Chapter 4 The role of mutation in evolution

Size: px
Start display at page:

Download "Chapter 4 The role of mutation in evolution"

Transcription

1 Chapter 4 The role of mutation in evolution Objective Darwin pointed out the importance of variation in evolution. Without variation, there would be nothing for natural selection to act upon. Any change in the environmental conditions could be disastrous for a population lacking variation. If variation is so important to evolution, it is only fair to ask, where does the variation come from? The very next question that arises is whether the variation is random, or whether there is some tendency for novel mutations to be favorable. A very clever experiment established that mutations are random with respect to fitness, but more recently this has been challenged. Let's review the data. The low but critical rate of mutations At one level it would appear that mutations are mistakes. The elaborate machinery that cells use to copy their DNA, to proofread and correct replication errors, and to assure that the chromosomes divide properly into daughter cells suggests that cells are doing everything in their power to prevent mistakes. In fact, estimates of the error rate of DNA replication in many higher organisms are on the order of one mistake per billion nucleotides copied. As fantastically low as this error rate seems, it might seem that mutations could not be terribly important. But an organism that was able to copy its DNA perfectly every time would find its supply of variation would soon dwindle to the point that its extinction would be assured. Mutations and wristwatches Most mutations, being random changes in a complex mechanism, are deleterious. One can make the analogy to a mechanical wristwatch. Randomly tapping or poking at the insides of the watch almost always decrease the chance that it will keep good time, and many such tamperings would make the watch stop outright. But sometimes there might be a piece of dust on a critical gear, and a small tap might dislodge that dust. The end result of the small, random tap would be to make the watch run more accurately. It is these improbable small improvements that allow adaptive evolution to progress. Types of mutations All mutations result from changes in DNA. The changes may be single base changes, or they may involve many bases at once. We distinguish between two major classes of single base changes. Transitions are changes from purine to purine (G - A) or pyrimidine to pyrimidine (C - T), and transversions are changes from purine to pyrimidine or vice versa. In addition to these single bases changes, DNA may mutate by having insertions or deletions of bases. Such insertions and deletions may be as small as a single base, or they may involve thousands of bases, as when a transposable element inserts (we'll get to that in chapter 7). Pieces of chromosomes may also break and rejoin the chromosome to give rise to an inversion. Some populations of Drosophila have an abundance of different inversions

2 maintained in the population. These inversions are readily examined in heterozygotes because the chromosomes have to twist around to be able to pair up gene-for-gene. This twisting around is visible under a light microscope as an inversion loop. Finally, whole pieces of chromosomes may be broken off and moved to other chromosomes. Some of the most interesting translocations involve movements of DNA material onto or off from the Y chromosome. We can follow these movements by examining Y chromosomes from many different species, and seeing that there is a low rate of movement of genetic material onto and off of the Y chromosome. Of course, when a gene finds itself on the Y chromosome, unless it retains a copy on other chromosomes it is found only in males. The gene for rapid channel changing with a TV remote is one such gene (just kidding). Mutations exhibit an excess of transitions One wonderful aspect of being able to sequence DNA is that we can compare DNA sequences and determine what the differences are. If we take a group of individuals and compare their DNA sequences, however, we will not necessarily get a good picture of the relative rates of the various kind of mutations. The reason is that mutations that have a deleterious effect will be under-represented in our sample because natural selection will have removed many of them. A solution to this problem is to consider only variation in pseudogenes. Pseudogenes are genes that have suffered a mutation that completely knocks out the function of the gene, for example, by introducing a premature termination codon. Once a gene is a pseudogene, it does not matter if it gets additional mutations, because it is dead already. Pseudogenes are almost ideal for finding out what kind of neutral mutations occur. In comparing a series of pseudogenes in mammals, Wen-Hsiung Li and colleagues tallied this table of change in bases:

3 From this base: A T C G A T To this base C G Note that not all cells have equal counts. Transition mutations occur on the diagonal from the upper right down to the lower left. The excess of transitions is observed in nearly all organisms, and is called a transition bias. The transition bias is caused by an inherent increased error rate of DNA polymerase when it copies DNA strands. Mutations change allele frequency very slowly We are now in a position of being able to ask how allele frequencies change in populations. Many forces will affect allele frequencies, and we have already seen that random genetic drift can have a big effect, especially if enough time elapses. Now let us consider the effects of mutation on allele frequency. In order to isolate the effects of mutation, we need to assume that the population is so enormously huge that we can ignore random genetic drift. We will also assume that mutations are all neutral (just to get things started). Further assume that the population starts out with all A alleles, and that these mutate at just one site to a new allele a at rate u per generation. The mathematical treatment of models like this is much simpler if we also assume that the generations are non-overlapping. If the initial frequency of allele A is p, then the frequency the next generation is simply p times the probability that the A allele does not mutate. We let p' be the expression for "p the next generation" and the equation that expresses how p changes is a recursion that looks like this: p' = p(1-u) This is a nice simple equation, and from it we can draw a nice simple conclusion. Typical mutation rates are around 10-9 per base pair, or around 10-6 per gene with 1000 nucleotides. With this mutation rate, the time required to go from p=1 to p=0.5 is 693,147 generations. The nice simple conclusion is that pure mutation, with no other force changing allele frequencies, is an extremely ineffective force in evolution. A much more reasonable view is that mutation introduces the variation into the population, and then either natural selection (or random genetic drift) causes the allele frequency to change. Referring back to chapter, we saw that an allele with initial frequency of 0.5 will take an expected.77n generations to go to fixation or loss. This means that drift will change the allele frequency

