BV has the bounded approximation property

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BV has the bounded approximation property"

Transcription

1 The Journal of Geometric Analysis volume 15 (2005), number 1, pp. 1-7 [version, April 14, 2005] BV has the boune approximation property G. Alberti, M. Csörnyei, A. Pe lczyński, D. Preiss Abstract: We prove that the space BV (R n ) of functions with boune variation on R n has the boune approximation property. Keywors: BV functions in several variables, boune approximation property. Mathematics Subject Classification (2000): 4635, 46B28 (46G10) Introuction Given an integer n 1, BV (R n ) enotes the Banach space of real functions with boune variation on R n, namely the functions u in L 1 (R n ) whose istributional graient Du is a boune (vector-value) Raon measure. As usual, u BV := u 1 + Du, where Du is the total variation of the measure Du. A Banach space F has the boune approximation property if for every ε > 0 an every compact set K F one can fin a finite-rank operator T from F into itself with norm T C, where C is a finite constant which epens only on F, so that Ty y F ε for every y K (cf. [4], Definition 1.e.11). In this efinition, it is clearly equivalent to consier only sets K which are finite an containe in a prescribe ense subset of F. We prove the following: Theorem 1. - The space BV (R n ) has the boune approximation property. Remarks. - (i) The operators T given in our proof are projections. (ii) The result can be extene to the space BV (R n, R k ) of BV functions value in R k, as well as the corresponing Banach spaces on over the complex scalars. Moreover, it hols for the space BV (Ω, R k ) of BV functions on an open subset Ω of R n with the extension property, namely when there exists a boune extension operator from BV (Ω) to BV (R n ). This class inclues all boune open sets Ω with Lipschitz bounary. We o not know if the result hols for Ω an arbitrary open set. (iii) A careful analysis of the proof of Theorem 1 shows that for every separable subspace X of BV (R n ) there is a sequence (P k ) of commuting finite rank projections from BV (R n ) into itself with uniformly boune norms such

2 2 G. Alberti et al. BV has the boune approximation property 3 that P k f f in BV (R n ) for every f X. Moreover there is a separable subspace Y of BV (R n ) with a Schauer basis which contains X. Specific aspects of Banach space theory an approximation theory of these spaces have been recently stuie in [3], [7] (non linear approximation by Haar polynomial, bouneness of some averaging projections), an [6] (failure of lattice structure). Theorem 1 provies further information on Banach space properties of spaces of functions of boune variation. Acknowlegements. - The secon author acknowleges the support of her research by the Royal Society Wolfson Research Merit Awar, in particular its support of the first an thir authors research visits to UCL. The visits of secon author to the Mathematics Department in Pisa was supporte by GNAFA. The secon author was partly supporte by the NSF grant No. DMS The thir author was partially supporte by KBN grant No. 2P03A Proof of the result Let us fix some notation: n is the Lebesgue measure on R n an is the -imensional Hausorff measure. Let µ be a positive measure on R n, D a Borel set, an f : R n R k a function whose restriction to D is µ-summable; if 0 < µ(d) <, we enote by f µ,d := ( f )/µ(d) the average of f on D with respect to the measure D µ. We set f µ,d := 0 when µ(d) = 0. If µ is the Lebesgue measure we simply write f D. Since no confusion may arise, we enote by 1 A the characteristic function of a set A in R n (an not the average of 1 on A). Given a finite Borel measure λ on R n, real- or R k -value, λ is the variation of λ, while λ a an λ s are the absolutely continuous an the singular part of λ with respect to the Lebesgue measure. Given a positive locally finite measure µ on R n, λ λ is the Raon-Nikoým erivative of λ with respect to µ; so is efine even if λ is not absolutely continuous with respect to µ, in which case it is the Raon-Nikoým erivative of the absolutely continuous part of λ with respect to µ. Note that λ λ a an λ λ s are boune linear operators from the space of measures (R n ) into itself, while λ λ is a boune linear operator from (R n ) into L 1 (µ). If u is a BV function, we write D a u an D s u for the absolutely continuous an the singular part of the measure Du. We enote by BV loc (R n ) the class of all functions on R n which belong to BV (A) for every boune open set A R n ; in this case Du is a locally finite Borel measure on R n. We will nee the following scale version of Poincaré inequality (cf. [2], Remark 3.50): for every open cube in R n an every u BV () there hols u u n C iam() Du (). (1) The letter C enotes any constant that might epen only on the imension of the space n; the actual value of C may change at every occurrence. Lemma 2. - Let be a locally finite family of pairwise isjoint open cubes in R n whose closures cover R n. If u is a function in BV loc (R n ) with average 0 on each cube then Du C Du (Ω) where Ω is the the union of all. Proof. - We must show that Du () C Du (Ω) for := R n \ Ω. Since the covering is locally finite, is the union of all bounaries with. Thus is an (n 1)-rectifiable set, an the restriction of the measure Du to is given by Du = tr + (u) tr (u) n 1, where tr + (u) an tr (u) are the traces of u on the two sies of with respect to some choice of orientation for, an n 1 enotes the restriction of the measure n 1 to the set (see [2], Theorem 3.77). Hence Du () = tr + (u) tr n 1 (u) tr + (u) + tr n 1 (u) = tr n 1 Ω (u) C Du () = C Du (Ω). The inequality in the fourth line is obtaine as follows. For every open cube with size 1 in R n an every u BV () there hols tr Ω (u) L 1 ( ) C u BV () by the continuity of the trace operator, cf. [2], Theorem 3.87 (here L 1 ( ) stans, as usual, for L 1 ( n 1 )). If in aition u has average 0 on then u L 1 () C Du () by (1), an therefore tr Ω (u) L 1 ( ) C Du ().

