Mannheim curves in the three-dimensional sphere

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Mannheim curves in the three-dimensional sphere"

Transcription

1 Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey. s: Abstract Mannheim curves are efine for immerse curves in -imensional sphere S. he efinition is given by consiering the geoesics of S. First, two special geoesics, calle principal normal geoesic an binormal geoesic, of S are efine by using Frenet vectors of a curve immerse in S. Later, the curve is calle a Mannheim curve if there exits another curve in S such that the principal normal geoesics of coincie with the binormal geoesics of. It is obtaine that if an form a Mannheim pair then there exist a constant λ an a nonconstant function µ such that λκ + µτ = where κ, τ are the curvatures of. Moreover, the relation between a Mannheim curve immerse in S an a generalize Mannheim curve in E is obtaine an a table containing comparison of Bertran an Mannheim curves in S is introuce. MSC: 5A Key wors: Spherical curves; generalize Mannheim curves; geoesics.. Introuction an Preliminaries Mannheim curves an Bertran curves are the most fascinating subject of the curve pairs efine by some relationships between two space curves. Mannheim curves are first efine by A. Mannheim in 878 [6]. In the Eucliean -space E, Mannheim curves are characterize as a kin of corresponing relation between two curves, such that the binormal vector fiels of coincie with the principal normal vector fiels of. hen an are calle Mannheim curve an Mannheim partner curve, respectively [9]. he main result for a curve to have a Mannheim partner curve in E is that there exists a constant λ such that τ κ = ( + λ τ ) hols, where κ, τ an s are the curvatures an arc length parameter of, s λ respectively [9]. Mannheim curves have been stuie by many mathematicians. Blum stuie a remarkable class of Mannheim curves []. In [7], Matsua an Yorozu have given a efinition of generalize Mannheim curve in Eucliean -space an introuce some characterizations an examples of generalize Mannheim curves. Later, Choi, Kang an Kim have efine Mannheim curves in - imensional Riemannian manifol []. Moreover, in the same paper, they have stuie Mannheim curves in -imensional space forms. Another type of associate curves is Bertran curves which first efine by French mathematician Saint-Venant in 85 by the property that two curves have common principal normal vector fiels at the corresponing points of curves [8]. Lucas an Ortega-Yagües have consiere Bertran curves in the three-imensional sphere S [5]. hey have given another S

2 efinition for space curves to be Bertran curves immerse in S an they have come to the result that a curve with curvatures κ, τ immerse in S is a Bertran curve if an only if either τ an is a curve in some unit two-imensional sphere constants λ, µ such that λκ + µτ = [5]. S () or there exit two In this stuy, we efine Mannheim curves in S by efining some special geoesics relate to the Frenet vectors of a curve immerse in S. We show that the angle between the tangent vector fiels of Mannheim curves is not constant while it is constant for Bertran curves. Moreover, we obtaine that a curve with curvatures κ, τ immerse in S is a Mannheim curve if there exist a constant λ an a non-constant function µ such that λκ + µτ =. We want to pointe out that this property hols for Bertran curves uner the conition that both λ an µ are constants.. Mannheim curves in the three-imensional sphere Before giving the main subject, first we give the following ata relate to the curves immerse in S. For this section, we refer the reaer to ref. [,5]. Let S ( r ) enote the three-imensional sphere in R of raius r, efine by S ( r) = ( x, x, x, x ) R xi = r, r >. i= Let = ( t) : I R S ( r) be an arc-length parameterize immerse curve in the -sphere S ( r ) an let {, N, B } an enotes the Frenet frame of an the Levi-Civita connection of S ( r ), respectively. hen, Frenet formulae of is given by = κ N N = κ + τ B B = τ N where κ an τ enote the curvature an torsion of, respectively. If Civita connection of R, then the Gauss formula gives X = X X,, r for any tangent vector fiel X χ( ). In particular, we have = κ N r N = κ + τ B B = τ N. A curve ( t) in stans for the Levi- S ( r ) is calle a plane curve if it lies in a totally geoesic two-imensional sphere S S which means that a curve ( t) in torsion τ is zero at all points [5]. S ( r ) is calle a plane curve if an only if its

