Answer Key. Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I. Name. Student ID#

Size: px
Start display at page:

Download "Answer Key. Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I. Name. Student ID#"

Transcription

1 Name Student ID# Answer Key Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I 1.) Describe two general mechanisms by which transcription can terminate in bacteria. (5pts) Factor dependant termination occurs when the RNA polymerase encounters a particular sequence during transcription if a protein factor- such a Rho, Tau, or NusA. Factor independant terination occurs when a particular sequence (usually an inverted repeat followed by a string of Us in the RNA) that cause the RNA polymerase to terminate. 2.) What is unique about f met? When or where is it found? (5pts) a transformylase adds a formal group onto methionine. It is the first amino acid of every polypeptide synthesized in most bacteria and is used during translation initiation 3.) Define the following. (6pts) auxotrophic mutant: cannot make or utilize a nutrient that the wild-type organism uses for growth. transversion mutations: mutation that changes a purine to a pyrimidine or visa versa. missense mutations: base pair mutation in a coding region that changes an amino acid. nonsense mutations: base pair mutation in a coding region that produces a stop codon (terminates translation) nonsense suppressors: a mutation that allows an amino acid to be inserted at a nonsense codon during translation (often the mutation occurs in a trna gene) true reversion: a mutation that restores the wild-type sequence. 4.) Name three mechanisms by which the cell may repair UV-induced DNA lesions. How is the lesion repaired in each case? Write whether each mechanism is specific for UV-induced DNA lesions or is it a general repair mechanism that can recognize multiple types of DNA lesions? (9pts) 1.) Photolyase, specific repair of UV-photopoducts. Repairs by direct reversal of the lesion without excison. 2.) Nucleotide excision repair, a general mechanism that repairs many lesion types. Multiprotein subunit excises a twelve base pair gap around the DNA lesion. The gap is then resynthesized by PolI. 3.) Bypass polymerases, a specific (general OK) repair of DNA lesions. hese polmerases can incorporate bases opposite to DNA lesions that block replication forks. Thus the lesions are really tolerated rather than repaired. 4.) Base excison repair, a specific repair mechanism for UV-induced lesions. Some phage and organisms have glycosylases that excise the base to leave an AP site. An AP endonuclease then cleaves the DNA backbone and PolI (and other enzymes) remove and resynthesize the base that was damaged. 5.) Recombinational repair, a general repair pathway. Lesions are skipped over by the replication machinery leaving gaps in the daughter strands which are then filled in by using homologous undamaged, regions of the chromosome. Againthe lesions are tolerated (left in the DNA) rather than directly repaired. 6.) Mismatch repair (1/2 credit), a general repair mechanism. No evidence that the mismatch repair system can recognize UV-induced lesions...but worth an experiment to see. 5.) Mismatched base pairs which slip through the replication machinery contain two perfectly good bases that are paired incorrectly (A paired with G for example). Repairing one base restores the original sequence. However repairing the other base would result in a mutation. How do we think that the mismatch repair proteins recognize which of the mismatched bases is the correct one which should be repaired? (5pts) The Dam methylase methylates the adenine base in GATC sequences. Immediately replication, the newly synthesized strand has not yet had time to be methylated- the DNA is hemimethylated. The mismatch repair proteins (MutS,MutL, and MutH) bind to the mismatched base pairs and then this protein complex is thought to track along the DNA to determine which strand is unmethylated. The nonmethylated strand is then incised and repaired.

