Digital barrier option contract with exponential random time


 Theresa Banks
 3 years ago
 Views:
Transcription
1 IMA Journal of Applie Mathematics Avance Access publishe June 9, IMA Journal of Applie Mathematics ) Page of 9 oi:.93/imamat/hxs3 Digital barrier option contract with exponential ranom time Doobae Jun Department of Mathematics an Statistics, York University, oronto, ON, Canaa an Hyejin Ku Department of Mathematics an Statistics, York University, oronto, ON, Canaa Corresponing author: [Receive on 3 March ; revise on January ] In this paper, we erive a closeform valuation formula for a igital barrier option which is initiate at ranom time τ with exponential istribution. We also provie a simple example an graphs to illustrate our result. Keywors: igital barrier option; exponential time.. Introuction Barrier options are a wiely use class of pathepenent erivative securities. hese options either cease to exist or come into existence when some prespecifie asset price barrier is hit uring the option s life. Merton 973) has erive a ownanout call price by solving the corresponing partial ifferential equation with some bounary conitions. Reiner & Rubinstein 99) publishe closeform pricing formulas for various types of single barrier options. Rich 997) also provie a mathematical framework to value barrier options. Moreover, Kunitomo & Ikea 99) erive a pricing formula for ouble barrier options with curve bounaries as the sum of an infinite series. Geman & Yor 996) followe a probabilistic approach to erive the Laplace transform of the ouble barrier option price. Pelsser ) use contour integration for Laplace transform inversion to price new types of ouble barrier options. In these papers, the unerlying asset price is monitore for barrier hits or crossings uring the entire life of the option. Heynen & Kat 994) stuie partial barrier options where the unerlying price is monitore uring only part of the option s lifetime. Partial barrier options have two classes. One is forwar starting barrier options where the barrier appears at a fixe ate strictly after the option s initial starting ate. he other is early ening barrier options where the barrier isappears at a specifie ate strictly before the expiry ate. hey can be applie for various types of options accoring to the clients nees as controlling the starting or ening time of the monitoring perio. Also, they can be use as components to synthetically create other types of exotic options. Digital barrier options cashornothing barrier options) of knockin type, a part of stanar barrier options, pay out a fixe amount of money if the unerlying asset price crosses a given barrier an arrives above a certain value at expiry ate. For igital barrier options of knockout type, the payoff is a fixe amount if the unerlying asset price never hits a given barrier an is above a certain level at expiry. c he authors. Publishe by Oxfor University Press on behalf of the Institute of Mathematics an its Applications. All rights reserve.
2 of9 D. JUN AND H. KU his paper stuies a igital barrier option where the monitoring perio for barrier hits commences at the exponentially istribute ranom time, an lasts for the perio of length. We note that in the relevant literature, the starting time of monitoring perio has been given by a preetermine time. his paper investigates the case that the monitoring perio starts at ranom, which is triggere by an event. he exponential istribution has been wiely use in many areas, incluing life testing, reliability an operations research ue to its nice mathematical form an the characterizing memoryless property. See for example Epstein & Sobel 954), Marshall & Olkin 967) an Embrechts & Schmili 994). It is well known that an exponential ranom variable has two important interpretations; one is the waiting time until the first arrival an the other is the lifetime of an item that oes not age. he use of barrier options, igital options an other pathepenent options has increase ramatically by financial institutions. hese instruments are use for a wie variety of heging, risk management an investment purposes. See Golman et al. 979), Hull 6, Chapter ), Rich 997) an Reiner & Rubinstein 99), an the references therein for etails. Moreover, in recent years, many insurance companies have introuce more innovative esigns for their savings proucts. hese proucts