3 Let ( t) an ( t) be two immerse curve in {, N, B } S ( r ) with Frenet frames {, N, B } an, respectively. A geoesic curve in S ( r ) starting at any point ( t) of an efine as u u t ( u) = cos ( t) + r sin B ( t), u R, r r is calle the binormal geoesic of an, similarly, a geoesic curve in S ( r ) starting at any point ( t) of an efine as u u t ( u) = cos ( t) + r sin N ( t), u R, r r is calle the principal normal geoesic of in S ( r ). Let be a regular smooth curve in Eucliean -space E efine by arc-length parameter s. he curve is calle a special Frenet curve if there exist three smooth functions k, k, k on e, e, e, e along the curve such that these satisfy the following an smooth frame fiel { } properties: i) he formulas of Frenet-Serret hols: e = e = k e e = k e + k e e = k e + k e e = k e where the prime (') enotes ifferentiation with respect to s. ii) he frame fiel {,,, } e e e e is orthonormal an has positive orientation. iii) he functions k an k are positive an the function k oesn t vanish. iv) he functions k, k an k are calle the first, the secon an the thir curvature e, e, e, e is calle the Frenet frame fiel functions of, respectively. he frame fiel { } on []. A special Frenet curve in E is a generalize Mannheim curve if there exists a special Frenet curve ˆ in E such that the first normal line at each point of is inclue in the plane generate by the secon normal line an thir normal line of ˆ at corresponing point uner a bijection φ from to ˆ. he curve ˆ is calle the generalize Mannheim mate curve of [7]. Now, we can introuce the main subject. First, we give the following efinition. Definition.. A curve in S ( r ) with non-zero curvature κ is sai to be a Mannheim curve if there exists another immerse curve = ( σ ) : J IR S ( r) an a one-to-one corresponence between an such that the principal normal geoesics of coincie with

4 the binormal geoesics of at corresponing points. We will say that is a Mannheim partner curve of ; the curves an are calle a pair of Mannheim curves. From this efinition it is clear that Mannheim partner curve can not a plane curve since the efinition given by consiering the binormal vector fiel of. For simplicity, we consier that the raius of the sphere S is an the curves taken on S are parameterize by the arc-length parameter. Let an ( σ ) be a pair of Mannheim curves. From Definition., we have a ifferentiable function a( s ) such that ( ) ( ) ( ) s( σ ) = cos a ( σ ) sin a B ( σ ) () where {, N, B } enotes the Frenet frame along ( ) σ, ( s( )) σ is the point in corresponing to ( σ ) an a( s ) is calle the angle function between the irection vectors an ( σ ). he function ( s ) is calle istance function in S an measures the istance between the points ( s( σ )) an ( σ ). Now, we can give the following proposition. Proposition.. Let an be a pair of Mannheim curves in S. In that case, we have the followings a) he angle function a( s ) is constant. b) he istance function ( s ) is constant. c) he angle θ between the tangent vector fiels at corresponing points is not constant. ) he angle between the binormal vectors fiels at corresponing points is constant. Proof. a) Since principal normal geoesic of an binormal geoesic of are common at corresponing points, we have s ( u) = B an s ( u) = N () u u u= u= a an then we obtain N = sin a ( σ ) + cos a B ( σ ) () ( ) ( ) where {, N, B } enotes the Frenet frame of. From (), the tangent vector to is given by ( s( σ )) = a sin ( a ) ( σ ) + cos ( a ) ( σ ) s () a cos a B ( σ ) + sin a τ N ( σ ) ( ) ( ) where s enotes ifferentiation with respect to s. Since, ( s( σ )) = s ( σ ) ( s( σ )) (5) σ we get = ( s( σ )), N = a ( sin ( a ) cos ( a ) ) (6) σ which gives that a =, i.e., a( s ) is constant.

