EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits


 Jasper Brooks
 2 years ago
 Views:
Transcription
1 EE Circuits II Chapter 3 Magnetically Coupled Circuits
2 Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers 3.6 Applications
3 3. What is a transformer? It is an electrical device designed on the basis of the concept of magnetic coupling. It uses magnetically coupled coils to transfer energy from one circuit to another. It is the key circuit element for stepping up or stepping down ac voltages and currents, impedance matching, isolation, etc. 3
4 3. Mutual Inductance It is the ability of one inductor to induce a voltage across a neighboring inductor, Mutual inductance is measured in henrys (H). di dt v di dt v M di v dt di v M dt 4
5 3. Mutual Inductance If a current enters the dotted terminal of the first coil, the reference polarity of the voltage in the second coil is positive at the dotted terminal. Illustration of the dot convention. 5
6 3. Mutual Inductance Series connection of two mutually coupled inductors; (a) seriesaiding connection, (b) seriesopposing connection. v di di ( M ) ( dt dt di dt M di dt ) v di di ( M ) ( dt dt di dt M di ) dt M (series  aiding connection) M (series  opposingconnection) 6
7 Problem : 7
8 3. Mutual Inductance Timedomain analysis of a circuit containing coupled coils. Frequencydomain analysis of a circuit containing coupled coils 8
9 3. Mutual Inductance Example Calculate the phasor currents I and I in the circuit shown below. Ans: I A; I.94A 9
10 3.3 Energy in a Coupled Circuit () The coupling coefficient, k, is a measure of the magnetic coupling between two coils; 0 k. k M The instantaneous energy stored in the circuit is given by w i i (+) if both currents enter or leave the dotted sides () if one current enters the dotted side and the other current leaves dotted side. 0 Mi i
11 3.3 Energy in a Coupled Circuit Example Consider the circuit below. Determine the coupling coefficient. Calculate the energy stored in the coupled inductors at time t = sec if v = 60cos(4t +30 ) V. Ans: k=0.56; w()=0.73j
12 Problem 0:
13 3.4 inear Transformer Reflected Impedance 3 inear Transformer refers to a case where the inductances and and mutual inductance M are constant. V V ref in Z R Z R M R Z I V MI I I Z R MI I R I V ) ( ) ( ) ( ) ( ) (
14 3.4 inear Transformer Example 3 In the circuit below, calculate the input impedance and current I. Take Z =6000Ω, Z =30+40Ω, and Z =80+60Ω. Ans: Zin ; I 0.53.A 4
15 3.4 inear and Ideal Transformer 5 Voltage Ratio (ignore resistances) Current Ratio In case of unity coupling (i.e., k =) and very large inductances, ) ( ) ( M Z MZ V V Z M I I Z Z V V I I
16 3.4 Ideal Transformer 6 The inductance is proportional to the number of turns squared. In case of an ideal Transformer, n N N an an Z Z V V n N N I I =03 N r /(8r+54l)
17 3.5 Ideal Transformer An ideal transformer is a unitycoupled, lossless transformer in which the primary and secondary coils have infinite selfinductances. V V N N n I N I N n (a) (b) Ideal Transformer Circuit symbol V>V stepup transformer V<V stepdown transformer 7
18 3.5 Ideal Transformer Example 4 An ideal transformer is rated at 400/0V, 9.6 kva, and has 50 turns on the secondary side. Calculate: (a) the turns ratio, (b) the number of turns on the primary side, and (c) the current ratings for the primary and secondary windings. Ans: (a) (b) (c) This is a stepdown transformer, n=0.05 N = 000 turns I = 4A and I = 80A 8
19 Problem 36 9
20 3.6 Applications Transformer as an isolation device to isolate ac supply from a rectifier 0
21 3.6 Applications Transformer as an isolation device to isolate dc between two amplifier stages.