4 faster than mutation even if the population is 693,147/.77 = 50,33 or smaller. Of course, a smaller population would have random genetic drift change the allele frequencies even faster. How Drosophila balancer chromosomes work Before we can understand some important experiments on the effects of mutations, we need to know about one trick that Drosophila geneticists have used to maintain severely deleterious mutations in stocks. The method makes use of what are called balancer chromosomes. These are chromosomes having multiple overlapping inversions and a recessive lethal mutation with a dominant visible phenotype. The inversions keep the chromosome from recombining with its homolog, and the lethal mutation prevents a culture from becoming homozygous for the balancer. A stock that has a deleterious mutation m can be kept in a population with an appropriate balancer chromosome. Suppose m is on the second chromosome, and we have a stock that looks like m/sm5, where SM5 is a balancer chromosome that happens to carry the Curly wing mutation. This line is expected to produce zygotes in a 1::1 ratio of m/m, m/sm5, and SM5/SM5. If m is recessive lethal, then we see no m/m offspring. SM5 is lethal when homozygous, so we get no SM5/SM5 offspring. This leaves only the m/sm5 offspring. See why they are called balancer chromosomes! Measuring mutation and effects on fitness Starting in the early 1960's Terumi Mukai set up and followed a large experiment that has had considerable impact on our thinking about mutation. The basic idea of the experiment was to make 104 lines of Drosophila melanogaster that were initially all genetically identical. These lines were then maintained in such a way that mutations could accumulate generation after generation. The mutations were kept from becoming homozygous within any line by continually crossing the line to an outside line carrying a balancer chromosome.

5 The average chance of survival of these lines declined over time, and Mukai calculated that a mutation occurs somewhere on the second chromosome every seven generations. As the mutations accumulated, the variation in fitness across lines increased because some lines suffered several mutations and others suffered fewer. Poisson distribution of mutations Mukai's reasoning depended in part on an assumption about the distribution of the number of mutations that occur per line. If mutations are relatively rare, and each mutation occurs at random with a constant probability independent of any other mutation, and we examine many lines of flies, then the number of mutations per line will have a Poisson distribution. We won't derive the Poisson distribution, but its formula is: Pr(x mutations) = u e x! x u Where u is the mutation rate. The Poisson has an interesting property that the mean and the variance are both equal to u. The probability that a line will have zero mutations is Pr(x=0) = u 0 e -u /0! = e -u. If the mutation rate is 10-6, then you can see that this probability is very close to 1. However, Mukai was not estimating the mutation rate for a single gene -- he was estimating the mutation rate for the entire second chromosome, which probably has 000 genes. The Poisson distribution arises frequently in biology, especially in the study of rare events, like mutations. Bacterial populations Bacteria seem to be able to adapt to changes quickly, as though they recognize a metabolic need and they somehow change accordingly. Biologists in the 1940's were not sure whether bacteria were like other organisms, or whether they had unique properties of selfreplication that allowed them to produce all kinds of variant offspring in response to environmental stress. Salvadore Luria was bothered by this idea, because he believed that bacteria were like other organisms, and that the apparent ability of bacteria to adapt to new culture media or other environmental changes was due to the fact that their population size was so large that even random mutations would hit upon the successful mutation relatively quickly. The challenge was to devise an experiment that determined whether the bacteria mutated specifically in response to the stress, or whether the mutations were occurring at random. The experiment described in the following section Salvadore Luria and Max Delbrück devised a subtle and clever way to test this. Luria and Delbrück's fluctuation test The basic problem was that as soon as bacteria are placed on a selective medium and we subsequently see bacteria that have responded to the selection, it is hard to know whether the mutation that allows the bacteria to respond occurred before or after the bacteria were put on the selective medium. Here is how Luria and Delbrück solved this problem. They started