5 b) Without loss of generality, for the angle function it can be taken as a π. hen the istance function ( s ) is given by = min{ a( s ), π a}, which is a constant function since a( s ) is constant. c) Let θ = θ ( σ ) enotes the angle between tangent vectors an, i.e., ( ) s( σ ), ( σ ) = cos θ ( σ ). Differentiating the left sie of this equality, it follows ( s ( σ )), ( σ ) = s ( σ ) κ N, +, κ N. (7) σ Moreover, from () an (5), we have ( s( σ )) = ( cos a + τ sin a N ) (8) s ( σ ) Writing (), () an (8) in (7), it follows κ τ sin a θ = s ( σ )sin θ ( σ ). (9) Since is not a plane curve from (9), it is clear that θ is not a constant. ) Using equality () an (), we can write B = sin a s( σ ) + cos a N ( σ ). () ( ) Since B, B =, the angle between binormal vectors is constant. σ heorem.. Let an be a pair of Mannheim curves in hol: tanθ a) τ = tan a τ sin a cosθ = cos a κ sin a sinθ b) ( ) c) ) θ a κ a a cos = cos sin cos sin θ = τ τ sin a S. hen the following equalities Proof. a) aking the covariant erivative in () an using (5), we obtain ( s( σ )) = cos θ s ( σ ) ( σ ) + sin θ s ( σ ) N ( σ ). () σ On the other han, by using Frenet equations we have ( s( σ )) = cos a ( σ ) + τ sin a N ( σ ) () σ where a = a is constant. he last two equations lea to s ( σ ) cosθ = cos a () s ( σ )sinθ = τ sin a () from which we conclue (a). b) We nee to write the Frenet frame of in terms of the Frenet frame of : ( ) ( ) ( σ ) = cos a s( σ ) + sin a N s( σ ) (5) 5

6 ( ) ( ) ( ) ( ) ( ) ( ) ( σ ) = cos θ s( σ ) + sin θ B s( σ ) (6) N ( σ ) = sin θ s( σ ) cos θ B s( σ ) (7) B ( σ ) = sin a s( σ ) + cos a N s( σ ). (8) From (a), it follows σ (s) cosθ = cos a κ sin a (9) σ (s)sinθ = τ sin a () which gives us (b). c) It is a consequence of Eqs. () an (9); cos θ = cos a κ sin a cos a. () ) Similarly, from Eqs. () an (), we have esire equality sin θ = τ τ sin a. () From (), one can consier that is a plane curve if an only if θ = or σ (s) =. Since σ is arc length parameter, it cannot be constant. Similarly, from Proposition.. (c), θ is not a constant. hen we can give the following corollary. Corollary.. A Mannheim curve cannot be a plane curve. heorem.. Relationship between arc-length parameters of curves an is given by s cos a cosθ τ sin a sinθ σ = +. () Proof. If equations (6) an (7) are written in (), we get equation (). heorem.. Let an be a pair of Mannheim curves in an a non-constant function µ such that S. hen there exists a constant λ = λκ + µτ. () Proof. Multiplying (9) an () by sinθ an cosθ, respectively, an equalizing obtaine results, gives that sinθ cos a = sinθ sin aκ + sin a cosθτ. (5) Writing λ = tan a an µ = tan a cotθ, from last equality we have = λκ + µτ. Corollary.. Both curvature κ an torsion τ of a Mannheim curve cannot be constant. Proof. Since is a Mannheim curve Eq. () hols. Let now assume that the curvature κ be a n constant. hen, from () we have τ = which is not a constant since µ is not a constant, µ where n = λκ is a real constant. Similarly, if it is assume that the torsion τ is constant, then by a similar way it is seen that κ is not constant. 6

7 heorem.. Let ( t) be a Mannheim curve in regular ifferentiable mapping s = s( t) with s ( t) S with constant curvature. hen there exists a > such that the curve ( ) t ( ( )) = t B s u u is an arc-length parametrize generalize Mannheim curve. Proof. By ifferentiating the curve ( t) three times an using Frenet formulae, we have κ = ε s τ, κ = s κ, κ = ε s, ε = ±. (6) (See [5]). From heorem., there exist constant λ an a non-constant µ such that = λκ + µτ hols. Let signs of λ an τ be same an consier a function s( t ) such that λτ s ( t) =, (7) τ + κ where λ is a non-zero real constant. Defining a constant by ε c =, λ from Eqs. ()-(6), we see that κ = c( κ + κ ) (8) hols for all s. hen from [7, heorem.], we have that ( t) is a generalize Mannheim curve. By consiering these characterizations an results obtaine for Bertran curves in [,5], we can give the following table giving the comparison of Bertran an Mannheim curves. t Characterizations Bertran Curves Mannheim Curves Angel between tangent vector fiels constant non-constant Angel between binormal vector fiels constant constant Main Characterization λκ + µτ = is a Bertran curve in S if an only if there exits two constant λ an µ such that λκ + µτ =. is a Bertran curve in S if there exit a constant λ an a non-constant function µ such that λκ + µτ = Curves, Curvatures an can be plane curves. an cannot be plane curves. Both κ an τ can be Both κ an τ cannot be constants. constants able. Comparison of Bertran an Mannheim curves in S. Some examples Example.. (ccr-curves) A C -special Frenet curve on S is sai to be a ccr-curve on S if κ its intrinsic curvature ratio is a constant number []. Let now etermine special ccr-curve τ on S which is also Mannheim curve. First assume that is a ccr-curve with non-constant 7

