Prof. Anchordoqui Problems set # 11 Physics 169 May 5, 2015

Size: px
Start display at page:

Download "Prof. Anchordoqui Problems set # 11 Physics 169 May 5, 2015"

Transcription

1 rof. Anchordoqui roblems set # hysics 69 May 5, 5. A semicircular conductor of radius.5 m is rotated about the axis A at a constant rate of rev/min (Fig. ). A uniform magnetic field in all of the lower half of the figure is directed out of the plane of rotation and has a magnitude of.3 T. (i) alculate the maximum value of the emf induced in the conductor. (ii) What is the value of the average induced emf for each complete rotation? (iii) How would the answers to (i) and (ii) change if B were allowed to extend a distance above the axis of rotation? Sketch the emf versus time (iv) when the field is as drawn in Fig. and (v) when the field is extended as described in (iii). Solution (i) ε max BAω Bπ ω/.3 T π (.5 m) 4.π rad/s.6. (ii) ε π π ε dθ BAω π π sin θ dθ. (iii) The maximum and average ε would remain unchanged. (iv) See Fig.. (v) See Fig... An A power supply produces a maximum voltage of. This power supply is connected to a 4. Ω resistor, and the current and resistor voltage are measured with an ideal A ammeter and an ideal A voltmeter, as shown in Fig. 3 What does each meter read? ecall that an ideal ammeter has zero resistance and an ideal voltmeter has infinite resistance. Solution The meters measure the rms values of potential difference and current. rms 7.7 and rms rms.95 A. These are 3. (i) For the series connection of Fig. 4, draw a phasor diagram for the voltages. The amplitudes of the voltage drop across all the circuit elements involved should be represented with phasors. (ii) An circuit consists of a 5-Ω resistor, a -µf capacitor and a 46-mH inductor, connected in series with a -, 6-Hz power supply. What is the phase angle between the current and the applied voltage? (iii) Which reaches its maximum earlier, the current or the voltage? Solution (i) For the series connection, the instantaneous voltage across the system is equal to the sum of voltage across each element. The phase angle between the voltage (across the system) and the current (through the system) is: φ arctan X X. n Fig. 5 the phasor diagram for a series circuit is shown for both the inductive case X > X and the capacitive case X < X. On the one hand, in the inductive case,, >,c, we see that leads by a phase φ. On the other hand, in the capacitance case,, >,, we have that leads by a phase φ. (ii) From the definition, the inductive reactance of the inductor is X ω π 6 Hz.46 H 73 Ω. From the definition, the capacitive reactance of the capacitor is X ω 6 Ω. π 6 Hz 6 F The phase angle between the voltage (across the system) and the current (through the system) is: φ arctan X X arctan 74 Ω 6 Ω 5 Ω 7.4 (iii) The voltage leads the current. 4. Figure 6 shows a parallel circuit. The instantaneous voltage (and rms voltage) across each of the three circuit elements is the same, and each is in phase with the current through the

2 resistor. The currents in the capacitor and the inductor lead or lag behind the current in the resistor. (i) Show that the rms current delivered by the source is rms rms + ( ] [ ω /. ω) (ii) Show that the phase angle between the voltage and the current is tan ϕ ( X X ). (iii) Draw a phasor diagram for the currents. The amplitudes of the currents across all the circuit elements involved should be represented with phasors. Solution We are asked to find the impedance and the phase angle for this system of elements connected in parallel. t will be easier to analyze the complex impedance. For elements connected in parallel the equivalent complex impedance of the system is equal to the sum of inverse impedance of each element Z eq Z + Z + Z + iω + iω + i ( ω ω i(ω ω). (i) Hence ( ) +(ω ω) rms Z eq ( Z eq rms (ii) tan ϕ mzeq ez eq (ω ω) ), or Zeq +i(ω ω) ) + ( ω ω), and. (iii) The phasor diagram for a parallel circuit is shown in Fig. 7, for both the inductive case X > X and the capacitive case X < X. 5. Draw to scale a phasor diagram showing Z, X, X, and ϕ for an A series circuit for which 3 Ω, µf,. H, and f 5/π Hz. Solution Before drawing the diagram, we find the complex impedance of each element. The complex impedance of a resistor is equal to its resistance, Z 3 Ω. t is therefore a real number which we marked in the complex plane on the e axis of Fig. 8. The complex impedance of an inductor is an imaginary number dependent on the angular frequency of the current and the inductance of the inductor Z iω π 5 π s. H i Ω. This number is on the m axis. Finally, the complex impedance of the capacitor is also an imaginary number dependent on the angular frequency of the current and the capacitance of the capacitor Z i ω i 5 π π s 6 F 9.9i Ω. This number is also on the m axis. Since the elements are connected in series the equivalent complex impedance is equal to the sum of the complex impedance of each element: Z Z + Z + Z 3 Ω + i Ω 9.9i Ω (3 + 9.i) Ω. The complex impedance of each element is indicated in Fig. 8. One tic corresponds to Ω. The diagram also illustrates how to find the equivalent complex impedance. Note that the phase of the complex impedance of the resistor is, the phase of the complex impedance of the capacitor is 9 and the phase of the complex impedance of the inductor is Draw to scale a phasor diagram showing the relationship between the current (common for all elements) and the voltages in an A series circuit for which 3 Ω, µf,. H, f 5/π Hz, and ma. Solution The complex voltage across the resistor can be found by multiplying the complex current (through the resistor) by the complex impedance of the resistor (t) (t)z. onsistent with the given values, the absolute value of this voltage is, ma 3 Ω 6. Since the phase of the complex impedance of the resistor is zero, the phase of the voltage across the resistor agrees with the phase of the current. The complex voltage across the inductor can be