6 with E. coli bacteria that was sensitive to T1-phage. This means that the phage would infect and lyse the E. coli. They picked individual colonies of E. coli grown on a petri dish, and from each they grew up a culture in a test-tube. They then spread the cells from this culture onto a petri dish in the presence of T1. If no mutations occurred, all the E. coli cells would be killed, and E. coli colonies would not grow. If a T1-resistance mutation occurred, then the cells with those mutations could grow and form colonies. The subtle part comes next, and it has to do with a careful analysis of the results. If no mutations occurred in the E. coli until the very final step, when the T1 phage are present, and the E. coli mutate only in response to presence of the phage, then each cell at the end has an equal chance of getting the mutation, so each culture should produce a smattering of resistant colonies. If one petri dish spread were made from each culture, and each petri dish has 1000 cells spread on it, and the chance of a resistance mutation is 0.00, then we would expect to see resistant E. coli cells per plate. In fact, the distribution of the number of resistant colonies per plate is expected under this model to be a Poisson distribution with a mean of. This is the expectation if the mutations only occur at the last step, when the T1 phage is added. Another possibility is that each time the E. coli divides, there is a certain random chance of mutation to T1 resistance, even if no T1 phage are present. When the cultures start growing from a single cell, they undergo many cell divisions before there are enough cells for us to plate out on the petri dish. If mutations had been occurring all along during this growth, then consider what should happen to the distribution of resistant colonies. In some cultures one might see a mutation occurring relatively early in the process of cell division. If this occurred, then all descendant cells would also be resistant, and we would end up with a petri dish having many, many resistant E. coli. At the same time, there would be other petri dishes which, by

7 chance, had no mutations at all. Luria and Delbrück called this a "jackpot" distribution, because some of the petri dishes had hit the jackpot in having so many resistance colonies. The variation from one petri dish to another in this case would have much greater variability from one to another than predicted from the Poisson distribution. What they saw was a very clear jackpot distribution. The counts of resistant E. coli per petri dish was not at all a Poisson distribution, but rather there were plates with very large numbers of resistant colonies. This simple observation allowed them to conclude that the mutations did not occur in specific response to the T1, but rather that the mutations are occurring randomly all the time at a certain low frequency. Despite the elegance and power of the Luria and Delbruck experiments, many researchers have continued to wonder if mutations might actually occur more frequently when they might benefit the organism. This could be a valuable adaptation if conditions sometimes grew so unfavorable that it was likely that the current genotype would not fare well. Then, a gamble such as producing more genetically variable progeny, might actually pay off with an increased chance of fit offspring. Several recent studies have identifed an interesting group of enzymes known as DNA mutases, which are versions of DNA polymerase which produce errors at a very high rate. These sloppy polymerases are present in bacteria and yeast, and similar enzymes may be common in eukaryotes as well. They have the special ability to replicate DNA even if an error (mutation) is detected in the template DNA, instead of stopping to wait for a DNA repair enzyme to fix the mistake. If DNA mutases are expressed under challenging or highly stressful conditions, then some of the elements would be in place for organisms to generate adaptive mutations. Summary 1. Mutations are absolutely necessary for evolution to proceed. They are the ultimate source of all variation.. The classes of mutations are: a) single base changes, b) insertions and deletions, c) inversions, d) translocations 3. Single base changes are not equally frequent, suggesting that there are chemical constraints to the errors that polymerase makes when DNA is replicated. 4. Mukai's experiments with mutation accumulation lines used balancer chromosomes to retain mutations in lines over many generations. This allowed him to quantify the rate of accumulation of deleterious effects of mutations. 5. The Luria-Delbrück experiment established that mutations in bacteria occur at random, and that bacteria do not have a mechanism that makes adaptive mutations more likely. However, new evidence keeps open the possibility that bacteria and yeast (at least) turn on DNA replication that is more error prone than usual during time of stress; this again opens the possibility of a mechanisms that could increase the chances of adaptive mutations.

Lecture 5 Mutation and Genetic Variation

Lecture 5 Mutation and Genetic Variation 1 Lecture 5 Mutation and Genetic Variation I. Review of DNA structure and function you should already know this. A. The Central Dogma DNA mrna Protein where the mistakes are made. 1. Some definitions based

More information

LECTURE 6 Gene Mutation (Chapter 16.1-16.2)

LECTURE 6 Gene Mutation (Chapter 16.1-16.2) LECTURE 6 Gene Mutation (Chapter 16.1-16.2) 1 Mutation: A permanent change in the genetic material that can be passed from parent to offspring. Mutant (genotype): An organism whose DNA differs from the

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Chapter 23: Population Genetics (Microevolution)

Chapter 23: Population Genetics (Microevolution) Chapter 23: Population Genetics (Microevolution) Microevolution is a change in allele frequencies or genotype frequencies in a population over time Genetic equilibrium in populations: the Hardy-Weinberg

More information

Luria-Delbruck Fluctuation Test

Luria-Delbruck Fluctuation Test Luria-Delbruck Fluctuation Test April 20, 2013 0.1 Pre-Lab We want to introduce you to one of the most clever and intriguing experiments performed in the last century in the field of biology, by Luria

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

INTRODUCTION. have developed ways to repair damaged DNA

INTRODUCTION. have developed ways to repair damaged DNA INTRODUCTION! The term mutation refers to a heritable change in the genetic material! Mutations provide allelic variations On the positive side, mutations are the foundation for evolutionary change On

More information

BS110 Lab Spring 09 T. M. Long

BS110 Lab Spring 09 T. M. Long Lab 6: Avida ED Prepare for this lab by reading the Discover magazine article by Carl Zimmer, Testing Darwin linked to the lab website. Genetic Basis of Evolution Evolution is defined as change in the