8 curvature an non-constant torsion. hen, we have κ = cτ for a non-zero constant c. Writing this equality in () gives us c κ =, τ =. tan a( c + cot θ ) tan a( c + cot θ ) hen we conclue that the ccr-curve on curve. Example.. (Conical helix) A twiste curve in S given by curvatures as given above is a Mannheim S with non-constant curvatures is sai to be conical helix if both the curvature raius κ an the torsion raius τ evolve linearly along the curve [5]. hen the curvature an torsion of curve are given by δ κ =, τ = s + r s + r, respectively, where r, r, an δ are constants. aking = δ, we see that () hols for a constant λ = δ an a non-constant function Mannheim curve. µ = s + r + r s + r r r ( ) ( ) s + r, i.e., is a Example.. (General helix) A twiste curve in S is a general helix if there exists a constant b such that τ = bκ ± []. Let now etermine general helices in S which are also µ Mannheim curves. Writing the conition τ = bκ ± in (), it follows κ =. hen we λ + bµ µ b( µ ) have that a general helix in S with curvatures κ =, τ = ± is a Mannheim λ + bµ λ + bµ curve. Example.. (Curve with constant curvatures) Consier C curve on S () given by the parametrization = cos s, sin s, cos s, sin s for all s R. he curvatures are compute as κ = an τ = ε, ε = ± []. hen from Corollary., is not a Mannheim curve. References [] Barros, M., General helices an a theorem of Lancret, Proceeings of the American Mathematical Society 5 (997) [] Blum, R., A Remarkable class of Mannheim-curves, Cana. Math. Bull., 9(966), -8. [] Choi, J., Kang,. an Kim, Y., Mannheim Curves in -Dimensional Space Forms, Bull. Korean Math. Soc. 5() ()

9 [] Kim, C.Y., Park, J.H., Yorozu, S., Curves on the unit -sphere S () in the Eucliean -space R, Bull. Korean Math. Soc., 5(5) () [5] Lucas, P., Ortega-Yagües, J., Bertran Curves in the three-imensional sphere, Journal of Geometry an Physics, 6 () 9 9. [6] Mannheim, A., Paris C.R. 86 (878) [7] Matsua, H., Yorozu, S., On Generalize Mannheim Curves in Eucliean -space, Nihonkai Math. J., (9) 56. [8] Saint-Venant, J.C., Mémoire sur les lignes courbes non planes, Journal Ecole Polytechnique (85) 76. [9] Wang, F., Liu, H., Mannheim partner curves in -Eucliean space, Mathematics in Practice an heory, 7() (7) -. [] Wong, Y.C., Lai, H.F., A critical examination of the theory of curves in three imensional ifferential geometry, ohoku Math. J. 9 (967). 9

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds

Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds Eikonal Slant Helices and Eikonal Darboux Helices In -Dimensional Riemannian Manifolds Mehmet Önder a, Evren Zıplar b, Onur Kaya a a Celal Bayar University, Faculty of Arts and Sciences, Department of

More information

On the Developable Mannheim Offsets of Timelike Ruled Surfaces

On the Developable Mannheim Offsets of Timelike Ruled Surfaces On the Developable Mannheim Offsets of Timelike Ruled Surfaces Mehmet Önder *, H Hüseyin Uğurlu ** * Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, Muradiye,

