions for the exam for Matematisk statistik och diskret matematik (MVE050/MSG810). Statistik för fysiker (MSG8). December 15, 12. 1. (3p) The joint distribution of the discrete random variables X and

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, garrett@math.umn.edu http://www.math.umn.edu/ garrett/

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Calculus Refresher, version 2008.4 c 997-2008, Paul Garrett, garrett@math.umn.eu http://www.math.umn.eu/ garrett/ Contents () Introuction (2) Inequalities (3) Domain of functions (4) Lines (an other items

More information

UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 9 Paired Data. Paired data. Paired data

UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 9 Paired Data. Paired data. Paired data UCLA STAT 3 Introuction to Statistical Methos for the Life an Health Sciences Instructor: Ivo Dinov, Asst. Prof. of Statistics an Neurology Chapter 9 Paire Data Teaching Assistants: Jacquelina Dacosta

More information

The Exponential Distribution

The Exponential Distribution 21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

MTH135/STA104: Probability

MTH135/STA104: Probability MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

The Scalar Algebra of Means, Covariances, and Correlations

The Scalar Algebra of Means, Covariances, and Correlations 3 The Scalar Algebra of Means, Covariances, and Correlations In this chapter, we review the definitions of some key statistical concepts: means, covariances, and correlations. We show how the means, variances,

More information

M147 Practice Problems for Exam 2

M147 Practice Problems for Exam 2 M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Using Stein s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees

Using Stein s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees AofA 2014, Paris, France DMTCS proc. (subm., by the authors, 1 12 Using Stein s Metho to Show Poisson an Normal Limit Laws for Fringe Subtrees Cecilia Holmgren 1 an Svante Janson 2 1 Department of Mathematics,

More information

Efficiency and the Cramér-Rao Inequality

Efficiency and the Cramér-Rao Inequality Chapter Efficiency and the Cramér-Rao Inequality Clearly we would like an unbiased estimator ˆφ (X of φ (θ to produce, in the long run, estimates which are fairly concentrated i.e. have high precision.

More information

Optimal Energy Commitments with Storage and Intermittent Supply

Optimal Energy Commitments with Storage and Intermittent Supply Submitte to Operations Research manuscript OPRE-2009-09-406 Optimal Energy Commitments with Storage an Intermittent Supply Jae Ho Kim Department of Electrical Engineering, Princeton University, Princeton,

More information

ECE302 Spring 2006 HW7 Solutions March 11, 2006 1

ECE302 Spring 2006 HW7 Solutions March 11, 2006 1 ECE32 Spring 26 HW7 Solutions March, 26 Solutions to HW7 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

1 High-Dimensional Space

1 High-Dimensional Space Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........

More information

Joint Distributions. Tieming Ji. Fall 2012

Joint Distributions. Tieming Ji. Fall 2012 Joint Distributions Tieming Ji Fall 2012 1 / 33 X : univariate random variable. (X, Y ): bivariate random variable. In this chapter, we are going to study the distributions of bivariate random variables

More information

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a

More information

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline

More information

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT

JON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT OPTIMAL INSURANCE COVERAGE UNDER BONUS-MALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,

More information

The one-year non-life insurance risk

The one-year non-life insurance risk The one-year non-life insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on non-life insurance reserve risk has been evote to the ultimo risk, the risk in the

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information