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

We will consider four types of rearrangements. Deletions: CD deleted Tandem duplications: CD duplicated Inversions: CDE inverted

We will consider four types of rearrangements. Deletions: CD deleted Tandem duplications: CD duplicated Inversions: CDE inverted Rearrangements Reading: Chapter 14, pp489-508 for two lectures Problem set for two lectures We will consider four types of rearrangements. A B C D E F G Deletions: CD deleted A B E F G Tandem duplications:

More information

Mechanisms of Evolutionary Change

Mechanisms of Evolutionary Change Mechanisms of Evolutionary Change Evolution is defined as a change in allele frequencies over time. Natural selection acts on individuals, but evolutionary change occurs in populations. Mechanisms of Evolutionary

More information

Restricted (due to exhaustion of nutrients, lessened availability of oxygen, accumulation of toxic byproducts of metabolism, etc) vs. unrestricted.

Restricted (due to exhaustion of nutrients, lessened availability of oxygen, accumulation of toxic byproducts of metabolism, etc) vs. unrestricted. Lecture #3 MICROBIAL GROWTH Restricted (due to exhaustion of nutrients, lessened availability of oxygen, accumulation of toxic byproducts of metabolism, etc) vs. unrestricted. Counting bacteria: Viable

More information

LAB 11 Natural Selection (version 2)

LAB 11 Natural Selection (version 2) LAB 11 Natural Selection (version 2) Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you

More information

Alleles that do not affect

Alleles that do not affect Genetic Drift A common conception about evolution is that the features of an organism have evolved due to random (undirected) change. Some processes in biology are random like mutation. Natural selection

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

REVIEW 5: GENETICS. a. Humans have chromosomes, or homologous pairs. homologous:

REVIEW 5: GENETICS. a. Humans have chromosomes, or homologous pairs. homologous: Name: 1. Chromosomes: REVIEW 5: GENETICS a. Humans have chromosomes, or homologous pairs. homologous: b. Chromosome pairs carry genes for the same traits. Most organisms have two copies of the! gene for

More information

Allele Frequencies: Changing. Chapter 15

Allele Frequencies: Changing. Chapter 15 Allele Frequencies: Changing Chapter 15 Changing Allele Frequencies 1. Mutation introduces new alleles into population 2. Natural Selection specific alleles are more likely to be passed down because they

More information

REVIEW UNIT 4 & 5: HEREDITY & MOLECULAR GENETICS SAMPLE QUESTIONS

REVIEW UNIT 4 & 5: HEREDITY & MOLECULAR GENETICS SAMPLE QUESTIONS Period Date REVIEW UNIT 4 & 5: HEREDITY & MOLECULAR GENETICS SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. A represents the dominant

More information

Section 12 1 DNA (pages )

Section 12 1 DNA (pages ) Chapter 12 DNA and RNA Section 12 1 DNA (pages 287 294) Key Concepts What did scientists discover about the relationship between genes and DNA? What is the overall structure of the DNAmolecule? 9. Transformation

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157)

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2013 page 1 of 5 Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria with with Excellence Demonstrate understanding

More information

Answer Key. Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I. Name. Student ID#

Answer Key. Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I. Name. Student ID# Name Student ID# Answer Key Bacterial Genetics, BIO 4443/6443 Spring Semester 2001 Exam I 1.) Describe two general mechanisms by which transcription can terminate in bacteria. (5pts) Factor dependant termination

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

1. Do I know why cells cannot continue to grow larger and larger?

1. Do I know why cells cannot continue to grow larger and larger? Chapter 9 1. Do I know why cells cannot continue to grow larger and larger? 2. Do I know what phase cells spend most of their time in? 3. Mitosis is the division of the. 4. Interphase is divided into three

More information

Developmental Biology BY1101 P. Murphy. Lecture 2 Model organisms

Developmental Biology BY1101 P. Murphy. Lecture 2 Model organisms Developmental Biology BY1101 P. Murphy Lecture 2 Model organisms An introduction to the organisms that are most commonly used to study development and a discussion of their relative advantages and disadvantages

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 Review Evolution by Natural Selection new variants

More information

BIOL 3306 Evolutionary Biology

BIOL 3306 Evolutionary Biology BIOL 3306 Evolutionary Biology Maximum score: 22.5 Time Allowed: 90 min Total Problems: 17 1. The figure below shows two different hypotheses for the phylogenetic relationships among several major groups

More information

CALIFORNIA LIFE SCIENCE STANDARDS TEST GRADE 10 (Blueprint adopted by the State Board of Education 1/04)

CALIFORNIA LIFE SCIENCE STANDARDS TEST GRADE 10 (Blueprint adopted by the State Board of Education 1/04) GRADE 0 (Blueprint adopted by the State Board of Education /04) CELL BIOLOGY 0 items 7%. All living organisms are composed of cells, from just one to many trillions, whose details usually are visible only