2 6.) You have mapped the origin of replication on the plasmid shown to the right. If the origin is unidirectional, draw where one would expect the termination of replication to occur on the plasmid? (4pts) oriv terminates at the origin replicating aroung the molecule 7.) ColE1 plasmids maintain a copy number of about 16 copies/cell. How would the copy number be effected by a mutation in the promoter region of the following genes or transcripts? Assume that the mutation prevents any transcription from occurring at each gene. Explain your answer. (6pts) RNAI RNAII oriv rop RNAI: The copy number would increase because the RNA I transcript hybridizes with RNAII, a transcript required for initiation, and prevents it from forming a functional initiator at the origin DNA region. RNAII: The copy number would decrease (The plasmid probably could not replicate) since the RNAII is needed for nreplication initiation. The transcript hybridizes to the origin region DNA, get processed by RnaseH, and serves as a primer to initiate replication. rop: The copy number would increase because the Rop protein promotes the hybridization of the inhibitor RNA I transcript to the RNAII transcript, preventing initiation from occurring. 8.) The single copy F plasmid replicates only once per cell generation. Thus at the time of cell division, there are only two copies of the plasmid per cell. Assuming that the plasmid is sorted randomly, calculate (or draw) how often the plasmid should be lost by chance each generation. (5pts) each cell division creates 2 cells, there s a 1/2 chance that each plasmid will go into a cell, in 2 of the 4 possibilities the compounded by the number OR plasmid is lost. of plasmids... 2(1/2) 2 = 1/2 the time 1/2 9.) By measuring the rate that the F plasmid is cured, you find that only one in every ten thousand cells actually loses the plasmid. Name two general mechanisms or processes that could account for the discrepancy between the observed cure rate and your calculated cure rate. (5pts) The plasmid may have 1.) a partitioning mechanism that ensures each cell receives one plasmid or 2.) plasmid addiction mechanism that kill cells when they lose the plasmid. Others... 3.) selection in the media kills cells which lose the plasmid 4.) integration of the plasmid into the chromosome keeps it stable.

3 Ten years down the road. The first round-trip space mission to Mars has just returned with large samples of soil and ice from the polar regions of Mars. The big news in all of the journals is that scientists found an organism that resembles bacteria on this planet and have cultured it out from one of the soil samples! The bacteria-like organisms are able to grow under culturing conditions very similar to the E. coli but seem to divide almost twice as fast. At this point, scientists have examined the chemical make up the organism and found that its DNA is identical in structure and composition to that which is found on earth. However, nothing yet is known about how they replicate or divide. NASA scientists have recently sent you a sample of the bacteria so that you can determine if the DNA is replicated by a similar mechanism to that which occurs on earth. You remember the Meselson-Stahl experiment and decide that repeating their experiment on these new bacteria may be the best way to begin an analysis of replication mechanisms. You grow three separate cultures of the bacteria. A.) For the first culture, you grow the bacteria in media containing heavy isotopes of nitrogen ( 14 N) and carbon ( 13 C) to density label the DNA during growth. B.) For the second culture, you grow the bacteria in normal media. C.) For the third culture, you begin by growing the culture in the media containing heavy isotopes. Then, several generations of growth in this media, you transfer the bacteria into normal media and takes samples at various times ( I. immediately before transfer, II. one doubling time in the normal media, and III. two doubling times in the normal media). You lyse the cells, isolate the DNA and centrifuge each sample to equilibrium in neutral CsCl gradients. Following centrifugation, you examine where the DNA ran in each gradient an observe the following results shown below: A B C immediately before transfer 1 doubling time 2 doubling times 10.) NASA needs to know. Do these bacteria replicate conservatively, semiconservatively, or distributively? (5pts) Conservatively

4 11.) What would you expect the results look like if the bacteria replicated by one of the alternative mechanisms? Circle one of the following replication mechanisms and then draw in where you would expect the bands to run. Explain your answer below. (5pts) Conservative. Semiconservative. Distributive. A B C immediately before transfer 1 doubling time 2 doubling times Explain: After on generation in normal media, all DNA would contain one heavy and one light strand. After a second generation, replication of the light strand of the hybrid creates a completely light molecule, while replication of the heavy strand would remain a hybrid density. Various size pieces of DNA that replicated either conservatively or semiconservatively would create a distribution of DNA that ranges in composition but gets gradually becomes less dense on average as it replicates in normal media. In the course of your studies, you notice that the bacteria are able to grow on plates that contain only toluene as the sole carbon source. Realising the potential commercial value of this ability, you decide to try and learn more about the genes involved in this pathway by screening for spontaneous mutants that cannot grow on toluene. 12.) Briefly describe how you would conduct your screen. (6pts) (May wish to mutagenize the bacteria first to enrich for mutants) 1 st Plate the bacteria on normal (nonselective or glucose) media: Everybody grows. 2 nd Replica plate the bacterial colonies onto minimal media plates that contain only toluene as a carbon source: tol mutants will not grow. 3 rd determine which colonies didn t grow on the toluene plates and isolate these from your original nonselective plates: These are your mutants. 13.) Does this screen involve a positive selection or a negative selection? (4pts) Negative selection Through your screen, you isolated 26 mutants out of the 100,000 cells which you plated that were could not grow on toluene. Using, the twenty-sixth mutant that you obtained (tol26), you screen to isolate repressor mutants. 14.) Briefly describe how you would conduct your screen for revertants. (6pts) (May wish to mutagenize the bacteria first to enrich for mutants) 1 st Plate many of the tol26 bacteria onto minimal media plates that contain only toluene as a carbon source. (Also plate an equal amount of cells on nonselective media so that you know how many cells were plated). 2 nd Any supressor mutants or revertants should be able to grow on toluene plates again so these are your mutants. 15.) Does the revertant screen involve a positive selection or a negative selection? (4pts) Positive selection