usually have barrier optionlike features which allow the policyholer to participate in favourable investment performance while maintaining a floor guarantee on the benefit level. Suppose that the barrier for the unerlying asset price appears by an event, such as efault of a bon. We assume the istribution of the time of this event is exponential with mean /, an its value oes not epen on the path of the unerlying asset price of the option. In this paper, we erive a closeform valuation formula for a igital barrier option of knockout type which initiates at exponential time. Numerical results show the option price as a function of parameter with ifferent own barriers an strike prices. his paper is organize as follows. Section presents the explicit price formula for igital knockout options where monitoring of the barrier starts at time that is exponentially istribute. Section 3 shows an example an graphs to illustrate our result.. Digital barrier options Let r be the riskfree interest rate an σ> be a constant. We assume the price of the unerlying asset S t follows a geometric Brownian motion S t = S expr σ /)t + σ W t ) where W t is a stanar Brownian motion uner the riskneutral probability P. Let X t = /σ ) lns t /S ) an μ = r/σ σ/. hen X t = μt + W t. We efine the minimum for X t to be m b a = inf X t) t [a,b] an enote by E P the expectation operator uner the Pmeasure an by {F t } a filtration for Brownian motion W t. Suppose that τ is an exponential ranom variable with parameter an a barrier option with the lifetime of length is initiate at time τ, i.e. the monitoring perio for assetprice barrier is [τ, τ + ]. We fix a own barrier D< S ), a strike price K an assume K > D. We efine = /σ ) lnd/s ) an k = /σ ) lnk/s ). Consier a igital barrier option of knockout type which pays out the amount of A when the unerlying asset price oes not cross the barrier D in [τ, τ + ] an is greater than the strike price K at
3 DIGIAL BARRIER OPION CONRAC WIH EXPONENIAL RANDOM IME 3of9 expiration time τ +. he payoff of this option is zero if the unerlying asset price crosses the barrier D or falls below the strike K at expiration. We erive a closeform formula for the price of this option. heorem. he value V of a igital knockout option with the lifetime of length which initiates at exponential ranom time τ with parameter is where [ V = A e r + r N ) f+ N + ) e +r) f k + N ) + e +r) f+ k N + ) e +r) f k N + k )] ) D μ/σ [ A e r S + r N e +r) f k + k N + e +r) f k + N f m ± = = + )] + ) + f N + ) + e +r) f k N ) ) + k + μ ± ) eμ± +r)+μ )m, k + μ, = k an N ) is the cumulative stanar normal istribution function. Proof. he igital knockout option value V at time is given by V = E P [e rτ+) A {m τ+ τ >,S τ+ >K} ] = AE P [e rτ+) {m τ+ = A = A τ >,X τ+ >k} ] e t e rt+) PX t z)pm t+ t >, X t+ > k z) t e r e +r)t πt e z μt) /t tpm > z, X > k z) z. ) he inner integral in the last equation of ) is the form of Laplace transform see Fusai & Roncoroni, 8, p. 5). Writing in more etail, e r e +r)t πt e z μt) /t t = e μz r = e +r+μ /)t πt e z) /4t t eμz r z +r)+μ.
4 4of9 D. JUN AND H. KU hus V = A e r = A e r e μ z) N eμz z +r)+μ Pm > z, X > k z) z [ ) eμz z +r)+μ k + z + μ N k z + μ )] z where the last equation is from the Proposition A.8.3 of Musiela & Rutkowski 5, p. 656) an N ) is the cumulative stanar normal istribution function. We have the following equation with two integrals for V: V = A e r [ S ) +r)+μ k + z + μ eμz z N z ) D μ/σ ) ] +r)+μ k z + μ e μz z N z. For the first integral ) +r)+μ k + z + μ I := eμz z N z, since <, we can write I = + ) eμ+ +r)+μ k + z + μ )z N z = I + I. ) +r)+μ k + z + μ eμ )z N z We now calculate I an I by the integration by parts. Let a ± μ) = μ ± ).
5 DIGIAL BARRIER OPION CONRAC WIH EXPONENIAL RANDOM IME 5of9 hen I = [a + μ) e μ+ +r)+μ k + z + μ )z N = a + μ)n )] [ a + μ) e μ+ +r)+μ )z exp ) ] k + z + μ z π ) k + μ a + μ) e μ+ ) +r)+μ k + + μ ) N [ a + μ) exp μ + )z ) ] k + z + μ z π ) k + μ = a + μ)n a + μ) e μ+ ) +r)+μ k + + μ ) N a + μ) e +r)+μ+ +r)+μ )k = a + μ)n exp π ) k + μ +r)+μ a + μ) e μ+ ) N a + μ) e +r)+μ+ +r)+μ )k N + a + μ) e +r)+μ+ +r)+μ )k N z k ) z ) k + μ k ) k ) an I = a μ)n ) k + μ +r)+μ a μ) e +r)+μ )k k ) N. Since a + μ) a μ) = / + r), I = ) ) k + μ +r)+μ k + μ + r N a + μ) e μ+ ) N +r)+μ a + μ) e +r)+μ+ )k k ) N + a + μ) e +r)+μ+ +r)+μ )k N a μ) e +r)+μ +r)+μ )k N k ) k ).