3 4 G. Alberti et al. BV has the boune approximation property 5 Since the last inequality is scaling invariant, it hols for cubes of any size. Definition 3. - Let µ be a locally finite, positive measure on R n, an let be a countable family of pairwise isjoint, boune Borel sets. We enote by Ω the union of all D an set an, for every map f L 1 (µ, R k ), σ := sup { iam(d) : D } (2) Uf := D f µ,d 1 D. (3) Lemma 4. - (a) The operator U efine in (3) is a boune linear operator from L 1 (µ, R k ) into L 1 (µ, R k ) with norm U = 1. (b) Given a sequence of coverings i, efine Ω i, σ i, an U i accoringly. If σ i 0 as i +, then (U i f 1 Ωi f) 0 in L 1 (µ, R k ) for every f in L 1 (µ, R k ), that is f f µ,d 0. (4) D i Proof. - Statement (a) is immeiate. To prove statement (b), we remark that since the operators U i an the truncation operators f 1 Ωi f are uniformly boune, it suffices to show that (U i f 1 Ωi f) 0 for f in a suitable a ense subset of L 1 (µ, R k ). For instance, we can take f continuous an compactly supporte, an then (4) is an immeiate consequence of the uniform continuity of f. Definition 5. - Fix ū in BV (R n ) an set µ := Dū. Given a locally finite family of mutually isjoint open cubes whose closures cover R n, we efine σ as in (2), an for every u BV (R n ) we set T 1 u(x) := u 1 (x) T 2 u(x) := [ Du ] (x x n ) 1 (x) T 3 u(x) := [ Ds u Dū ] (ū(x) ū ) 1 (x) µ, (here x is the center of, i.e., the average of the ientity map x x over, an the ot stans for the usual scalar prouct in R n ). Finally we set Tu := T 1 u + T 2 u + T 3 u. (5) Lemma 6. - (a) The operator T efine in (5) is a boune linear operator from BV (R n ) into itself with norm T C(1 + σ). If in aition D a ū = 0, then T is a projection. (b) Given a sequence of families i of cubes which satisfy the assumptions of Definition 5, we efine σ i an T i accoringly, an if σ i 0 as i +, then T i u u in L 1 (R n ) for every u BV (R n ). If in aition D s u is of the form D s u = f Dū with f a scalar function, then T i u u in BV (R n ). Proof. - We first prove (a). The following estimates are immeiate: T 1 u 1 u 1 (6) T 2 u 1 σ D a u (7) T 3 u 1 Cσ D s u (8) (for the secon estimate we use that x x iam() σ an for the thir that ū ū C σ Dū () by estimate (1)). stimates (6,7, 8) imply Tu 1 u 1 + Cσ Du. (9) In orer to estimate D(Tu) we notice that Tu an u have the same average on every cube, an therefore we can use Lemma 2 to estimate the total variation of D(Tu u); enoting by Ω the union of the open cubes we obtain D(Tu) Du + D(Tu u) Du + C D(Tu u) (Ω) (1 + C) Du + C D(Tu) (Ω) (1 + C) Du + C D(T 2 u) () + D(T 3 u) (). (10) Since T 2 u is affine on an its graient is the average of Du over, we have n [ D(T 2 u) () = Du ] n n () Du n n Du (). The graient of T 3 u on Ω agrees with Dū times the average of the scalar prouct of Dsu an Dū with respect to the measure µ = Dū, an since = 1 µ-almost everywhere, Dū [ D(T 3 u) () = Ds u Dū ] µ, µ() D su Du ().