5 You plate more than 10 million tol26 cells and obtain only three revertants that are able to grow once again on toluene plates. 16.) Based upon the observed reversion rate, which of the following mutation types are not likely to have produced the original tol26 mutation? Why? (6pts) Basepair change Frameshift Deletions almost never produce revertions because large amounts of genetic information (multiple Deletion bases) have been lost entirely. 17.) Why would you expect the reversion mutation rate (tol26 changing to wild type) to be so much lower than the forward mutation rate (wild type changing to tol-)? Give one possible reason. (4pts) Toluene metabolism is likely to be controlled by many genes, so a mutation anywhere in this large target of genetic information could produce an inability to metabolize toluene. The tol26 mutation probably occured at a unique site in one toluene metabolism gene. So the chance that this mutation, or a compensating one, will occur again is much, much smaller since the target nuber of bases that could mutate to give you supression is so small. Health concerns abound about the possibility that a foreign and potentially contagious bacteria could accidentally be released on earth. Data involving its susceptibility to various antibiotics and its mutation rates are important for the safety of the general public. You find that the Mars bacteria is killed by treatment with rifampicin, a promising result. Not surprisingly however, you notice that if you plate enough bacteria, rifampicin resistant bacteria can be isolated. You decide to perform a fluctuation test to determine the mutation rate to rifampicin resistance. You grow 30 individual, 1 ml cultures of bacteria and spread each on a plate containing rifampicin. By counting the bacteria from a separate culture, you determine that there were 1 * 10 8 bacteria/ml at the time you plated them on rifampicin. After spreading each 1ml culture on separate plate, you let them grow overnight. The next day, you count the following number of rifampicin resistant colonies that grew on each plate: PLATE # of rif R colonies PLATE # of rif R colonies PLATE # of rif R colonies #1 1 #11 22 #21 2 #2 4 #12 16 #22 4 #3 0 #13 0 #23 0 #4 0 #14 0 #24 0 #5 0 #15 0 #25 0 #6 0 #16 0 #26 0 #7 6 #17 1 #27 9 #8 6 #18 2 #28 1 #9 1 #19 1 #29 1 #10 4 #20 1 #30 4 Assuming that the mutations occur at random and that the mutation rate, a = m/n. 18.) Estimate the mutation rate for rif R mutations occurring in the Martian bacteria by using the Poisson expression where the probability of having i mutations per culture is represented by P i = ( m i e -m )/ i!. Show your work. (10pts)

6 12 out of 30 cultures had 0 mutations. So the probability of having zero mutations (P i ) is 12/30, and i= 0 mutational events per culture in this situation. P i (12/30) = = ( m i e -m )/ i! ( m 0 e -m )/ 0! 0.4 = ( 1 e -m )/ = e -m -ln(0.4) = m.916 = m.916 mutational events per culture and each culture has 1 x 10 8 cells a = m/n a =.916 mutational events/1 x 10 8 cells a = 9.16 x 10-9 rif R mutational events per cell division

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is:

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: DNA Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: Original molecule yields 2 molecules following DNA replication. Our topic in this section is how is

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

LECTURE 6 Gene Mutation (Chapter 16.1-16.2)

LECTURE 6 Gene Mutation (Chapter 16.1-16.2) LECTURE 6 Gene Mutation (Chapter 16.1-16.2) 1 Mutation: A permanent change in the genetic material that can be passed from parent to offspring. Mutant (genotype): An organism whose DNA differs from the