More information

Chapter 16: DNA. the genetic material

Chapter 16: DNA. the genetic material Chapter 16: DNA the genetic material Lecture Topics Evidence that DNA is the genetic material Structure of DNA DNA replication is semiconservative DNA replication: the process DNA packaging What must genetic

More information

DNA and RNA. Griffith and Transformation (pages ) Avery and DNA (page 289) Chapter 12. Name Class Date

DNA and RNA. Griffith and Transformation (pages ) Avery and DNA (page 289) Chapter 12. Name Class Date Chapter 12 DNA and RNA Section 12 1 DNA (pages 287 294) This section tells about the experiments that helped scientists discover the relationship between genes and DNA. It also describes the chemical structure

More information

Genetic Mutations. What mistakes can occur when DNA is replicated? T A C G T A G T C C C T A A T G G A T C

Genetic Mutations. What mistakes can occur when DNA is replicated? T A C G T A G T C C C T A A T G G A T C Why? Genetic Mutations What mistakes can occur when DNA is replicated? The genes encoded in your DNA result in the production of proteins that perform specific functions within your cells. Various environmental

More information

Chapter 25: Population Genetics

Chapter 25: Population Genetics Chapter 25: Population Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the concept of a population and polymorphism in populations. 2. Apply the

More information

Lecture Outline 9/27. Review conjugation mapping. Example. met- tyr- azir strs met+ tyr+ azis strr. F- strain: Hfr strain:

Lecture Outline 9/27. Review conjugation mapping. Example. met- tyr- azir strs met+ tyr+ azis strr. F- strain: Hfr strain: Lecture Outline 9/27 Finish Bacterial Genetics Transformation Transduction via phage Fine structure mapping Remember: EXAM 1 will be TOMORROW afternoon, 4:30-6:00 PM (here) New homework will be posted

More information

Name Class Date. f. a change in the genetic material 11. codon

Name Class Date. f. a change in the genetic material 11. codon Chapter 12 DNA and RNA Chapter Vocabulary Review Labeling Diagrams On the lines provided, identify each kind of RNA. Ribosome Amino acid Uracil 1. 2. 3. Matching On the lines provided, write the letter

More information

Biology 101 Patterns of Inheritance. Heredity: passing of characteristics from parents to offspring.

Biology 101 Patterns of Inheritance. Heredity: passing of characteristics from parents to offspring. Genetics = science of heredity. Biology 101 Patterns of Inheritance Heredity: passing of characteristics from parents to offspring. Wildtype vs. Variant Roots of Genetics Hippocrates and Aristotle The

More information

February 22, 2005 Bio 107/207 Winter 2005 Lecture 15 Linkage disequilibrium and recombination

February 22, 2005 Bio 107/207 Winter 2005 Lecture 15 Linkage disequilibrium and recombination February 22, 2005 Bio 107/207 Winter 2005 Lecture 15 Linkage disequilibrium and recombination - in our treatment of population genetics up to this point we have assumed that the transmission of alleles

More information

Population Genetics: Changes in the Gene Pool and Gene Frequency

Population Genetics: Changes in the Gene Pool and Gene Frequency Biology 11 Name: Population Genetics: Changes in the Gene Pool and Gene Frequency Evolution through natural selection describes how populations change over time but it is not the only way that populations

More information

Biology 201 (Genetics) Exam #2 26 October 2004

Biology 201 (Genetics) Exam #2 26 October 2004 Name KEY Biology 201 (Genetics) Exam #2 26 October 2004 Read the question carefully before answering. Think before you write. You will have up to 85 minutes hour to take this exam. After that, you MUST

More information

GENETICS OF BACTERIA AND VIRUSES

GENETICS OF BACTERIA AND VIRUSES GENETICS OF BACTERIA AND VIRUSES 1 Genes of bacteria are found in bacterial chromosomes Usually a single type of chromosome May have more than one copy of that chromosome Number of copies depends on the

More information

DNA TECHNOLOGY & GENE REGULATION PRACTICE TEST

DNA TECHNOLOGY & GENE REGULATION PRACTICE TEST DNA TECHNOLOGY & GENE REGULATION PRACTICE TEST 1. In recombinant DNA experiments, is used to cut pieces of DNA and joins the resulting fragments to form recombinant DNA. a. A restriction enzyme, DNA ligase

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

CAMPBELL BIOLOGY. Chapter 13

CAMPBELL BIOLOGY. Chapter 13 Lecture 10 Population Genetics CAMPBELL BIOLOGY Chapter 13 Hox Genes Control development Hox genes need to be highly regulated to get expressed at the right time and correct level to orchestrate mammalian

More information

Chapter 26 Lecture Notes: Population Genetics

Chapter 26 Lecture Notes: Population Genetics Chapter 26 Lecture Notes: Population Genetics I. Introduction A. Darwin s Theory of evolution 1. Variation: Among individuals in a population there is phenotypic and genotypic variation 2. Heredity: Offspring

More information

14.1 Human Chromosomes

14.1 Human Chromosomes 14.1 Human Chromosomes Lesson Objectives Identify the types of human chromosomes in a karotype. Describe the patterns of the inheritance of human traits. Explain how pedigrees are used to study human traits.