3 found by multiplying the complex current (through the inductor) by the complex impedance of the inductor (t) (t)z. onsistent with the given values, the absolute value of this voltage is, X ma ω 4. Since the phase of the complex impedance of the inductor is 9, the voltage across the inductor leads with the current by a 9 phase angle. Finally, the complex voltage across the capacitor can be found by multiplying the complex current (through the capacitor) by the complex impedance of the capacitor (t) (t)z. onsistent with the given values, the absolute value of this voltage is, X ma 9 Ω.8. Since the phase of the complex impedance of the capacitor is 9, the voltage across the capacitor lags behind the current by 9. f we want to find the complex voltage across the entire system, we can add the complex voltages across all three elements (they are connected in series). indicated this operation on the phasor diagram. That voltage can also be found by multiplying the current by the equivalent impedance of the system. Notice that the phase difference between the voltage across the system and the current through the system is equal to the phase angle of the system (the phase of the equivalent impedance). The absolute value of the voltage is Z ma (3 Ω) + (9 Ω) The resistor in the Fig. represents the midrange speaker in a three-speaker system. Assume its resistance to be constant at 8 Ω. The source produces signals of uniform amplitude in al all frequencies. The inductor and capacitor are to function as a bandpass filter with out / in / at Hz and 4, Hz. (i) Determine the required values of and. (ii) Find the maximum value of the ratio out / in. (iii) Find the frequency f at which the ratio has its maximum value. (iv) Find the phase shift between in and out at Hz at f, and at 4, Hz. (v) Find the average power transferred to the speaker at Hz, at f, and at 4, Hz. (vi) Treating the filter as a resonant circuit, find its quality factor. Solution omplex current in the series circuit is determined by the input complex voltage and the complex impedance of the circuit in /Z in in +iω++ iω +i(ω ω ). omplex voltage across the speaker is related to the complex current through the speaker, out i(ω ω ) +i(ω ω ) in v +(ω ω ) in. The number relating complex output voltage to complex input voltage is called the complex gain of the circuit. (i) From the relation between complex voltages, the relation between the amplitudes is out out +(ω ω ) in. The number relating the amplitudes of voltage is called the gain of the circuit. Gain G is a function of frequency G +(ω ω ). t assumes a particular value at specific frequencies, determined by the difference between capacitive reactance and inductive reactance ω ω and ω G ω. Solving simultaneously for the unknowns G G ω ω G π(f f ) 4 Hz Hz π 8Ω Hz 4 Hz 4 8Ω 4 π(4 Hz Hz 58 µh and ω ω ω ω f f G πf f G 54.6 µf. (ii) The maximum gain occurs when the sum of inductive reactance and capacitive reactance is zero ω ω from which G. (iii) The + sum of inductive reactance and capacitive reactance is zero at the resonant frequency of this circuit f the phase relation. ω π π H F 894 Hz. (iv) omplex gain also includes The phase difference α, between the output voltage and the input volt-