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

Bio 102 Practice Problems Chromosomes and DNA Replication

Bio 102 Practice Problems Chromosomes and DNA Replication Bio 102 Practice Problems Chromosomes and DNA Replication Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following enzymes is NT a key player in the process

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes

More information

1.5 page 3 DNA Replication S. Preston 1

1.5 page 3 DNA Replication S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation

More information

Bio 102 Practice Problems Genetic Code and Mutation

Bio 102 Practice Problems Genetic Code and Mutation Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Beadle and Tatum mutagenized Neurospora to find strains that required arginine

More information

MUTATION, DNA REPAIR AND CANCER

MUTATION, DNA REPAIR AND CANCER MUTATION, DNA REPAIR AND CANCER 1 Mutation A heritable change in the genetic material Essential to the continuity of life Source of variation for natural selection New mutations are more likely to be harmful

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

DNA Replication and Repair

DNA Replication and Repair DNA Replication and Repair This lecture explores the mechanisms of DNA replication and also the ways in which DNA can repair any replication errors. It also looks at some of the causes of DNA damage and

More information

Chapter 4 The role of mutation in evolution

Chapter 4 The role of mutation in evolution Chapter 4 The role of mutation in evolution Objective Darwin pointed out the importance of variation in evolution. Without variation, there would be nothing for natural selection to act upon. Any change

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized: Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

DNA: Structure and Replication

DNA: Structure and Replication 7 DNA: Structure and Replication WORKING WITH THE FIGURES 1. In Table 7-1, why are there no entries for the first four tissue sources? For the last three entries, what is the most likely explanation for

More information

Mutation, Repair, and Recombination

Mutation, Repair, and Recombination 16 Mutation, Repair, and Recombination WORKING WITH THE FIGURES 1. In Figure 16-3a, what is the consequence of the new 5 splice site on the open reading frame? In 16-3b, how big could the intron be to

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

Academic Nucleic Acids and Protein Synthesis Test

Academic Nucleic Acids and Protein Synthesis Test Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

The E. coli Insulin Factory

The E. coli Insulin Factory The E. coli Insulin Factory BACKGROUND Bacteria have not only their normal DNA, they also have pieces of circular DNA called plasmids. Plasmids are a wonderfully ally for biologists who desire to get bacteria

More information

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH) DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms! Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Name: Date: Period: DNA Unit: DNA Webquest

Name: Date: Period: DNA Unit: DNA Webquest Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.

More information

Basic attributes of genetic processes (replication, transcription, translation)

Basic attributes of genetic processes (replication, transcription, translation) 411-3 2008 Lecture notes I. First general topic in the course will be mutation (in broadest sense, any change to an organismʼs genetic material). Intimately intertwined with this is the process of DNA

More information

BCOR101 Midterm II Wednesday, October 26, 2005

BCOR101 Midterm II Wednesday, October 26, 2005 BCOR101 Midterm II Wednesday, October 26, 2005 Name Key Please show all of your work. 1. A donor strain is trp+, pro+, met+ and a recipient strain is trp-, pro-, met-. The donor strain is infected with

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

Genetics 301 Sample Final Examination Spring 2003

Genetics 301 Sample Final Examination Spring 2003 Genetics 301 Sample Final Examination Spring 2003 50 Multiple Choice Questions-(Choose the best answer) 1. A cross between two true breeding lines one with dark blue flowers and one with bright white flowers

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

RNA and Protein Synthesis

RNA and Protein Synthesis Name lass Date RN and Protein Synthesis Information and Heredity Q: How does information fl ow from DN to RN to direct the synthesis of proteins? 13.1 What is RN? WHT I KNOW SMPLE NSWER: RN is a nucleic

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Gene Switches Teacher Information

Gene Switches Teacher Information STO-143 Gene Switches Teacher Information Summary Kit contains How do bacteria turn on and turn off genes? Students model the action of the lac operon that regulates the expression of genes essential for

More information

2006 7.012 Problem Set 3 KEY

2006 7.012 Problem Set 3 KEY 2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each

More information

AP BIOLOGY 2010 SCORING GUIDELINES (Form B)