More information

AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23)

AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23) Period Date AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23) 1. Charles Darwin proposed that evolution by natural selection was the basis for the differences that he saw in similar organisms

More information

(p+q) n = p 6 + 6p 5 q + 15p 4 q p 3 q p 2 q 4 + 6pq 5 + q 6. 15p 2 q 4 = 15[(3/4) 2 *(1/4) 4 ] Problem Set 1B Due Sept 14

(p+q) n = p 6 + 6p 5 q + 15p 4 q p 3 q p 2 q 4 + 6pq 5 + q 6. 15p 2 q 4 = 15[(3/4) 2 *(1/4) 4 ] Problem Set 1B Due Sept 14 Problem Set 1B Due Sept 14 1. Solve the problem below with the binomial expansion method. First, indicate the appropriate bionomial and its expansion. Then use it to answer the following questions. (p+q)

More information

Genetics of Drosophila

Genetics of Drosophila Genetics of Drosophila Computer 7 In 1865, Gregor Mendel published a paper on the patterns of genetic inheritance in the common garden pea. This revolutionary work provided the basis for future study of

More information

Fishy Frequencies Overview: Objectives: Before doing this lab you should understand: After doing this lab you should be able to: Introduction:

Fishy Frequencies Overview: Objectives: Before doing this lab you should understand: After doing this lab you should be able to: Introduction: Fishy Frequencies Overview: In this lab you will:. learn about the Hardy-Weinberg law of genetic equilibrium, and. study the relationship between evolution and changes in allele frequencies by using your

More information

Math Circles Week 1 April 2004

Math Circles Week 1 April 2004 Some Basic Genetics: Most living things pass on their characteristics to the next generation as information encoded by a chemical called DNA. There are many ways for species to reproduce, but here we ll

More information

Chapter 18: Gene Mutation and DNA Repair

Chapter 18: Gene Mutation and DNA Repair Chapter 18: Gene Mutation and DNA Repair Student Learning Objectives Upon completion of this chapter you should be able to: 1. Know the different classes of mutations and their effects upon the organism.

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Evolution Q: How can populations evolve to form new species? 17.1 How do genes make evolution possible? WHAT I KNOW SAMPLE ANSWER: There are different variations of the same gene.

More information

Mendelian Population Genetics. Evolution: change in allele frequencies within a population over time

Mendelian Population Genetics. Evolution: change in allele frequencies within a population over time Mendelian Population Genetics Evolution: change in allele frequencies within a population over time A mouse is a vehicle for mouse gene replication Mice with Aa genotypes IF no mutation Gametes IF random

More information

Chapter 12: DNA Section: 12 1 Identifying the Substance of Genes

Chapter 12: DNA Section: 12 1 Identifying the Substance of Genes Chapter 12: DNA Section: 12 1 Identifying the Substance of Genes 1 of 37 12 1 DNA Griffith and Transformation Griffith and Transformation In 1928, British scientist Frederick Griffith was trying to learn

More information

Biology 32: Evolutionary Biology Computer simulations of evolutionary forces, 2010 KEY

Biology 32: Evolutionary Biology Computer simulations of evolutionary forces, 2010 KEY Biology 32: Evolutionary Biology Computer simulations of evolutionary forces, 2010 KEY 1. The default settings in Allele A 1 demonstrate Hardy-Weinberg equilibrium. These settings include initial frequencies

More information

UNIT 3: INTRODUCING BIOLOGY Chapter 8: From DNA to Proteins

UNIT 3: INTRODUCING BIOLOGY Chapter 8: From DNA to Proteins CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY

Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY Answer the following questions in complete sentences. Your answer should be in your own words and should be complete thoughts, however may use your notes

More information

Biology Ch 14 Human Genetics (14.1)

Biology Ch 14 Human Genetics (14.1) Biology Ch 14 Human Genetics (14.1) For Questions 1 7, write the letter of the correct answer on the line at the left. 1. The complete set of genetic information an organism carries in its DNA is its A.

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

7.03, 2006, Lecture 20 EUKARYOTIC GENES AND GENOMES I

7.03, 2006, Lecture 20 EUKARYOTIC GENES AND GENOMES I 1 Fall 2006 7.03 7.03, 2006, Lecture 20 EUKARYOTIC GENES AND GENOMES I For the last several lectures we have been looking at how one can manipulate prokaryotic genomes and how prokaryotic genes are regulated.

More information

Name 13 How Populations Evolve Test Date Study Guide You must know: How Lamarck s view of the mechanism of evolution differed from Darwin s.