6 6of9 D. JUN AND H. KU Similarly, we compute the secon integral for V ) e μz z +r)+μ k z + μ N z = ) ) k + μ +r)+μ k + μ + r N + a μ) e μ ) ) N +r)+μ a μ) e +r)+μ )k ) + k ) N + a μ) e +r)+μ +r)+μ )k ) N a + μ) e +r)+μ+ +r)+μ )k ) N + k ) k ). Remark. Consier a igital knockout barrier option which is initiate at the occurrence of an event. Suppose that the event has not yet occurre at time t >. hen the istribution of its payoff function conitione on F t ) is the same as the one at time, which is implie by the memoryless property of exponential istribution an the Markov property of S t. hus the value V in heorem. remains the same, except S t in replacement of S,attimet. Remark.3 In this section, we treat a ownanout igital option. he methoology we evelop also works well for the prices of upanin, upanout an ownanin options. 3. Example an graphs 3. Example In this subsection, we present an example to explain how heorem. is applie to value a financial contract. Suppose Companies A an B make a eal: Company B makes a payment of $ 6 to Company A in the event of Company A s efault. his contract contains clauses requiring that the stock price of Company B oes not fall below the barrier level D for the perio of length starting from the time of Company A s efault, an at the en of that perio, the stock price is above the strike level K. his conition is interprete as Company B is not in financial ifficulties for a certain perio in the event of Company A s efault. Assume that efault time of Company A has the exponential istribution with parameter. We note that might be etermine by historical efault ata accoring to Company A s bon rating. It might also be given through the negotiations between the companies. We assume that the stock price of Company B follows a geometric Brownian motion with initial price S = an volatility =.3. Also, in this example, D = 8, K =, =.5, r = an =.. hen how much is the premium that Company A shoul pay to Company B for this contract? By the price formula in heorem., we have the premium V = $,4 to the nearest ollar.
7 DIGIAL BARRIER OPION CONRAC WIH EXPONENIAL RANDOM IME 7of9 4.5 x Value D=7 D=8 D=9 D= Fig.. Digital barrier option value with varying an own barrier D option parameters: S =, K =, A = 6, σ =.3, r =.5 an =.5). Value x 5 K=9 K= K= Fig.. Digital barrier option value with varying an strike price K option parameters: S =, D = 8, A = 6, σ =.3, r =.5 an =.5). 3. Graphs We illustrate the properties of our solution obtaine in heorem.. Figure shows how the igital knockout option value V changes when the parameter varies from. to.5 an own barrier D takes the values of 7, 8 9 or 95. he other parameters are given by S =, K =, A = 6, σ =.3, r =.5 an =.5. Figure shows how the igital barrier option value V changes when the parameter varies from. to.5 an strike price K takes the values of 9, or. he other parameters are given by S =, D = 8, A = 6, σ =.3, r =.5 an =.5.
8 8of9 D. JUN AND H. KU 6 x 5 Value D K 95 9 Fig. 3. Digital barrier option values with varying own barrier D an strike price K option parameters: S =, =, A = 6, σ =.3, r =.5 an =.5). In Figure, we observe that the igital knockout option value V increases as increases for D = 7, 8 or 9. An interpretation of this is as follows: if the exponential parameter increases, τ is more likely to be small. hen, the probability of the unerlying asset price crossing the own barrier D in the time perio of length gets smaller, which results in the increase of V. However, if the own barrier gets closer to initial stock price S, this argument oes not work an V may not increase see the graph for D = 95). In Fig., we observe if the strike price K takes the larger value, the igital knockout option price becomes smaller. his property of V is the same as that of the regular barrier option price. Also, one can expect for a fixe, V increases when D or K ecreases. Figure 3 emonstrates this esiring property of V. Funing his research has been partially supporte by Natural Sciences an Engineering Research Council of Canaa, Discovery grant References Embrechts, P. & Schmili, H. 994) Moelling of extremal events in insurance an finance. Math. Methos Oper. Res., 39, 34. Epstein, B. & Sobel, M. 954) Some theorems relevant to life testing from an exponential istribution. Ann. Math. Stat., 5, Fusai, G. & Roncoroni, A. 8) Implementing Moels in Quantitative Finance: Methos an Cases. Springer Verlag, Berlin: Springer. Geman, H. & Yor, M. 996) Pricing an heging oublebarrier options: a probabilistic approach. Math. Finance, 6, Golman,M.B.,Sosin,H.B.&Gatto,M.A.979) Path epenent options: buy at the low, sell at the high. J. Finance, 34, 7. Heynen, R. C. & Kat, H. M. 994) Partial barrier options. J. Financ. Eng., 3, Hull, J. 6) Options, Futures, an Other Derivatives, 6th en. Englewoo Cliffs, NJ: PrenticeHall. Kunitomo, N. & Ikea, M. 99) Pricing options with curve bounaries. Math. Finance,,
9 DIGIAL BARRIER OPION CONRAC WIH EXPONENIAL RANDOM IME 9of9 Marshall, A. W. & Olkin, I. 967) A multivariate exponential istribution. J. Amer. Statist. Assoc., 6, Merton, R. C. 973) heory of rational option pricing. Bell J. Econ. Manage. Sci., 4, Musiela,M.&Rutkowski,M.5) Martingale Methos in Financial Moelling, n en. SpringerVerlag, Berlin: Springer. Pelsser, A. ) Pricing ouble barrier options using Laplace transforms. Finance Stoch., 4, Reiner, E. & Rubinstein, M. 99) Breaking own the barriers. Risk, 4, Rich, D. 997) he mathematical founations of barrier option pricing theory. Av. Futures Options Res., 7, 67 3.
Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5
Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. OnePerio Binomial Moel Creating synthetic options (replicating options)
More informationCURRENCY OPTION PRICING II
Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility BlackScholes Moel for Currency Options Properties of the BS Moel Option Sensitivity
More informationISSN: 22773754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014
ISSN: 77754 ISO 900:008 Certifie International Journal of Engineering an Innovative echnology (IJEI) Volume, Issue, June 04 Manufacturing process with isruption uner Quaratic Deman for Deteriorating Inventory
More informationCh 10. Arithmetic Average Options and Asian Opitons
Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options
More informationRisk Management for Derivatives
Risk Management or Derivatives he Greeks are coming the Greeks are coming! Managing risk is important to a large number o iniviuals an institutions he most unamental aspect o business is a process where
More informationMODELLING OF TWO STRATEGIES IN INVENTORY CONTROL SYSTEM WITH RANDOM LEAD TIME AND DEMAND
art I. robobabilystic Moels Computer Moelling an New echnologies 27 Vol. No. 23 ransport an elecommunication Institute omonosova iga V9 atvia MOEING OF WO AEGIE IN INVENOY CONO YEM WIH ANOM EA IME AN
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
More informationSensitivity Analysis of Nonlinear Performance with Probability Distortion
Preprints of the 19th Worl Congress The International Feeration of Automatic Control Cape Town, South Africa. August 2429, 214 Sensitivity Analysis of Nonlinear Performance with Probability Distortion
More informationDifferentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
More informationOption Pricing for Inventory Management and Control
Option Pricing for Inventory Management an Control Bryant Angelos, McKay Heasley, an Jeffrey Humpherys Abstract We explore the use of option contracts as a means of managing an controlling inventories
More informationMath 230.01, Fall 2012: HW 1 Solutions
Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The
More informationMSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUMLIKELIHOOD ESTIMATION
MAXIMUMLIKELIHOOD ESTIMATION The General Theory of ML Estimation In orer to erive an ML estimator, we are boun to make an assumption about the functional form of the istribution which generates the
More informationAn Introduction to Exotic Options
An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor
More informationJON HOLTAN. if P&C Insurance Ltd., Oslo, Norway ABSTRACT
OPTIMAL INSURANCE COVERAGE UNDER BONUSMALUS CONTRACTS BY JON HOLTAN if P&C Insurance Lt., Oslo, Norway ABSTRACT The paper analyses the questions: Shoul or shoul not an iniviual buy insurance? An if so,
More informationA New Evaluation Measure for Information Retrieval Systems
A New Evaluation Measure for Information Retrieval Systems Martin Mehlitz martin.mehlitz@ailabor.e Christian Bauckhage Deutsche Telekom Laboratories christian.bauckhage@telekom.e Jérôme Kunegis jerome.kunegis@ailabor.e
More informationThe oneyear nonlife insurance risk
The oneyear nonlife insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on nonlife insurance reserve risk has been evote to the ultimo risk, the risk in the
More informationOptimal Control Policy of a Production and Inventory System for multiproduct in Segmented Market
RATIO MATHEMATICA 25 (2013), 29 46 ISSN:15927415 Optimal Control Policy of a Prouction an Inventory System for multiprouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational
More informationCHAPTER 5 : CALCULUS
Dr Roger Ni (Queen Mary, University of Lonon)  5. CHAPTER 5 : CALCULUS Differentiation Introuction to Differentiation Calculus is a branch of mathematics which concerns itself with change. Irrespective
More informationProfessional Level Options Module, Paper P4(SGP)
Answers Professional Level Options Moule, Paper P4(SGP) Avance Financial Management (Singapore) December 2007 Answers Tutorial note: These moel answers are consierably longer an more etaile than woul be
More informationExponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 9 Paired Data. Paired data. Paired data
UCLA STAT 3 Introuction to Statistical Methos for the Life an Health Sciences Instructor: Ivo Dinov, Asst. Prof. of Statistics an Neurology Chapter 9 Paire Data Teaching Assistants: Jacquelina Dacosta
More informationDetecting Possibly Fraudulent or ErrorProne Survey Data Using Benford s Law
Detecting Possibly Frauulent or ErrorProne Survey Data Using Benfor s Law Davi Swanson, Moon Jung Cho, John Eltinge U.S. Bureau of Labor Statistics 2 Massachusetts Ave., NE, Room 3650, Washington, DC
More informationCrossOver Analysis Using TTests
Chapter 35 CrossOver Analysis Using ests Introuction his proceure analyzes ata from a twotreatment, twoperio (x) crossover esign. he response is assume to be a continuous ranom variable that follows
More informationData Center Power System Reliability Beyond the 9 s: A Practical Approach
Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of missioncritical
More informationOptimal Control Of Production Inventory Systems With Deteriorating Items And Dynamic Costs
Applie Mathematics ENotes, 8(2008), 194202 c ISSN 16072510 Available free at mirror sites of http://www.math.nthu.eu.tw/ amen/ Optimal Control Of Prouction Inventory Systems With Deteriorating Items
More informationNonparametric Estimation of StatePrice Densities Implicit in Financial Asset Prices
THE JOURNAL OF FINANCE VOL LIII, NO. 2 APRIL 1998 Nonparametric Estimation of StatePrice Densities Implicit in Financial Asset Prices YACINE AÏTSAHALIA an ANDREW W. LO* ABSTRACT Implicit in the prices
More informationMannheim curves in the threedimensional sphere
Mannheim curves in the threeimensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.
More informationStocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the BlackScholes model, any dividends on stocks are paid continuously, but in reality dividends
More informationPurpose of the Experiments. Principles and Error Analysis. ε 0 is the dielectric constant,ε 0. ε r. = 8.854 10 12 F/m is the permittivity of
Experiments with Parallel Plate Capacitors to Evaluate the Capacitance Calculation an Gauss Law in Electricity, an to Measure the Dielectric Constants of a Few Soli an Liqui Samples Table of Contents Purpose
More informationThe most common model to support workforce management of telephone call centers is
Designing a Call Center with Impatient Customers O. Garnett A. Manelbaum M. Reiman Davison Faculty of Inustrial Engineering an Management, Technion, Haifa 32000, Israel Davison Faculty of Inustrial Engineering
More informationFactoring Dickson polynomials over finite fields
Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University
More informationStudy on the Price Elasticity of Demand of Beijing Subway
Journal of Traffic an Logistics Engineering, Vol, 1, No. 1 June 2013 Stuy on the Price Elasticity of Deman of Beijing Subway Yanan Miao an Liang Gao MOE Key Laboratory for Urban Transportation Complex
More informationAn intertemporal model of the real exchange rate, stock market, and international debt dynamics: policy simulations
This page may be remove to conceal the ientities of the authors An intertemporal moel of the real exchange rate, stock market, an international ebt ynamics: policy simulations Saziye Gazioglu an W. Davi
More informationUnbalanced Power Flow Analysis in a Micro Grid
International Journal of Emerging Technology an Avance Engineering Unbalance Power Flow Analysis in a Micro Gri Thai Hau Vo 1, Mingyu Liao 2, Tianhui Liu 3, Anushree 4, Jayashri Ravishankar 5, Toan Phung
More informationDETERMINING OPTIMAL STOCK LEVEL IN MULTIECHELON SUPPLY CHAINS
HUNGARIAN JOURNA OF INDUSTRIA CHEMISTRY VESZPRÉM Vol. 39(1) pp. 107112 (2011) DETERMINING OPTIMA STOCK EVE IN MUTIECHEON SUPPY CHAINS A. KIRÁY 1, G. BEVÁRDI 2, J. ABONYI 1 1 University of Pannonia, Department
More informationINFLUENCE OF GPS TECHNOLOGY ON COST CONTROL AND MAINTENANCE OF VEHICLES
1 st Logistics International Conference Belgrae, Serbia 2830 November 2013 INFLUENCE OF GPS TECHNOLOGY ON COST CONTROL AND MAINTENANCE OF VEHICLES Goran N. Raoičić * University of Niš, Faculty of Mechanical
More informationOptimal Energy Commitments with Storage and Intermittent Supply
Submitte to Operations Research manuscript OPRE200909406 Optimal Energy Commitments with Storage an Intermittent Supply Jae Ho Kim Department of Electrical Engineering, Princeton University, Princeton,
More information10.2 Systems of Linear Equations: Matrices
SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix
More information15.2. FirstOrder Linear Differential Equations. FirstOrder Linear Differential Equations Bernoulli Equations Applications
00 CHAPTER 5 Differential Equations SECTION 5. FirstOrer Linear Differential Equations FirstOrer Linear Differential Equations Bernoulli Equations Applications FirstOrer Linear Differential Equations
More informationRisk Adjustment for Poker Players
Risk Ajustment for Poker Players William Chin DePaul University, Chicago, Illinois Marc Ingenoso Conger Asset Management LLC, Chicago, Illinois September, 2006 Introuction In this article we consier risk
More informationFAST JOINING AND REPAIRING OF SANDWICH MATERIALS WITH DETACHABLE MECHANICAL CONNECTION TECHNOLOGY
FAST JOINING AND REPAIRING OF SANDWICH MATERIALS WITH DETACHABLE MECHANICAL CONNECTION TECHNOLOGY Jörg Felhusen an Sivakumara K. Krishnamoorthy RWTH Aachen University, Chair an Insitute for Engineering
More informationBond Calculator. Spreads (Gspread, Tspread) References and Contact details
Cbons.Ru Lt. irogovskaya nab., 21, St. etersburg hone: +7 (812) 3369721 http://www.cbonsgroup.com Bon Calculator Bon calculator is esigne to calculate analytical parameters use in assessment of bons.