AP BIOLOGY 2010 SCORING GUIDELINES (Form B) AP BIOLOGY 2010 SCORING GUIDELINES (Form B) Question 2 Certain human genetic conditions, such as sickle cell anemia, result from single base-pair mutations in DNA. (a) Explain how a single base-pair mutation

More information

Bob Jesberg. Boston, MA April 3, 2014

Bob Jesberg. Boston, MA April 3, 2014 DNA, Replication and Transcription Bob Jesberg NSTA Conference Boston, MA April 3, 2014 1 Workshop Agenda Looking at DNA and Forensics The DNA, Replication i and Transcription i Set DNA Ladder The Double

More information

DNA Replication in Prokaryotes

DNA Replication in Prokaryotes OpenStax-CNX module: m44488 1 DNA Replication in Prokaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams. Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.

More information

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna

More information

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme. Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.

More information

Transcription in prokaryotes. Elongation and termination

Transcription in prokaryotes. Elongation and termination Transcription in prokaryotes Elongation and termination After initiation the σ factor leaves the scene. Core polymerase is conducting the elongation of the chain. The core polymerase contains main nucleotide

More information

AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET

AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET NAME: AP Biology TEST #5 - Chapters 11-14, 16 - REVIEW SHEET 1. Griffith's experiments showing the transformation of R strain pneumococcus bacteria to S strain pneumococcus bacteria in the presence of

More information

Kaustubha Qanungo Ph.D Biological Sciences Trident Technical College 7000 Rivers Avenue Charleston SC 29464

Kaustubha Qanungo Ph.D Biological Sciences Trident Technical College 7000 Rivers Avenue Charleston SC 29464 Call for action: Paradigm shift in teaching microbiology in a community colleges Kaustubha Qanungo Ph.D Biological Sciences Trident Technical College 7000 Rivers Avenue Charleston SC 29464 Project Course:

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

Bio 102 Practice Problems Recombinant DNA and Biotechnology

Bio 102 Practice Problems Recombinant DNA and Biotechnology Bio 102 Practice Problems Recombinant DNA and Biotechnology Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which of the following DNA sequences could be the recognition site

More information

BCH401G Lecture 39 Andres

BCH401G Lecture 39 Andres BCH401G Lecture 39 Andres Lecture Summary: Ribosome: Understand its role in translation and differences between translation in prokaryotes and eukaryotes. Translation: Understand the chemistry of this

More information

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell Gene Cloning 2004 Seungwook Kim Chem. & Bio. Eng. Reference T.A. Brown, Gene Cloning, Chapman and Hall S.B. Primrose, Molecular Biotechnology, Blackwell Why Gene Cloning is Important? A century ago, Gregor

More information

Lecture 3: Mutations

Lecture 3: Mutations Lecture 3: Mutations Recall that the flow of information within a cell involves the transcription of DNA to mrna and the translation of mrna to protein. Recall also, that the flow of information between

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

restriction enzymes 350 Home R. Ward: Spring 2001

restriction enzymes 350 Home R. Ward: Spring 2001 restriction enzymes 350 Home Restriction Enzymes (endonucleases): molecular scissors that cut DNA Properties of widely used Type II restriction enzymes: recognize a single sequence of bases in dsdna, usually

More information

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise:

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise: HCS604.03 Exercise 1 Dr. Jones Spring 2005 Recombinant DNA (Molecular Cloning) exercise: The purpose of this exercise is to learn techniques used to create recombinant DNA or clone genes. You will clone

More information

How Cancer Begins???????? Chithra Manikandan Nov 2009

How Cancer Begins???????? Chithra Manikandan Nov 2009 Cancer Cancer is one of the most common diseases in the developed world: 1 in 4 deaths are due to cancer 1 in 17 deaths are due to lung cancer Lung cancer is the most common cancer in men Breast cancer

More information

RNA: Transcription and Processing

RNA: Transcription and Processing 8 RNA: Transcription and Processing WORKING WITH THE FIGURES 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions? The arrows for genes 1 and 2 indicate the direction

More information

The Steps. 1. Transcription. 2. Transferal. 3. Translation

The Steps. 1. Transcription. 2. Transferal. 3. Translation Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order