More information

CURVES: VELOCITY, ACCELERATION, AND LENGTH

CURVES: VELOCITY, ACCELERATION, AND LENGTH CURVES: VELOCITY, ACCELERATION, AND LENGTH As examples of curves, consier the situation where the amounts of n-commoities varies with time t, qt = q 1 t,..., q n t. Thus, the amount of the commoities are

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time International Mathematical Forum, 3, 2008, no. 32, 1575-1580 Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time Suha Yilmaz Dokuz Eylul University, Buca Educational

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); 1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the

More information

Smarandache Curves in Minkowski Space-time

Smarandache Curves in Minkowski Space-time International J.Math. Combin. Vol.3 (2008), 5-55 Smarandache Curves in Minkowski Space-time Melih Turgut and Süha Yilmaz (Department of Mathematics of Buca Educational Faculty of Dokuz Eylül University,

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

arcsine (inverse sine) function

arcsine (inverse sine) function Inverse Trigonometric Functions c 00 Donal Kreier an Dwight Lahr We will introuce inverse functions for the sine, cosine, an tangent. In efining them, we will point out the issues that must be consiere

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

THE HELICOIDAL SURFACES AS BONNET SURFACES

THE HELICOIDAL SURFACES AS BONNET SURFACES Tδhoku Math. J. 40(1988) 485-490. THE HELICOIDAL SURFACES AS BONNET SURFACES loannis M. ROUSSOS (Received May 11 1987) 1. Introduction. In this paper we deal with the following question: which surfaces

More information

Measures of distance between samples: Euclidean

Measures of distance between samples: Euclidean 4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

More information

SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH

SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH Basic Definitions In homework set # one of the questions involves basic unerstaning of the hyperbolic functions sinh an cosh. We will use this

More information

M147 Practice Problems for Exam 2

M147 Practice Problems for Exam 2 M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Notes on tangents to parabolas

Notes on tangents to parabolas Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,

More information

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time International Mathematical Forum, 3, 008, no. 16, 793-801 On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time Melih Turgut Dokuz Eylul University,

More information

Lagrange s equations of motion for oscillating central-force field

Lagrange s equations of motion for oscillating central-force field Theoretical Mathematics & Applications, vol.3, no., 013, 99-115 ISSN: 179-9687 (print), 179-9709 (online) Scienpress Lt, 013 Lagrange s equations of motion for oscillating central-force fiel A.E. Eison

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

W CURVES IN MINKOWSKI SPACE TIME

W CURVES IN MINKOWSKI SPACE TIME Novi Sad J Math Vol 3, No, 00, 55-65 55 W CURVES IN MINKOWSKI SPACE TIME Miroslava Petrović Torgašev 1, Emilija Šućurović 1 Abstract In this paper we complete a classification of W curves in Minkowski

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

Pythagorean Triples Over Gaussian Integers

Pythagorean Triples Over Gaussian Integers International Journal of Algebra, Vol. 6, 01, no., 55-64 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok

More information

arxiv:1309.1857v3 [gr-qc] 7 Mar 2014

arxiv:1309.1857v3 [gr-qc] 7 Mar 2014 Generalize holographic equipartition for Friemann-Robertson-Walker universes Wen-Yuan Ai, Hua Chen, Xian-Ru Hu, an Jian-Bo Deng Institute of Theoretical Physics, LanZhou University, Lanzhou 730000, P.

More information

CHAPTER 5 : CALCULUS

CHAPTER 5 : CALCULUS Dr Roger Ni (Queen Mary, University of Lonon) - 5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective

More information

Oberwolfach Preprints

Oberwolfach Preprints Oberwolfach Preprints OWP 2007-01 Gerhar Huisken Geometric Flows an 3-Manifols Mathematisches Forschungsinstitut Oberwolfach ggmbh Oberwolfach Preprints (OWP) ISSN 1864-7596 Oberwolfach Preprints (OWP)

More information

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Elliptic Functions sn, cn, n, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Backgroun: Jacobi iscovere that rather than stuying elliptic integrals themselves, it is simpler to think of them as inverses