More informationMathematical Models of Therapeutical Actions Related to Tumour and Immune System Competition
Mathematical Moels of Therapeutical Actions Relate to Tumour an Immune System Competition Elena De Angelis (1 an PierreEmmanuel Jabin (2 (1 Dipartimento i Matematica, Politecnico i Torino Corso Duca egli
More informationAsian Option Pricing Formula for Uncertain Financial Market
Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s446715357 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei
More informationImproving Direct Marketing Profitability with Neural Networks
Volume 9 o.5, September 011 Improving Direct Marketing Profitability with eural etworks Zaiyong Tang Salem State University Salem, MA 01970 ABSTRACT Data mining in irect marketing aims at ientifying the
More informationCoalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks
Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks arxiv:.795v [cs.gt] 8 Feb Tian Zhang, Wei Chen, Zhu Han, an Zhigang Cao State Key Laboratory on Microwave an Digital
More informationDEVELOPMENT OF A BRAKING MODEL FOR SPEED SUPERVISION SYSTEMS
DEVELOPMENT OF A BRAKING MODEL FOR SPEED SUPERVISION SYSTEMS Paolo Presciani*, Monica Malvezzi #, Giuseppe Luigi Bonacci +, Monica Balli + * FS Trenitalia Unità Tecnologie Materiale Rotabile Direzione
More informationCS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
More informationApplication of options in hedging of crude oil price risk
AMERICAN JOURNAL OF SOCIAL AND MANAGEMEN SCIENCES ISSN rint: 156154, ISSN Online: 1511559 doi:1.551/ajsms.1.1.1.67.74 1, ScienceHuβ, http://www.scihub.org/ajsms Application of options in hedging of crude
More informationSecurity Design with Correlated Hidden Cash Flows: The Optimality of Performance Pricing
Security Design with Correlate Hien Cash Flows: The Optimality of Performance Pricing Alexei Tchistyi Haas School of Business, UC Berkeley tchistyi@haas.berkeley.eu July 1, 2013 Abstract This paper stuies
More informationGPRS performance estimation in GSM circuit switched services and GPRS shared resource systems *
GPRS performance estimation in GSM circuit switche serices an GPRS share resource systems * Shaoji i an SenGusta Häggman Helsinki Uniersity of Technology, Institute of Raio ommunications, ommunications
More informationOptimizing Multiple Stock Trading Rules using Genetic Algorithms
Optimizing Multiple Stock Traing Rules using Genetic Algorithms Ariano Simões, Rui Neves, Nuno Horta Instituto as Telecomunicações, Instituto Superior Técnico Av. Rovisco Pais, 04000 Lisboa, Portugal.
More information1 HighDimensional Space
Contents HighDimensional Space. Properties of HighDimensional Space..................... 4. The HighDimensional Sphere......................... 5.. The Sphere an the Cube in Higher Dimensions...........