4 ages is α arctan (ω ω ) arctan πf πf. Therefore at Hz its value is α Hz arctan π Hz H π Hz H 8 Ω 6. (The output voltage leads the input voltage.) At 894 Hz its value is α 894 Hz arctan(/8 Ω). (The output voltage is in phase with the input voltage.) At 4, Hz its value is α 4 Hz arctan π 4 Hz H π 4 Hz H 8 Ω 6. (The output voltage lags behind the input voltage.) (v) The average power delivered to an element depends on the rms values of the voltage across the element and the current through the element. Since the speaker acts like a resistor, Ohm s law can be used to relate the rms current (through the speaker) to the voltage applied to the speaker. Knowing the gain of the circuit the power can be directly related to the amplitude of the input voltage rms rms cos ϕ out out cos (G in) (.5 ). Therefore, (.5 ) 8ω.56 W, 894 ( ) 8ω 6.5 W, 4 8ω.56 W. (vi) arameters of the circuit (resistance, capacitance and inductance) affect the quality factor Q ω πf π 894 Hz H 8 Ω A person is working near the secondary coil of a transformer as shown in Fig.. The primary voltage is at 6 Hz. The capacitance s, which is the stray capacitance between the hand and the secondary winding, is pf. Assuming the person has a body resistance to ground b 5 kω, determine the rms voltage across the body. Solution The secondary circuit consists of a capacitor with capacitance s µf, a resistor with resistance b 5 kω and a source of electromotive force (the secondary coil of the transformer). The source produces sinusoidal potential difference with rms value of 5 and frequency of 6 Hz. At this frequency the impedance of the capacitor is Z πf s and the impedance of the resistor is equal to its resistance Z b. Since the elements are connected in series, the equivalent resistance of the system (of the two elements) is Z b + (πf s). The rms current in the resistor (and the circuit) is therefore rms rms Z rms ). From Ohm s law, the rms voltage across the body (resistor) is rms,b rms,b b b rms ( ) 5 k ( + + πfs b π 6 Hz pf 5 Ω ).88. ( b + πfs rms ( ) b + πfs 9. A is a device that allows current to pass in only one direction (indicated by the arrowhead). Find, in terms of rms and, the average power dissipated in the circuit shown in Fig.. Solution When the left side of the generator has a higher potential, the top conducts (forward bias), and the bottom does not (reverse bias). The remaining circuit of three resistors acts like a single resistor. The resistors are connected in series and the pair is connected in parallel to the resistor, see Fig. 3. Therefore the equivalent resistance of the system is ( eq + +) +. Knowing the rms value of the voltage we could find the power in this circuit if the was not present. However, the presence of the reduces the power to half its value (because only half of the time current would flow in the circuit). Therefore

5 change if B were allowed to extend a distance above the axis of rotation? Sketch the emf versus time (d) when the field is as drawn in Figure 3.4 and (e) when the field is extended as described in (c). A A B t B 3. T f a5. m f b4. rad sg out Figure 3.4 Figure : roblem. 6. hapter 3 7 Figure 4. The rotating loop in an A generator is a square. cm on a side. t is rotated at 6. Hz in a uniform field of.8 T. alculate (a) the flux through the loop as a function of time, (b) the t emf induced in the loop, (c) the BA z d sind t F H G K J ximum and average would Figure remain Figure : Solution of problem. ged. re at the right. re at the right. before, the power dissipated at this polarity is.75 The overall (time) average power is n + + ( ) rms Figure rms 4. t cos BA cos t 8. T. m cos 6. t 8. mtm cos 377t FG. 3.4 B a3. fsina377tf a j f aa ff e j a f Solution (i) n order to send out power of 5 MW at 5 k potential difference, the current in the grid (transmission lines) must be rms,a rms,a A. The resistance of the two wires of the transmission lines (connected is series) is λ 58 Ω. Hence the loss of power in the lines (dissipated in the lines) is a9. Wfsin a377tf a rms ( A) 58 Ω 58 kw. (ii) A relative small fraction is lost the lines a 58 kw 5 MW. %. (iii) f the power were send at 4.5 k potential difference, the current in the grid (transmission lines) should be much larger rms,c rms,c 5 MW 4.5 k. ka. But even if nothing were connected at the end of the lines, with the potential difference of 4.5 k, the current in the lines would be a4. mn mfsin a377 rms,max tf rms,c 4.5 k 58 Ω 77 A. t would be impossible to send 5 MW of power into the lines. m 3. cos A sin 6 377t. t 8. mtm cos 377t so Figure FG. 3.4 hapter rms. When the polarity of the emf is reversed, the top is in reverse bias and the bottom is in forward bias. This t time the equivalent resistance of the system of resistors is different + ( ) ; see Fig. 3. With the same arguments as a fe j a f e j a f. A transmission line that has a resistance per unit length of Ω/m is to be used to transmit 5 MW over 4 miles ( m); see Fig. 4. The output voltage of the generator is 4.5 k. (i) What is the line loss if a transformer is used to step up the voltage to 5 k? (ii) What fraction of the input power is lost to the line under these circumstances? (iii) What difficulties would be encountered in attempting to transmit the 5 MW at the generator voltage of 4.5 k. rms rents