Name 13 How Populations Evolve Test Date Study Guide You must know: How Lamarck s view of the mechanism of evolution differed from Darwin s. Name 3 How Populations Evolve Test Date Study Guide You must know: How Lamarck s view of the mechanism of evolution differed from Darwin s. Several examples of evidence for evolution. The difference between

More information

AP Biology Notes Outline Enduring Understanding 1.A. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.A. Big Idea 1: The process of evolution drives the diversity and unity of life. AP Biology Notes Outline Enduring Understanding 1.A Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.A: Change in the genetic makeup of a population

More information

BIO10 ch DNA Replication & Protein Synthesis 76. Chapter DNA Replication & Protein Synthesis

BIO10 ch DNA Replication & Protein Synthesis 76. Chapter DNA Replication & Protein Synthesis BIO10 ch11 12DNAReplication&ProteinSynthesis 76 Chapter 11-12 DNA Replication & Protein Synthesis Questions you should be able to answer after this lecture. 1. WHAT IS DNA? 2. Where in cell cycle does

More information

Chapter 13 - Sources of Genetic Variation

Chapter 13 - Sources of Genetic Variation Biology 100 Chapter 13b 1 Chapter 13 - Sources of Genetic Variation The existence of HERITABLE (GENETIC) VARIATION is essential for evolution Unfortunately for Darwin, the predominant view of heredity

More information

Random Genetic Drift & Gene Fixation

Random Genetic Drift & Gene Fixation Random Genetic Drift & Gene Fixation Arie Zackay July 31, 2007 Abstract Random Genetic Drift is one of the evolutionary forces that effects the distribution of alleles and changes their frequencies in

More information

Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402)

Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402) Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402) 3.1.1 Monomers and Polymers 3.1.4 Proteins 3.1.5 Nucleic acids are important information-carrying molecules 3.2.1 Cell structure

More information

UV-Induced Killing and Mutagenesis

UV-Induced Killing and Mutagenesis UV-Induced Killing and Mutagenesis Why are we using ultraviolet light to induce mutations? The most advantageous aspect of UV mutagenesis in a teaching laboratory is that we avoid the potential hazard

More information

Section 12 3 RNA and Protein Synthesis

Section 12 3 RNA and Protein Synthesis Name Class Date Section 12 3 RNA and Protein Synthesis (pages 300 306) Key Concepts What are the three main types of RNA? What is transcription? What is translation? The Structure of RNA (page 300) 1.

More information

BIOL 404: Molecular Evolution Mobilome

BIOL 404: Molecular Evolution Mobilome BIOL 404: Molecular Evolution Mobilome Are genomes static? Do genomic segments retain their same location over time? No! Transposition: movement of genetic material from one chromosomal location ( site)

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Name 12 Technology and the Human Genome Test Date Study Guide You must know: The terminology of biotechnology The steps in gene cloning with special

Name 12 Technology and the Human Genome Test Date Study Guide You must know: The terminology of biotechnology The steps in gene cloning with special Name 12 Technology and the Human Genome Test Date Study Guide You must know: The terminology of biotechnology The steps in gene cloning with special attention to the biotechnology tools that make cloning

More information

The Huntington Library, Art Collections, and Botanical Gardens. Bean There, Done That: A Hardy-Weinberg Simulation

The Huntington Library, Art Collections, and Botanical Gardens. Bean There, Done That: A Hardy-Weinberg Simulation The Huntington Library, Art Collections, and Botanical Gardens Bean There, Done That: A Hardy-Weinberg Simulation This lesson plan was adapted from San Francisco State University s Bio 240: http://userwww.sfsu.edu/~biol240/labs/lab_02hardyweinberg/pages/lab_01expt.html

More information

Chapter 8 Population Genetics: How do Genes Move through Time and Space?

Chapter 8 Population Genetics: How do Genes Move through Time and Space? Chapter 8 Population Genetics: How do Genes Move through Time and Space? 4/29/2009 Chun-Yu Chuang How Do We Characterize Variation? Variation can be smooth or discontinuous. Two views of biology Naturalists

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

More information

Evolution of Antibiotic Resistant Bacteria

Evolution of Antibiotic Resistant Bacteria Evolution of Antibiotic Resistant Bacteria TEACHER BACKGROUND INFORMATION: Revised 9/05 Introduction: During normal bacterial growth in a nutrient rich culture, some cells develop an alteration (change)

More information

12.2 The Structure of DNA

12.2 The Structure of DNA Name Class Date 12.2 The Structure of DNA The Components of DNA For Questions 1 5, complete each statement by writing in the correct word or words. 1. The building blocks of DNA are. 2. Nucleotides in

More information

cell. 3. a transfer ofmaterial from the host cell. 4. the reduction of the host cell. 5. the transformation of the host cell. 2. reject the virus.

cell. 3. a transfer ofmaterial from the host cell. 4. the reduction of the host cell. 5. the transformation of the host cell. 2. reject the virus. Version 001 Bacterial/Viral Genetics mahon (26) 1 This print-out should have 28 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt Bio

More information

Genetic Variation. Populations exposed to selection often evolve rapidly. Alleles that confer increased survival and reproductive ability in the new

Genetic Variation. Populations exposed to selection often evolve rapidly. Alleles that confer increased survival and reproductive ability in the new Genetic Variation Populations exposed to selection often evolve rapidly. Alleles that confer increased survival and reproductive ability in the new conditions rapidly increase in frequency, while alleles