More informationA Monte Carlo Simulation of Multivariate General
A Monte Carlo Simulation of Multivariate General Pareto Distribution an its Application 1 1 1 1 1 1 1 1 0 1 Luo Yao 1, Sui Danan, Wang Dongxiao,*, Zhou Zhenwei, He Weihong 1, Shi Hui 1 South China Sea
More informationA Data Placement Strategy in Scientific Cloud Workflows
A Data Placement Strategy in Scientific Clou Workflows Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen Faculty of Information an Communication Technologies, Swinburne University of Technology Hawthorn, Melbourne,
More informationAn Introduction to Eventtriggered and Selftriggered Control
An Introuction to Eventtriggere an Selftriggere Control W.P.M.H. Heemels K.H. Johansson P. Tabuaa Abstract Recent evelopments in computer an communication technologies have le to a new type of largescale
More informationState of Louisiana Office of Information Technology. Change Management Plan
State of Louisiana Office of Information Technology Change Management Plan Table of Contents Change Management Overview Change Management Plan Key Consierations Organizational Transition Stages Change
More informationProduct Differentiation for SoftwareasaService Providers
University of Augsburg Prof. Dr. Hans Ulrich Buhl Research Center Finance & Information Management Department of Information Systems Engineering & Financial Management Discussion Paper WI99 Prouct Differentiation
More informationAmerican Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
More informationLecture 17: Implicit differentiation
Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we
More information9.3. Diffraction and Interference of Water Waves
Diffraction an Interference of Water Waves 9.3 Have you ever notice how people relaxing at the seashore spen so much of their time watching the ocean waves moving over the water, as they break repeately
More informationCALCULATION INSTRUCTIONS
Energy Saving Guarantee Contract ppenix 8 CLCULTION INSTRUCTIONS Calculation Instructions for the Determination of the Energy Costs aseline, the nnual mounts of Savings an the Remuneration 1 asics ll prices
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More informationSession IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics
Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock
More informationUnsteady Flow Visualization by Animating EvenlySpaced Streamlines
EUROGRAPHICS 2000 / M. Gross an F.R.A. Hopgoo Volume 19, (2000), Number 3 (Guest Eitors) Unsteay Flow Visualization by Animating EvenlySpace Bruno Jobar an Wilfri Lefer Université u Littoral Côte Opale,
More informationKater Pendulum. Introduction. It is wellknown result that the period T of a simple pendulum is given by. T = 2π
Kater Penulum ntrouction t is wellknown result that the perio of a simple penulum is given by π L g where L is the length. n principle, then, a penulum coul be use to measure g, the acceleration of gravity.
More informationThe Inefficiency of Marginal cost pricing on roads
The Inefficiency of Marginal cost pricing on roas Sofia GrahnVoornevel Sweish National Roa an Transport Research Institute VTI CTS Working Paper 4:6 stract The economic principle of roa pricing is that
More informationSensor Network Localization from Local Connectivity : Performance Analysis for the MDSMAP Algorithm
Sensor Network Localization from Local Connectivity : Performance Analysis for the MDSMAP Algorithm Sewoong Oh an Anrea Montanari Electrical Engineering an Statistics Department Stanfor University, Stanfor,
More informationTO DETERMINE THE SHELF LIFE OF IBUPROFEN SOLUTION
TO DETERMINE THE SHELF LIFE OF IBUPROFEN SOLUTION AIM: To etermine the shelf life of solution using accelerate stability stuies. MATERIAL REQUIREMENT, ethanol, phenolphthalein, soium hyroxie (0.1N), glass
More informationTowards a Framework for Enterprise Architecture Frameworks Comparison and Selection
Towars a Framework for Enterprise Frameworks Comparison an Selection Saber Aballah Faculty of Computers an Information, Cairo University Saber_aballah@hotmail.com Abstract A number of Enterprise Frameworks
More informationModeling and Predicting Popularity Dynamics via Reinforced Poisson Processes
Proceeings of the TwentyEighth AAAI Conference on Artificial Intelligence Moeling an Preicting Popularity Dynamics via Reinforce Poisson Processes Huawei Shen 1, Dashun Wang 2, Chaoming Song 3, AlbertLászló
More informationA Summary on Pricing American Call Options Under the Assumption of a Lognormal Framework in the KornRogers Model
BULLEIN of the MALAYSIAN MAHEMAICAL SCIENCES SOCIEY http:/math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. 2 352A 2012, 573 581 A Summary on Pricing American Call Options Under the Assumption of a Lognormal
More informationSection 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
More informationSafety Stock or Excess Capacity: Tradeoffs under Supply Risk
Safety Stock or Excess Capacity: Traeoffs uner Supply Risk Aahaar Chaturvei Victor MartínezeAlbéniz IESE Business School, University of Navarra Av. Pearson, 08034 Barcelona, Spain achaturvei@iese.eu
More informationMathematics Review for Economists
Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationThe meanfield computation in a supermarket model with server multiple vacations
DOI.7/s66375 The meanfiel computation in a supermaret moel with server multiple vacations QuanLin Li Guirong Dai John C. S. Lui Yang Wang Receive: November / Accepte: 8 October 3 SpringerScienceBusinessMeiaNewYor3