More information

n-parameter families of curves

n-parameter families of curves 1 n-parameter families of curves For purposes of this iscussion, a curve will mean any equation involving x, y, an no other variables. Some examples of curves are x 2 + (y 3) 2 = 9 circle with raius 3,

More information

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes

19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is so-calle because we rearrange the equation

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

NEAR-FIELD TO FAR-FIELD TRANSFORMATION WITH PLANAR SPIRAL SCANNING

NEAR-FIELD TO FAR-FIELD TRANSFORMATION WITH PLANAR SPIRAL SCANNING Progress In Electromagnetics Research, PIER 73, 49 59, 27 NEAR-FIELD TO FAR-FIELD TRANSFORMATION WITH PLANAR SPIRAL SCANNING S. Costanzo an G. Di Massa Dipartimento i Elettronica Informatica e Sistemistica

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

BV has the bounded approximation property

BV has the bounded approximation property The Journal of Geometric Analysis volume 15 (2005), number 1, pp. 1-7 [version, April 14, 2005] BV has the boune approximation property G. Alberti, M. Csörnyei, A. Pe lczyński, D. Preiss Abstract: We prove

More information

9.3. Diffraction and Interference of Water Waves

9.3. Diffraction and Interference of Water Waves Diffraction an Interference of Water Waves 9.3 Have you ever notice how people relaxing at the seashore spen so much of their time watching the ocean waves moving over the water, as they break repeately

More information

2 HYPERBOLIC FUNCTIONS

2 HYPERBOLIC FUNCTIONS HYPERBOLIC FUNCTIONS Chapter Hyperbolic Functions Objectives After stuying this chapter you shoul unerstan what is meant by a hyperbolic function; be able to fin erivatives an integrals of hyperbolic functions;

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

The Inverse Trigonometric Functions

The Inverse Trigonometric Functions The Inverse Trigonometric Functions These notes amplify on the book s treatment of inverse trigonometric functions an supply some neee practice problems. Please see pages 543 544 for the graphs of sin

More information

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

More information

Lecture 13: Differentiation Derivatives of Trigonometric Functions

Lecture 13: Differentiation Derivatives of Trigonometric Functions Lecture 13: Differentiation Derivatives of Trigonometric Functions Derivatives of the Basic Trigonometric Functions Derivative of sin Derivative of cos Using the Chain Rule Derivative of tan Using the

More information

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

Integral Regular Truncated Pyramids with Rectangular Bases

Integral Regular Truncated Pyramids with Rectangular Bases Integral Regular Truncate Pyramis with Rectangular Bases Konstantine Zelator Department of Mathematics 301 Thackeray Hall University of Pittsburgh Pittsburgh, PA 1560, U.S.A. Also: Konstantine Zelator

More information

1.7 Cylindrical and Spherical Coordinates

1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

Image compression predicated on recurrent iterated function systems **

Image compression predicated on recurrent iterated function systems ** 1 Image compression preicate on recurrent iterate function systems ** W. Metzler a, *, C.H. Yun b, M. Barski a a Faculty of Mathematics University of Kassel, Kassel, F. R. Germany b Faculty of Mathematics

More information

Digital barrier option contract with exponential random time

Digital barrier option contract with exponential random time IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun

More information

PHY101 Electricity and Magnetism I Course Summary

PHY101 Electricity and Magnetism I Course Summary TOPIC 1 ELECTROSTTICS PHY11 Electricity an Magnetism I Course Summary Coulomb s Law The magnitue of the force between two point charges is irectly proportional to the prouct of the charges an inversely

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

A neurogeometrical model for image completion and visual illusion

A neurogeometrical model for image completion and visual illusion A neurogeometrical model for image completion and visual illusion Benedetta Franceschiello Advisors: A. Sarti, G. Citti CAMS (Unité Mixte CNRS-EHESS), University of Bologna Mid-term review meeting of MAnET

More information

EVOLUTION OF CONVEX LENS-SHAPED NETWORKS UNDER CURVE SHORTENING FLOW

EVOLUTION OF CONVEX LENS-SHAPED NETWORKS UNDER CURVE SHORTENING FLOW EVOLUTION OF CONVEX LENS-SHAPED NETWORKS UNDER CURVE SHORTENING FLOW OLIVER C. SCHNÜRER, ABDERRAHIM AZOUANI, MARC GEORGI, JULIETTE HELL, NIHAR JANGLE, AMOS KOELLER, TOBIAS MARXEN, SANDRA RITTHALER, MARIEL