4 6 G. Alberti et al. BV has the boune approximation property 7 Hence (10) becomes D(Tu) C Du. (11) stimates (9) an (11) imply the first part of statement (a). Concerning the secon part, assume that D a ū = 0. Notice that T 1, T 2, T 3 are mutually commuting projections, thus T is a projection, an its range is the irect sum of the ranges of T 1, T 2, T 3, namely the space of all BV functions whose restriction to each agrees with a linear combination of ū an an affine function. Let us prove statement (b). Inequality (1) yiels Ti 1 u u 1 = u u n Cσ i Du () Cσ i Du, i i an recalling estimates (7), (8) we get T i u u 1 T 1 i u u 1 + T 2 i u 1 + T 3 i u 1 Cσ i Du, which tens to 0 as σ i 0. To prove the secon part of statement (b), we enote by Ω i the union of all cubes i, an estimate D(T i u u) using Lemma 2 again an taking into account that D(T 1 i u)() = 0 for every i: D(T i u u) C D(T i u u) (Ω i ) = C i D(T i u) Du () C i D(T 2 i u) D a u () + D(T 3 i u) D s u (). (12) Setting g := Du n then = Dau, we have D(T 2 n i u) = g n on each i, an D(Ti 2 u) D a u () = g g n. (13) Since D s u = fdū, a simple computation yiels D(Ti 3u) = f µ,dū on each i, an then D(Ti 3 u) D s u () = f µ, f Dū. (14) Finally (12,13,14) yiel D(T i u u) C i [ g g ] n + f f µ,. By (4) both sums at the right-han sie of this inequality vanish as σ i 0, an the proof of statement (b) is complete. Lemma 7. - Let u j be a sequence of functions from BV (R n ). Then there exists ū BV (R n ) such that D a ū = 0, an for every j, D s u j can be written in the form D s u j = f j Dū for some scalar function f j L 1 ( D s ū ). Proof. - This result is essentially containe in [1], but not explicitly state there. In the following proof, all numbere statements an efinitions are taken from [1]; we omit to recall the full statements. Let µ := j α j D s u j, where the α j are positive numbers chosen so to make the series converge. Let (µ, x) R n be the normal space to µ at every x R n in the sense of Definition 2.3, namely a Borel map which takes every x R n into a linear subspace (x) of R n, satisfies Du (x) (x) for µ-a.e. x an every u BV (R n ), an is µ-minimal with respect to inclusion. It follows immeiately that Dsuj (x) (µ, x) for µ-a.e. x an every j, an then (µ, x) contains non-zero vectors for µ a.e. x. Then we can choose a Borel map f L 1 (µ, R n ) so that f(x) (µ, x) an f(x) 0 for µ-a.e. x (cf. Proposition 2.11), an since µ is a singular measure, we can also assume that f(x) = 0 for n -a.e. x. Set now µ := µ + n. By Proposition 2.6(iii), f(x) (µ, x) for µ -a.e. x, an we can apply Theorem 2.12 to f an µ to obtain a BV function ū such that Dū (x) = f(x) for µ -a.e. x. Since f(x) = 0 for n -a.e. x, then Dū is singular, an since f(x) 0 for µ-a.e. x, then µ Dū. In particular D s u j Dū for every j. Finally, by Theorem 3.1 the space (µ, x) has imension at most 1 for every x because µ is a singular measure, an since both Duj Dū (x) an (x) belong (µ, x), then they must be parallel for µ-a.e. x. The following lemma is well-known (see, for instance, [2, Corollary 3.89], [5, Section I.8, Theorem 2], [7,Proposition 5]): Lemma 8. - Let be any open cube in R n with ege-length r 1, an let U be the associate truncation operator, that is, U u := 1 u. U is a linear projection on BV (R n ) with norm boune by some universal constant C. Proof of Theorem 1. - Let be given ε > 0 an a finite set K = {u j } of BV functions with compact support in R n. Take ū as in Lemma 7. Take a sequence of families i of cubes which satisfy the assumptions of Definition 5, so that σ i 1 an σ i 0 as i + (cf. (2)), an consier the corresponing operators T i. By Lemma 6 these operators are