More informationMinimumEnergy Broadcast in AllWireless Networks: NPCompleteness and Distribution Issues
MinimumEnergy Broacast in AllWireless Networks: NPCompleteness an Distribution Issues Mario Čagal LCAEPFL CH05 Lausanne Switzerlan mario.cagal@epfl.ch JeanPierre Hubaux LCAEPFL CH05 Lausanne Switzerlan
More informationPerformance And Analysis Of Risk Assessment Methodologies In Information Security
International Journal of Computer Trens an Technology (IJCTT) volume 4 Issue 10 October 2013 Performance An Analysis Of Risk Assessment ologies In Information Security K.V.D.Kiran #1, Saikrishna Mukkamala
More informationGame Theoretic Modeling of Cooperation among Service Providers in Mobile Cloud Computing Environments
2012 IEEE Wireless Communications an Networking Conference: Services, Applications, an Business Game Theoretic Moeling of Cooperation among Service Proviers in Mobile Clou Computing Environments Dusit
More informationA VegaGamma Relationship for EuropeanStyle or Barrier Options in the BlackScholes Model
A VegaGamma Relationship for EuropeanStyle or Barrier Options in the BlackScholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships
More informationChapter 4: Elasticity
Chapter : Elasticity Elasticity of eman: It measures the responsiveness of quantity emane (or eman) with respect to changes in its own price (or income or the price of some other commoity). Why is Elasticity
More informationHere the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and
Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric
More informationTHE BLACKSCHOLES MODEL AND EXTENSIONS
THE BLACSCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the BlackScholes pricing model of a European option by calculating the expected value of the option. We will assume that
More informationA New Pricing Model for Competitive Telecommunications Services Using Congestion Discounts
A New Pricing Moel for Competitive Telecommunications Services Using Congestion Discounts N. Keon an G. Ananalingam Department of Systems Engineering University of Pennsylvania Philaelphia, PA 191046315
More informationLECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
More informationA Survey of Commodity Markets and Structural Models for Electricity Prices
Chapter 2 A Survey of Commoity Markets an Structural Moels for Electricity Prices René Carmona an Michael Coulon Abstract The goal of this survey is to review the major iiosyncrasies of the commoity markets
More informationA Generalization of Sauer s Lemma to Classes of LargeMargin Functions
A Generalization of Sauer s Lemma to Classes of LargeMargin Functions Joel Ratsaby University College Lonon Gower Street, Lonon WC1E 6BT, Unite Kingom J.Ratsaby@cs.ucl.ac.uk, WWW home page: http://www.cs.ucl.ac.uk/staff/j.ratsaby/
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More information9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
More informationHeatAndMass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems Ratkovich, Nicolas Rios; Nopens, Ingmar
Aalborg Universitet HeatAnMass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems Ratkovich, Nicolas Rios; Nopens, Ingmar Publishe in: International Journal of Heat an Mass Transfer
More informationAmerican Capped Call Options on DividendPaying Assets
American Capped Call Options on DividendPaying Assets Mark Broadie Columbia University Jerome Detemple McGill University and CIRANO This article addresses the problem of valuing American call options
More informationFinancial Modeling. Class #06B. Financial Modeling MSS 2012 1
Financial Modeling Class #06B Financial Modeling MSS 2012 1 Class Overview Equity options We will cover three methods of determining an option s price 1. BlackScholesMerton formula 2. Binomial trees
More informationA Theory of Exchange Rates and the Term Structure of Interest Rates
Review of Development Economics, 17(1), 74 87, 013 DOI:10.1111/roe.1016 A Theory of Exchange Rates an the Term Structure of Interest Rates HyoungSeok Lim an Masao Ogaki* Abstract This paper efines the
More informationAverageCase Analysis of a Nearest Neighbor Algorithm. Moett Field, CA USA. in accuracy. neighbor.
From Proceeings of the Thirteenth International Joint Conference on Articial Intelligence (1993). Chambery, France: Morgan Kaufmann AverageCase Analysis of a Nearest Neighbor Algorithm Pat Langley Learning
More informationIntroduction to Integration Part 1: AntiDifferentiation
Mathematics Learning Centre Introuction to Integration Part : AntiDifferentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction
More informationConsumer Referrals. Maria Arbatskaya and Hideo Konishi. October 28, 2014
Consumer Referrals Maria Arbatskaya an Hieo Konishi October 28, 2014 Abstract In many inustries, rms rewar their customers for making referrals. We analyze the optimal policy mix of price, avertising intensity,
More informationA BlameBased Approach to Generating Proposals for Handling Inconsistency in Software Requirements
International Journal of nowlege an Systems Science, 3(), 7, JanuaryMarch 0 A lamease Approach to Generating Proposals for Hanling Inconsistency in Software Requirements eian Mu, Peking University,
More informationLECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
More informationThe Quick Calculus Tutorial
The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,
More information