More information

MATH 125: LAST LECTURE

MATH 125: LAST LECTURE MATH 5: LAST LECTURE FALL 9. Differential Equations A ifferential equation is an equation involving an unknown function an it s erivatives. To solve a ifferential equation means to fin a function that

More information

Lagrange Multipliers without Permanent Scarring

Lagrange Multipliers without Permanent Scarring Lagrange Multipliers without Permanent Scarring Dan Klein Introuction This tutorial assumes that you want to know what Lagrange multipliers are, but are more intereste in getting the intuitions an central

More information

A new viewpoint on geometry of a lightlike hypersurface in a semi-euclidean space

A new viewpoint on geometry of a lightlike hypersurface in a semi-euclidean space A new viewpoint on geometry of a lightlike hypersurface in a semi-euclidean space Aurel Bejancu, Angel Ferrández Pascual Lucas Saitama Math J 16 (1998), 31 38 (Partially supported by DGICYT grant PB97-0784

More information

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread]

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread] Witt vectors. Part 1 Michiel Hazewinkel Sienotes by Darij Grinberg Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not complete, not proofrea In this note, we will generalize most of

More information

Lecture 17: Implicit differentiation

Lecture 17: Implicit differentiation Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

Chapter 2 Kinematics of Fluid Flow

Chapter 2 Kinematics of Fluid Flow Chapter 2 Kinematics of Flui Flow The stuy of kinematics has flourishe as a subject where one may consier isplacements an motions without imposing any restrictions on them; that is, there is no nee to

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone

Euler-Savary s Formula for the Planar Curves in Two Dimensional Lightlike Cone International J.Math. Combin. Vol.1 (010), 115-11 Euler-Saary s Formula for the Planar Cures in Two Dimensional Lightlike Cone Handan BALGETİR ÖZTEKİN and Mahmut ERGÜT (Department of Mathematics, Fırat

More information

The Math Circle, Spring 2004

The Math Circle, Spring 2004 The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Purpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of

Purpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of Experiments with Parallel Plate Capacitors to Evaluate the Capacitance Calculation an Gauss Law in Electricity, an to Measure the Dielectric Constants of a Few Soli an Liqui Samples Table of Contents Purpose

More information

Fraternity & Sorority Academic Report Spring 2016

Fraternity & Sorority Academic Report Spring 2016 Fraternity & Sorority Academic Report Organization Overall GPA Triangle 17-17 1 Delta Chi 88 12 100 2 Alpha Epsilon Pi 77 3 80 3 Alpha Delta Chi 28 4 32 4 Alpha Delta Pi 190-190 4 Phi Gamma Delta 85 3

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

Intrinsic Geometry. 2 + g 22. du dt. 2 du. Thus, very short distances ds on the surface can be approximated by

Intrinsic Geometry. 2 + g 22. du dt. 2 du. Thus, very short distances ds on the surface can be approximated by Intrinsic Geometry The Fundamental Form of a Surface Properties of a curve or surface which depend on the coordinate space that curve or surface is embedded in are called extrinsic properties of the curve.

More information

Department of Mathematical Sciences, University of Copenhagen. Kandidat projekt i matematik. Jens Jakob Kjær. Golod Complexes

Department of Mathematical Sciences, University of Copenhagen. Kandidat projekt i matematik. Jens Jakob Kjær. Golod Complexes F A C U L T Y O F S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N Department of Mathematical Sciences, University of Copenhagen Kaniat projekt i matematik Jens Jakob Kjær Golo Complexes Avisor:

More information

Springs, Shocks and your Suspension

Springs, Shocks and your Suspension rings, Shocks an your Suspension y Doc Hathaway, H&S Prototype an Design, C. Unerstaning how your springs an shocks move as your race car moves through its range of motions is one of the basics you must