More information

Genetics fill in review

Genetics fill in review Genetics fill in review Completion Complete each sentence or statement. 1. A reproductive process in which fertilization occurs within a single plant is 2. The transferring of pollen between plants is

More information

POPULATION GENETICS AND THE HARDY-WEINBERG LAW

POPULATION GENETICS AND THE HARDY-WEINBERG LAW POPULATION GENETICS AND THE HARDY-WEINBERG LAW The Hardy-Weinberg formulas allow scientists to determine whether evolution has occurred. Any changes in the gene frequencies in the population over time

More information

Solutions to Problem Set 3

Solutions to Problem Set 3 MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 3 Question 1 You have

More information

9th Grade. 9th -12th Grade History - Social Science. 9th -12th Grade Sciences

9th Grade. 9th -12th Grade History - Social Science. 9th -12th Grade Sciences 9th Grade 9th -12th Grade History - Social Science Historical and Social Sciences Analysis Skills Chronological and Spatial Thinking 1. Students compare and contrast the present with the past, evaluating

More information

CHAPTER 8 MICROBIAL GENETICS. What is genetics? Terminology

CHAPTER 8 MICROBIAL GENETICS. What is genetics? Terminology CHAPTER 8 MICROBIAL GENETICS What is genetics? The science of heredity; includes the study of genes, how they carry information, how they are replicated, how they are expressed Terminology Genetics: Study

More information

Lecture 6 Mendelian Genetics in Populations: Selection and Mutation

Lecture 6 Mendelian Genetics in Populations: Selection and Mutation Lecture 6 Mendelian Genetics in Populations: Selection and Mutation 1 Population: a group of interbreeding organisms and their offspring. Gene pool: the collection of alleles present within a population.

More information

2. Why did biologists used to think that proteins are the genetic material?

2. Why did biologists used to think that proteins are the genetic material? Chapter 16: DNA: The Genetic Material 1. What must genetic material do? 2. Why did biologists used to think that proteins are the genetic material? 3. Describe Griffith s experiments with genetic transformation

More information

Biology 423L Laboratory in Genetics, Final Exam Key, Dec. 14, 2009

Biology 423L Laboratory in Genetics, Final Exam Key, Dec. 14, 2009 1 Biology 423L Laboratory in Genetics, Final Exam Key, Dec. 14, 2009 Honor Pledge: I have neither given nor received any unauthorized help on this exam: Name Printed: Signature: 1. If you use X-rays to

More information

Population Genetics and Evolution

Population Genetics and Evolution Population Genetics and Evolution Computer 8 As early as the 500s B.C., several Greek philosophers theorized about the union of male and female traits to form offspring. In the 17th century, Leeuwenhoek

More information

Questions and Answers for Genetics and Genomics in Medicine Chapter 4

Questions and Answers for Genetics and Genomics in Medicine Chapter 4 Questions and s for Genetics and Genomics in Medicine Chapter 4 Question 1 Most of the constitutional variation in our DNA comes from endogenous sources. What are they? Errors in recombination. Errors

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. False

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Human Heredity Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The X and Y chromosomes are called the a. extra chromosomes. b. phenotypes.

More information

7.0 Inheritance and DNA. Related Sadava s chapters: 12) Inheritance, genes and chromosomes 13) DNA and its role in Heredity

7.0 Inheritance and DNA. Related Sadava s chapters: 12) Inheritance, genes and chromosomes 13) DNA and its role in Heredity 7.0 Inheritance and DNA Related Sadava s chapters: 12) Inheritance, genes and chromosomes 13) DNA and its role in Heredity 7.1 Inheritance, Genes and Chromosomes Early study of inheritance worked under

More information

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains

More information

Keystone Review Practice Test Module B Continuity and Unity of Life

Keystone Review Practice Test Module B Continuity and Unity of Life Keystone Review Practice Test Module B Continuity and Unity of Life 1. Which event most likely occurs next in mitosis? a. The chromatin condenses. b. The nuclear envelope dissolves. c. The chromosomes

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Recombination Epigenetic Inheritance

More information

Practice Problems 4. (a) 19. (b) 36. (c) 17

Practice Problems 4. (a) 19. (b) 36. (c) 17 Chapter 10 Practice Problems Practice Problems 4 1. The diploid chromosome number in a variety of chrysanthemum is 18. What would you call varieties with the following chromosome numbers? (a) 19 (b) 36

More information

Genomes and their variation

Genomes and their variation Genomes and their variation Phenotypic variation arises from genetic and environmental variation. Both are usually major contributors, and each influences the other. The genetic variation is encoded by

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Outline Evolution Genetics Population genetics Tutorial http://www.mabs.at/teaching/files/popgen2009. pdf What is evolution In a broad sense evolution =

More information

Some comments on biochemistry

Some comments on biochemistry BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 13: DNA replication and repair http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Some comments on biochemistry The last

More information