5 8 G. Alberti et al. projections, their norms T i are boune by a universal constant, an there is i so large that T i u j u j BV < ε for every j. However, T i has not finite rank. To solve this problem, we choose an open cube which contains the support of all u j, take U as in Lemma 8, an set T := U T i. If we have chosen so that every cube in i which intersects is actually containe in, then T is a projection, too. References [1] G. Alberti, Rank one property for erivatives of functions with boune variation. Proc. Roy. Soc. inburgh Sect. A 123 (1993), [2] L. Ambrosio, N. Fusco, D. Pallara, Functions of boune variation an free iscontinuity problems. Oxfor Mathematical Monographs. Oxfor Science Publications, Oxfor, [3] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic analysis of the space BV. Rev. Mat. Iberoamericana 19 (2003), [4] J. Linenstrauss, L. Tzafriri, Classical Banach Spaces I. rgebnisse er Mathematik un ihrer Grenzgebiete, 92. Springer, Berlin-New York, Reprinte in the series Classics in Mathematics. Springer, Berlin-Heielberg, [5] V.G. Mazya, T. Shaposhnikova, Multipliers in spaces of ifferentiable functions. Leningra University Press, Leningra, 1986 (in Russian). [6] A. Pe lczyński, M. Wojciechowski, Spaces of functions with boune variation an Sobolev spaces without local unconitional structure. J. Reine Angew. Math. 558 (2003), [7] P. Wojtaszczyk, Projections an non-linear approximation in the space BV (R ). Proc. Lonon Math. Soc. (3) 87 (2003), Giovanni Alberti: Department of Mathematics, University of Pisa, L.go Pontecorvo 5, Pisa, Italy ( m.unipi.it). Marianna Csörnyei: Department of Mathematics, University College Lonon, Gower Street, Lonon WC1 6BT, UK ( math.ucl.ac.uk). Aleksaner Pe lczyński: Institute of Mathematics, Polish Acaemy of Sciences, ul. Śniaeckich 8, Warszawa, Polan ( impan.gov.pl). Davi Preiss: Department of Mathematics, University College Lonon, Gower Street, Lonon WC1 6BT, UK ( math.ucl.ac.uk).

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

CONVERGENCE OF SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS

CONVERGENCE OF SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS C O L L O Q U I U M M A T H E M A T I C U M VOL. 97 2003 NO. 1 CONVERGENCE OF SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS BY RAFAŁ KAPICA (Katowice) Abstract. Given a probability space (Ω,

More information

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions

A Generalization of Sauer s Lemma to Classes of Large-Margin Functions A Generalization of Sauer s Lemma to Classes of Large-Margin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

Chapter 2 Review of Classical Action Principles

Chapter 2 Review of Classical Action Principles Chapter Review of Classical Action Principles This section grew out of lectures given by Schwinger at UCLA aroun 1974, which were substantially transforme into Chap. 8 of Classical Electroynamics (Schwinger

More information

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

More information

Ri and. i=1. S i N. and. R R i

Ri and. i=1. S i N. and. R R i The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i

(We assume that x 2 IR n with n > m f g are twice continuously ierentiable functions with Lipschitz secon erivatives. The Lagrangian function `(x y) i An Analysis of Newton's Metho for Equivalent Karush{Kuhn{Tucker Systems Lus N. Vicente January 25, 999 Abstract In this paper we analyze the application of Newton's metho to the solution of systems of

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Integral Regular Truncated Pyramids with Rectangular Bases

Integral Regular Truncated Pyramids with Rectangular Bases Integral Regular Truncate Pyramis with Rectangular Bases Konstantine Zelator Department of Mathematics 301 Thackeray Hall University of Pittsburgh Pittsburgh, PA 1560, U.S.A. Also: Konstantine Zelator

More information

Mannheim curves in the three-dimensional sphere

Mannheim curves in the three-dimensional sphere Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.

More information

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Our goal first will be to define a product measure on A 1 A 2.