6 Figure What does each meter read? Note that an ideal ammeter has zero resistance and that an ideal voltmeter has infinite resistance. max 4. Ω Figure 33.3 Figure 3: roblem. 4. n the simple A circuit shown in Figure 33., 7. and v max sin t. (a) f v.5 max for the first time at t. s, what is the angular frequency of the source? (b) What is the next value of t for which v.5 max? 5. The current in the circuit shown in Figure 33. equals 6.% of the peak current at t 7. ms. What is the smallest frequency of the source that gives this current? 6. Figure 33.6 shows three lamps connected to a - A (rms) household supply voltage. amps and have 5-W bulbs; lamp 3 has a -W bulb. Find the rms current and resistance of each bulb. A Section 33.3 nduct 8. An inductor is con produces a 5.- to keep the insta 8. ma? 9. n a purely induct max. (a 5. Hz. alculate angular frequency. An inductor has a the maximum cur 5.-Hz source tha. For the circu 65. rad/s, a in the inductor at t. A.-mH induct outlet ( rms energy stored in t that this energy is z 3. eview problem. D through an induc outlet ( rms Figure 4: roblem 3. Figure.8. hasor diagram for the series circuit for (a) X X and (b) Figure 5: hasor diagram for the series circuit for X > X (left) and X < X (right). X X. From Figure.8.(a), we see that in the inductive case and leads by a phase. On the other hand, in the capacitive case shown in Figure.8.(b),

7 arallel ircuit ider the parallel circuit illustrated in Figure.6.. The A voltage sour sint. e the series circuit, the instantaneous voltages across all three circuit elem and are the same, and each voltage is in phase with the current through or. However, the currents through each element will be different. alyzing this circuit, we make use of the results discussed in Sections. urrent in the resistor is Figure.8. hasor diagram for the parallel circuit for (a) X X and (b) Figure t () X7: hasor X. diagram for the parallel circuit for X () t sint > X (left) and X sint < X (right). e / m. The voltage across the inductor is Figure.8. hasor diagram for the series circuit for (a) X X and (b) X X. From Figure.8.(a), we see that in the inductive case and leads by a phase. On the other hand, in the capacitive case shown in Figure.8.(b), and leads by a phase. 4. When, or, the circuit is at resonance. The corresponding resonant frequency is /, and the power delivered to the resistor is a maximum. 5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the currents across Figure 6: roblem 4. Figure all the circuit.6. elements arallel involved should be circuit. represented with phasors. n Figure.8. the phasor diagram for a parallel circuit is shown for both the inductive case X X and the capacitive case X X. ( From Figure.8.(a), we see that in the inductive case and leads by a phase. On the other hand, in the capacitive case shown in Figure.8.(b), and leads by a phase. gives Z Z d () () sin -5 ( t t t ϕ e dt Z Z t The t dt diagram also illustrates t how to t find the equivalent t Note that the phase of the complex ( t ( ) sin ' ' cos Figure 8: roblem sin5. sin complex impedance. X impedance of the resistor is, the phase of the complex impedance of the capacitor is -9 and the phase of the complex impedance of the inductor is 9.