More information

Fraternity & Sorority Academic Report Fall 2015

Fraternity & Sorority Academic Report Fall 2015 Fraternity & Sorority Academic Report Organization Lambda Upsilon Lambda 1-1 1 Delta Chi 77 19 96 2 Alpha Delta Chi 30 1 31 3 Alpha Delta Pi 134 62 196 4 Alpha Sigma Phi 37 13 50 5 Sigma Alpha Epsilon

More information

Components of Acceleration

Components of Acceleration Components of Acceleration Part 1: Curvature and the Unit Normal In the last section, we explored those ideas related to velocity namely, distance, speed, and the unit tangent vector. In this section,

More information

3. Right Triangle Trigonometry

3. Right Triangle Trigonometry . Right Triangle Trigonometry. Reference Angle. Radians and Degrees. Definition III: Circular Functions.4 Arc Length and Area of a Sector.5 Velocities . Reference Angle Reference Angle Reference angle

More information

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let 1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

High accuracy approximation of helices by quintic curves

High accuracy approximation of helices by quintic curves High accuracy approximation of helices by quintic curves Xunnian Yang Department of Mathematics,Zhejiang University Yuquan, Hangzhou 3127, People s Republic of China Submitted May 25; Revised November

More information

Chapter 2 Review of Classical Action Principles

Chapter 2 Review of Classical Action Principles Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

The mean-field computation in a supermarket model with server multiple vacations

The mean-field computation in a supermarket model with server multiple vacations DOI.7/s66-3-7-5 The mean-fiel computation in a supermaret moel with server multiple vacations Quan-Lin Li Guirong Dai John C. S. Lui Yang Wang Receive: November / Accepte: 8 October 3 SpringerScienceBusinessMeiaNewYor3

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

Trigonometry LESSON TWO - The Unit Circle Lesson Notes

Trigonometry LESSON TWO - The Unit Circle Lesson Notes (cosθ, sinθ) Trigonometry Example 1 Introduction to Circle Equations. a) A circle centered at the origin can be represented by the relation x 2 + y 2 = r 2, where r is the radius of the circle. Draw each

More information

Computing Euler angles from a rotation matrix

Computing Euler angles from a rotation matrix Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles

More information

Derivation of the Laplace equation

Derivation of the Laplace equation Derivation of the Laplace equation Svein M. Skjæveland October 19, 2012 Abstract This note presents a derivation of the Laplace equation which gives the relationship between capillary pressure, surface

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400 hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Math 497C Sep 17, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 4 1.9 Curves of Constant Curvature Here we show that the only curves in the plane with constant curvature are lines and circles.

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

The University of Kansas

The University of Kansas All Greek Summary Rank Chapter Name Total Membership Chapter GPA 1 Beta Theta Pi 3.57 2 Chi Omega 3.42 3 Kappa Alpha Theta 3.36 4 Kappa Kappa Gamma 3.28 *5 Pi Beta Phi 3.27 *5 Gamma Phi Beta 3.27 *7 Alpha

More information

FOURIER TRANSFORM TERENCE TAO

FOURIER TRANSFORM TERENCE TAO FOURIER TRANSFORM TERENCE TAO Very broaly speaking, the Fourier transform is a systematic way to ecompose generic functions into a superposition of symmetric functions. These symmetric functions are usually

More information

1 High-Dimensional Space

1 High-Dimensional Space Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

How to Avoid the Inverse Secant (and Even the Secant Itself)

How to Avoid the Inverse Secant (and Even the Secant Itself) How to Avoi the Inverse Secant (an Even the Secant Itself) S A Fulling Stephen A Fulling (fulling@mathtamue) is Professor of Mathematics an of Physics at Teas A&M University (College Station, TX 7783)

More information

FACTORING IN THE HYPERELLIPTIC TORELLI GROUP

FACTORING IN THE HYPERELLIPTIC TORELLI GROUP FACTORING IN THE HYPERELLIPTIC TORELLI GROUP TARA E. BRENDLE AND DAN MARGALIT Abstract. The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially

More information

13.4. Curvature. Introduction. Prerequisites. Learning Outcomes. Learning Style

13.4. Curvature. Introduction. Prerequisites. Learning Outcomes. Learning Style Curvature 13.4 Introduction Curvature is a measure of how sharply a curve is turning as it is traversed. At a particular point along the curve a tangent line can be drawn; this line making an angle ψ with

More information