Our goal first will be to define a product measure on A 1 A 2. 1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ -algebra A 1 A 2 with the unit element is the σ -algebra generated by the

More information

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

PROPERTIES OF MATRICES

PROPERTIES OF MATRICES PROPERIES OF MARICES ajoint... 4, 5 algebraic multiplicity... augmente matri... basis..., cofactor... 4 coorinate vector... 9 Cramer's rule... eterminant..., 5 iagonal matri... 6 iagonalizable... 8 imension...

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup 456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

More information

PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume L, Number 3, September 2005 PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION YAVUZ ALTIN AYŞEGÜL GÖKHAN HIFSI ALTINOK Abstract.

More information

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004 NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

More information

Chapter 5: Application: Fourier Series

Chapter 5: Application: Fourier Series 321 28 9 Chapter 5: Application: Fourier Series For lack of time, this chapter is only an outline of some applications of Functional Analysis and some proofs are not complete. 5.1 Definition. If f L 1

More information

MINIMAL GENERATOR SETS FOR FINITELY GENERATED SHIFT-INVARIANT SUBSPACES OF L 2 (R n )

MINIMAL GENERATOR SETS FOR FINITELY GENERATED SHIFT-INVARIANT SUBSPACES OF L 2 (R n ) MINIMAL GENERATOR SETS FOR FINITELY GENERATED SHIFT-INVARIANT SUBSPACES OF L 2 (R n ) MARCIN BOWNIK AND NORBERT KAIBLINGER Abstract. Let S be a shift-invariant subspace of L 2 (R n ) defined by N generators

More information

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by,

2r 1. Definition (Degree Measure). Let G be a r-graph of order n and average degree d. Let S V (G). The degree measure µ(s) of S is defined by, Theorem Simple Containers Theorem) Let G be a simple, r-graph of average egree an of orer n Let 0 < δ < If is large enough, then there exists a collection of sets C PV G)) satisfying: i) for every inepenent

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year , First Semester Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

More information

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm

Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sensor Network Localization from Local Connectivity : Performance Analysis for the MDS-MAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, ) 6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

More information

Lecture Notes on Measure Theory and Functional Analysis

Lecture Notes on Measure Theory and Functional Analysis Lecture Notes on Measure Theory and Functional Analysis P. Cannarsa & T. D Aprile Dipartimento di Matematica Università di Roma Tor Vergata cannarsa@mat.uniroma2.it daprile@mat.uniroma2.it aa 2006/07 Contents

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Compactness in metric spaces

Compactness in metric spaces MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the

More information

{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...

{f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,... 44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it

More information

5. Convergence of sequences of random variables

5. Convergence of sequences of random variables 5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

More information

The mean-field computation in a supermarket model with server multiple vacations

The mean-field computation in a supermarket model with server multiple vacations DOI.7/s66-3-7-5 The mean-fiel computation in a supermaret moel with server multiple vacations Quan-Lin Li Guirong Dai John C. S. Lui Yang Wang Receive: November / Accepte: 8 October 3 SpringerScienceBusinessMeiaNewYor3

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit

The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit The fundamental group of the Hawaiian earring is not free Bart de Smit The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992),

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. We study and characterize the integral multilinear operators on a product of C(K) spaces in terms of the

More information

CURVES: VELOCITY, ACCELERATION, AND LENGTH

CURVES: VELOCITY, ACCELERATION, AND LENGTH CURVES: VELOCITY, ACCELERATION, AND LENGTH As examples of curves, consier the situation where the amounts of n-commoities varies with time t, qt = q 1 t,..., q n t. Thus, the amount of the commoities are

More information

Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

More information

THE ROBUSTNESS AGAINST DEPENDENCE OF NONPARAMETRIC TESTS FOR THE TWO-SAMPLE LOCATION PROBLEM

THE ROBUSTNESS AGAINST DEPENDENCE OF NONPARAMETRIC TESTS FOR THE TWO-SAMPLE LOCATION PROBLEM APPLICATIOES MATHEMATICAE,4 (1995), pp. 469 476 P. GRZEGORZEWSKI (Warszawa) THE ROBUSTESS AGAIST DEPEDECE OF OPARAMETRIC TESTS FOR THE TWO-SAMPLE LOCATIO PROBLEM Abstract. onparametric tests for the two-sample

More information

8.1 Examples, definitions, and basic properties

8.1 Examples, definitions, and basic properties 8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f

More information

Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

BEST RESPONSE DYNAMICS FOR CONTINUOUS ZERO SUM GAMES. Josef Hofbauer. Sylvain Sorin