8 roblem elements) and the voltages in the circuit. et's assume that current has value of ma and at a certain instant t it represented by the phasor indicated in the following figure. the figure one tic corresponds to ma. m The complex volta across the resistor can found by multiplying complex current (through Z resistor) by the comp Z ϕ impedance of the resistor The resistor in the Figure Z represents the midrange speaker in a three-speaker system. Assume its resistance to be constant at 8 Ω. The source represent an audio amplifier producing signals of uniform amplitude in al all frequencies. The inductor and capacitor are to function as a bandpass filter with out / in ½ at Hz and 4, Hz. (a) Determine the required values of and. (b) Find the maximum value of the ratio out / in. (c) Find the frequency f at which the ratio has its maximum value. (d) Find the phase shift between in and out at Hz, at f, and at 4 Hz. (e) Find the average power transferred to the speaker at Hz, at f, and at 4 Hz. (f) Treating the filter as a resonant circuit, find its quality factor. Figure 9: roblem 6. roblem 33.3 in ϕ Z e 5 out () t () t Z onsistent with the gi values, the absolute value this voltage is A person is working mear the secondary coil of a transformer as shown in Figur The primary voltage is at 6 Hz. The capacitance s, which is th stray capacitance between the hand and the secondary winding, is pf. Assuming the person has a body resistance to ground b 5 kω, determine the rms voltag across the body. omplex current in Figure the series : roblem circuit 7. is determined by the input complex voltage and the complex impedance of the circuit in Z in in + i ω + + i ω i ω ω omplex voltage across the speaker is related to the complex current through the speaker. 5, 8 Figure : roblem 8. The secondary circuit consists of a capacitor with capacitance s µf, a resistor with resistance b 5kΩ

9 t allows current to n (indicated by the ws current to rms dicated of by the rms and, ipated f rms and in, the d in the of the higher side of the ias), a and higher When the polarity of the emf is oes not reversed, the top is in emaining top reverse bias and the bottom tors bias), acts is roblem in forward bias. This and tor. The time the equivalent + - resistance of - + e ected does in the not system of resistors is onnected different e remaining 3). Therefore the equivalent resistance Figure 3: Solution esistors acts of problem esistor. The k or connected in 4.5 k λ 4.5 polarity is -4 Ω/m 5 MW is connected rms 4) esistor. Therefore 75. the equivalent resistance value of the voltage we could find the m f the was not present. However, the The overall (time) average power is e reduces the power to half its Figure value 4: roblem + rms rms a) n order to send out power of 5MW at 5 k potential difference, the current in the grid 7(transmission 4 lines) must be 4 (because only half of the Figure time : current roblem would 9. flow in the circuit). Therefore ) + rms With the same arguments as before, the power dissipated at this A transmission line that has a resistance per unit length of Ω/m is to be used to transmit 5 MW over 4 miles ( m). The output voltage of the generator is 4.5 k. (a) What is the line loss if a transformer is used to step up the voltage to 5 k? (b) What fraction of the input power is lost to the line under these circumstances? (c) What difficulties would be encountered in attempting to transmit the 5 MW at the generator voltage of 4.5 k rms,a rms,a A

Chapter 35 Alternating Current Circuits

Chapter 35 Alternating Current Circuits hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

Chapter 12 Driven RLC Circuits

Chapter 12 Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

Chapter 29 Alternating-Current Circuits

Chapter 29 Alternating-Current Circuits hapter 9 Alternating-urrent ircuits onceptual Problems A coil in an ac generator rotates at 6 Hz. How much time elapses between successive emf values of the coil? Determine the oncept Successive s are

More information

Alternating-Current Circuits

Alternating-Current Circuits hapter 1 Alternating-urrent ircuits 1.1 A Sources... 1-1. Simple A circuits... 1-3 1..1 Purely esistive load... 1-3 1.. Purely Inductive oad... 1-5 1..3 Purely apacitive oad... 1-7 1.3 The Series ircuit...

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1 Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a R-L circuit and i =

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits

CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits HAPTE 3: Inductance, Electromagnetic Oscillations, and A ircuits esponses to Questions. (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on the same axis.

More information

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an on-line knowledge enhancement module for a PGCE programme. It is used to cover

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Capacitors in Circuits

Capacitors in Circuits apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

Physics 102: Lecture 13 RLC circuits & Resonance

Physics 102: Lecture 13 RLC circuits & Resonance Physics 102: Lecture 13 L circuits & esonance L Physics 102: Lecture 13, Slide 1 I = I max sin(2pft) V = I max sin(2pft) V in phase with I eview: A ircuit L V = I max X sin(2pft p/2) V lags I IE I V t

More information

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4 Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

More information

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Alternating Current Circuits and Electromagnetic Waves

Alternating Current Circuits and Electromagnetic Waves Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