More information

Gene mutation and molecular medicine Chapter 15

Gene mutation and molecular medicine Chapter 15 Gene mutation and molecular medicine Chapter 15 Lecture Objectives What Are Mutations? How Are DNA Molecules and Mutations Analyzed? How Do Defective Proteins Lead to Diseases? What DNA Changes Lead to

More information

13.2 Ribosomes & Protein Synthesis

13.2 Ribosomes & Protein Synthesis 13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity

Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Lab 10: Bacterial Transformation, part 2, DNA plasmid preps, Determining DNA Concentration and Purity Today you analyze the results of your bacterial transformation from last week and determine the efficiency

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

Gene Transcription in Prokaryotes

Gene Transcription in Prokaryotes Gene Transcription in Prokaryotes Operons: in prokaryotes, genes that encode protein participating in a common pathway are organized together. This group of genes, arranged in tandem, is called an OPERON.

More information

GENE REGULATION. Teacher Packet

GENE REGULATION. Teacher Packet AP * BIOLOGY GENE REGULATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Pictures

More information

Activity 7.21 Transcription factors

Activity 7.21 Transcription factors Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation

More information

AMES TEST: Bacterial Reverse Mutation Assay

AMES TEST: Bacterial Reverse Mutation Assay AMES TEST: Bacterial Reverse Mutation Assay 1. Introduction The bacteria reversed mutation assay (Ames Test) is used to evaluate the mutagenic properties of test articles. The test uses amino acid-dependent

More information

Bio 105 Mutation 2/12/12. "spontaneous" or induced. fixation of sequence alteration (DNA replication) DNA Protein Phenotype Silent Missense Nonsense

Bio 105 Mutation 2/12/12. spontaneous or induced. fixation of sequence alteration (DNA replication) DNA Protein Phenotype Silent Missense Nonsense MUTATION: BASIC FEATURES OF THE PROCESS GENERALIZATION Mutation of a DNA target sequence typically is a sequential process with defined intermedaites (premutagenic lesions). Elaborate, specific mechanisms

More information

Lab # 12: DNA and RNA

Lab # 12: DNA and RNA 115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long

More information

DNA Technology Mapping a plasmid digesting How do restriction enzymes work?

DNA Technology Mapping a plasmid digesting How do restriction enzymes work? DNA Technology Mapping a plasmid A first step in working with DNA is mapping the DNA molecule. One way to do this is to use restriction enzymes (restriction endonucleases) that are naturally found in bacteria

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Umm AL Qura University MUTATIONS. Dr Neda M Bogari

Umm AL Qura University MUTATIONS. Dr Neda M Bogari Umm AL Qura University MUTATIONS Dr Neda M Bogari CONTACTS www.bogari.net http://web.me.com/bogari/bogari.net/ From DNA to Mutations MUTATION Definition: Permanent change in nucleotide sequence. It can

More information

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA

More information

Today you will extract DNA from some of your cells and learn more about DNA. Extracting DNA from Your Cells

Today you will extract DNA from some of your cells and learn more about DNA. Extracting DNA from Your Cells DNA Based on and adapted from the Genetic Science Learning Center s How to Extract DNA from Any Living Thing (http://learn.genetics.utah.edu/units/activities/extraction/) and BioRad s Genes in a bottle

More information

The Awesome Power of Yeast Genetics: Spontaneous and Induced Mutagenesis and Complementation Analysis using Saccharomyces cerevisiae.

The Awesome Power of Yeast Genetics: Spontaneous and Induced Mutagenesis and Complementation Analysis using Saccharomyces cerevisiae. The Awesome Power of Yeast Genetics: Spontaneous and Induced Mutagenesis and Complementation Analysis using Saccharomyces cerevisiae. Mutations occur as a consequence of normal cellular physiology and

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

Gene Regulation -- The Lac Operon

Gene Regulation -- The Lac Operon Gene Regulation -- The Lac Operon Specific proteins are present in different tissues and some appear only at certain times during development. All cells of a higher organism have the full set of genes:

More information

Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual

Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual Effects of Antibiotics on Bacterial Growth and Protein Synthesis: Student Laboratory Manual I. Purpose...1 II. Introduction...1 III. Inhibition of Bacterial Growth Protocol...2 IV. Inhibition of in vitro

More information

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of

More information