BEST RESPONSE DYNAMICS FOR CONTINUOUS ZERO SUM GAMES. Josef Hofbauer. Sylvain Sorin DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 6, Number 1, January 2006 pp. 215 224 BEST RESPONSE DYNAMICS FOR CONTINUOUS ZERO SUM GAMES Josef Hofbauer Department

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE. 1. Introduction

ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE. 1. Introduction SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17) (2009), 55 62 ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE B.. PACHPATTE Abstract. The main objective of this paper is to study some basic properties

More information

Pythagorean Triples Over Gaussian Integers

Pythagorean Triples Over Gaussian Integers International Journal of Algebra, Vol. 6, 01, no., 55-64 Pythagorean Triples Over Gaussian Integers Cheranoot Somboonkulavui 1 Department of Mathematics, Faculty of Science Chulalongkorn University Bangkok

More information

Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces

Coupled best proximity point theorems for proximally g-meir-keelertypemappings in partially ordered metric spaces Abkar et al. Fixe Point Theory an Applications 2015) 2015:107 DOI 10.1186/s13663-015-0355-9 R E S E A R C H Open Access Couple best proximity point theorems for proximally g-meir-keelertypemappings in

More information

Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Proceedings of Symposia in Applied Mathematics Volume 00, 1997 Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Freddy Delbaen and Walter Schachermayer Abstract. The

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C.

More information

Structure of Measurable Sets

Structure of Measurable Sets Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Notes on weak convergence (MAT Spring 2006)

Notes on weak convergence (MAT Spring 2006) Notes on weak convergence (MAT4380 - Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p

More information

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let

The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let 1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Chapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces

Chapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces Chapter 1. Metric Spaces Metric Spaces MA222 David Preiss d.preiss@warwick.ac.uk Warwick University, Spring 2008/2009 Definitions. A metric on a set M is a function d : M M R such that for all x, y, z

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

arxiv:1202.4875v1 [math.pr] 22 Feb 2012

arxiv:1202.4875v1 [math.pr] 22 Feb 2012 A QUENCHED INVARIANCE PRINCIPLE FOR STATIONARY PROCESSES ariv:1202.4875v1 [math.pr] 22 Feb 2012 CHRISTOPHE CUNY AND DALIBOR VOLNÝ Abstract. In this note, we prove a conditionally centered version of the

More information

1 High-Dimensional Space

1 High-Dimensional Space Contents High-Dimensional Space. Properties of High-Dimensional Space..................... 4. The High-Dimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

AND. Dimitri P. Bertsekas and Paul Tseng

AND. Dimitri P. Bertsekas and Paul Tseng SET INTERSECTION THEOREMS AND EXISTENCE OF OPTIMAL SOLUTIONS FOR CONVEX AND NONCONVEX OPTIMIZATION Dimitri P. Bertsekas an Paul Tseng Math. Programming Journal, 2007 NESTED SET SEQUENCE INTERSECTIONS Basic

More information

If the sets {A i } are pairwise disjoint, then µ( i=1 A i) =

If the sets {A i } are pairwise disjoint, then µ( i=1 A i) = Note: A standing homework assignment for students in MAT1501 is: let me know about any mistakes, misprints, ambiguities etc that you find in these notes. 1. measures and measurable sets If X is a set,

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Analytic cohomology groups in top degrees of Zariski open sets in P n

Analytic cohomology groups in top degrees of Zariski open sets in P n Analytic cohomology groups in top degrees of Zariski open sets in P n Gabriel Chiriacescu, Mihnea Colţoiu, Cezar Joiţa Dedicated to Professor Cabiria Andreian Cazacu on her 80 th birthday 1 Introduction

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Inverse problems for random differential equations using the collage method for random contraction mappings

Inverse problems for random differential equations using the collage method for random contraction mappings Manuscript Inverse problems for random differential equations using the collage method for random contraction mappings H.E. Kunze 1, D. La Torre 2 and E.R. Vrscay 3 1 Department of Mathematics and Statistics,

More information

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

More information

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread]

Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not completed, not proofread] Witt vectors. Part 1 Michiel Hazewinkel Sienotes by Darij Grinberg Witt#5e: Generalizing integrality theorems for ghost-witt vectors [not complete, not proofrea In this note, we will generalize most of

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

More information