PHY114 S11 Term Exam 3

PHY114 S11 Term Exam 3 PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ) V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

First Year (Electrical & Electronics Engineering)

First Year (Electrical & Electronics Engineering) Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

Aircraft Electrical System

Aircraft Electrical System Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

More information

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011 AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

More information

AC Generators. Basic Generator

AC Generators. Basic Generator AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number

More information

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... ) Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor Non-Ideal Inductor Dr. P.J. Randewijk

More information

12. Transformers, Impedance Matching and Maximum Power Transfer

12. Transformers, Impedance Matching and Maximum Power Transfer 1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

How To Understand And Understand The Theory Of Electricity

How To Understand And Understand The Theory Of Electricity DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating

More information

Module Title: Electrotechnology for Mech L7

Module Title: Electrotechnology for Mech L7 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2012 Module Title: Electrotechnology for Mech L7 Module Code: ELEC7007 School: School of Mechanical, Electrical and Process

More information

Chapter 25 Alternating Currents

Chapter 25 Alternating Currents Physics Including Human Applications 554 Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Full representation of the real transformer

Full representation of the real transformer TRASFORMERS EQVALET CRCT OF TWO-WDG TRASFORMER TR- Dots show the points of higher potential. There are applied following conventions of arrow directions: -for primary circuit -the passive sign convention

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Lecture Notes ELE A6

Lecture Notes ELE A6 ecture Notes EE A6 Ramadan El-Shatshat Three Phase circuits 9/12/2006 EE A6 Three-phase Circuits 1 Three-phase Circuits 9/12/2006 EE A6 Three-phase Circuits 2 Advantages of Three-phase Circuits Smooth

More information

Current and Voltage Measurements. Current measurement

Current and Voltage Measurements. Current measurement Current and oltage easurements Current measurement ccording to current continuity (i.e. charge conservation) law, the current can be measured in any portion of a single loop circuit. B Circuit Element

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321) Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

More information

Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-1 Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: Coil 1 produces a flux

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

More information

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10. RC Circuits ISU EE. C.Y. Lee Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

Electrical Installation Calculations: Advanced

Electrical Installation Calculations: Advanced Electrical Installation Calculations: Advanced This page intentionally left blank Electrical Installation Calculations: Advanced FOR TECHNICAL CERTIFICATE AND NVQ LEVEL 3 SEVENTH EDITION A. J. WATKINS

More information

Lecturer: James Grimbleby URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk

Lecturer: James Grimbleby URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk AC Circuit Analysis Module: SEEA5 Systems and Circuits Lecturer: UL: http://www.personal.rdg.ac.uk/~stsgrimb/ email:.b.grimbleby reading.ac.uk Number of Lectures: ecommended text book: David Irwin and

More information

Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors. Introducing Coupled Inductors Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Faculty of Engineering. 48572 Power Circuit Theory. Lab 2 Three-Phase Circuits

Faculty of Engineering. 48572 Power Circuit Theory. Lab 2 Three-Phase Circuits Faculty of Engineering Subject: 48572 ower ircuit Theory ssignment Number: 2 ssignment Title: Lab 2 Three-hase ircuits Tutorial Group: Students Name(s) and Number(s) Student Number Family Name First Name

More information

An Overview of Practical Capacitance Bridge Functioning. by Paul Moses

An Overview of Practical Capacitance Bridge Functioning. by Paul Moses An Overview of Practical Capacitance Bridge Functioning by Paul Moses INTRODUCTION The laboratory has a variety of bridges, both automatic and manual which can be used to measure the capacitance and dielectric

More information

Frequency response: Resonance, Bandwidth, Q factor

Frequency response: Resonance, Bandwidth, Q factor Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

More information

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Voltage Waveform Consider the

More information

Chapter 24. Three-Phase Voltage Generation

Chapter 24. Three-Phase Voltage Generation Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

More information

Critical thin-film processes such as deposition and etching take place in a vacuum

Critical thin-film processes such as deposition and etching take place in a vacuum WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

More information

i( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms

i( t) L i( t) 56mH 1.1A t = τ ln 1 = ln 1 ln 1 6.67ms Exam III PHY 49 Summer C July 16, 8 1. In the circuit shown, L = 56 mh, R = 4.6 Ω an V = 1. V. The switch S has been open for a long time then is suenly close at t =. At what value of t (in msec) will

More information

Current and Temperature Ratings

Current and Temperature Ratings Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

More information