22 3.6 Applications Transformer as a matching device Using an ideal transformer to match the speaker to the amplifier Equivalent circuit
23 3.6 Applications Example 5 Calculate the turns ratio of an ideal transformer required to match a 00Ω load to a source with internal impedance of.5kω. Find the load voltage when the source voltage is 30V. Ans: n = 0.; V = 3V 3
24 3.6 Practical Electric Utility transformers Used to stepup or stepdown the voltage 4
25 Ideal AutoTransformer Autotransformers are used in cases where the voltage ratio is less than. Note that there is only one winding, the primary and secondary side share part of this winding. There is no electrical isolation between the primary and secondary sides. The apparent power rating of an autotransformer is often much higher than a twowinding transformer of the same size (see example 3.0)
26 3Phase Transformer
Coupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
More informationElectrical Machines II. Week 1: Construction and theory of operation of single phase transformer
Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric
More informationTransformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationModule 22: Inductance and Magnetic Field Energy
Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux
More informationOutline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )
Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor NonIdeal Inductor Dr. P.J. Randewijk
More informationThe Ideal Transformer. Description and Circuit Symbol
The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
More informationInductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
More information12. Transformers, Impedance Matching and Maximum Power Transfer
1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than
More information7.1 POWER IN AC CIRCUITS
C H A P T E R 7 AC POWER he aim of this chapter is to introduce the student to simple AC power calculations and to the generation and distribution of electric power. The chapter builds on the material
More informationFunctions, variations and application areas of magnetic components
Westring 18 3314 Büren Germany T +49 951 60 01 0 F +49 951 60 01 3 www.schaffner.com energy efficiency and reliability 1.1 Transformers The transformer is one of the traditional components of electrical
More informationMutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
More informationStudent Name Instructor Name. High School or Vocational Center Grade. COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics
Student Name Instructor Name High School or Vocational Center Grade COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics Please check below each skill the student has mastered as described,
More informationFor these various types, the electrical configurations that are available are:
RF Transformers RF transformers are widely used in lowpower electronic circuits for impedance matching to achieve maximum power transfer, for voltage stepup or stepdown, and for isolating dc from two
More informationNZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians
NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers
More informationThe Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformerisolated version of the buckboost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationMutual inductance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Mutual inductance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationDCDC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / OnLine Textbook
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More informationLab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response
Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all
More informationModule 7. Transformer. Version 2 EE IIT, Kharagpur
Module 7 Transformer Version EE IIT, Kharagpur Lesson 4 Practical Transformer Version EE IIT, Kharagpur Contents 4 Practical Transformer 4 4. Goals of the lesson. 4 4. Practical transformer. 4 4.. Core
More information1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)
1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,
More informationCoupling Magnetic Signals to a SQUID Amplifier
SQUID Application Note 1050 Coupling Magnetic Signals to a SQUID Amplifier Matching the effective inductances of the Pickup Coil and the Input Coil to detect and couple magnetic flux maximizes the sensitivity
More informationCapacitors and Inductors
P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance
More informationAn equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
More informationPower supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
More informationAnalysis of Dynamic Circuits in MATLAB
Transactions on Electrical Engineering, Vol. 4 (2015), No. 3 64 Analysis of Dynamic Circuits in MATLAB Iveta Tomčíková 1) 1) Technical University in Košice/Department of Theoretical and Industrial Electrical
More informationInductance. Motors. Generators
Inductance Motors Generators Selfinductance Selfinductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
More informationEE301 Lesson 14 Reading: 10.110.4, 10.1110.12, 11.111.4 and 11.1111.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
More informationAC Generators. Basic Generator
AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number
More informationCapacitors in Circuits
apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively
More informationLecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
More informationApril 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.
Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  164 Summary Gauss's
More informationTHE PERUNIT SYSTEM. (2) The perunit values for various components lie within a narrow range regardless of the equipment rating.
THE PERUNIT SYSTEM An interconnected power system typically consists of many different voltage levels given a system containing several transformers and/or rotating machines. The perunit system simplifies
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More informationChapter 6: Converter circuits
Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buckboost,
More informationEE 221 AC Circuit Power Analysis. Instantaneous and average power RMS value Apparent power and power factor Complex power
EE 1 AC Circuit Power Analysis Instantaneous and average power RMS value Apparent power and power factor Complex power Instantaneous Power Product of timedomain voltage and timedomain current p(t) =
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationSingle and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques
Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques Howard W. Penrose, Ph.D On behalf of ALLTEST Pro, LLC Old Saybrook, CT Introduction Field and shop testing of
More information12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance?
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance? From Equation 325, L = E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard
More informationWINDING RESISTANCE TESTING
WINDING RESISTANCE TESTING WINDING RESISTANCE TEST SET, MODEL WRT100 ADWEL INTERNATIONAL LTD. 60 Ironside Crescent, Unit 9 Scarborough, Ontario, Canada M1X 1G4 Telephone: (416) 3211988 Fax: (416) 3211991
More informationFirst Year (Electrical & Electronics Engineering)
Z PRACTICAL WORK BOOK For The Course EE113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat
More informationApplication Note on Transformers (AN20002)
Application Note on Transformers (AN20002) 1 Introduction The purpose of this application note is to describe the fundamentals of RF and microwave transformers and to provide guidelines to users in selecting
More informationMAGNETISM MAGNETISM. Principles of Imaging Science II (120)
Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates
More informationREPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
More information9 2339A The Three Basics of Electric Circuits: Voltage, Current, and Resistance
PROGRESS RECORD Study your lessons in the order listed below. Electronics Technology and Advanced Troubleshooting I & II Number of Lessons: 118 Completion Time: 36 months 1 2330A Current and Voltage 2
More informationMeasuring Telecommunication Transformers
Measuring Telecommunication Transformers Rapid expansion of the Internet and Mobile Communications has driven the need to transmit digital information at high frequencies. This need has put new requirements
More informationHere, we derive formulas for computing crosstalk and show how to reduce it using well designed PCB layer stacks.
Crosstalk Ground and power planes serve to: Provide stable reference voltages Distribute power to logic devices Control crosstalk Here, we derive formulas for computing crosstalk and show how to reduce
More informationLast time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
More informationChapter 12: Three Phase Circuits
Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in
More informationPower measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1
Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a RL circuit and i =
More informationDirection of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
More informationChapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits acircuits Phasor Diagrams Resistors, apacitors and nductors in acircuits R acircuits acircuit power. Resonance Transformers ac ircuits Alternating currents and
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationHIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER
OPTIMUM EFFICIENCY AND FLEXIBLE USE HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER One of the many requirements of the modern inverter is a broad, coordinated input and MPP voltage range with a
More informationLine Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
More informationEquipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Singlephase transformer operations. Objective: to examine the design of singlephase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
More informationChapter 14: Inductor design
Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A stepbystep design procedure 14.3 Multiplewinding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points
More informationDHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR PART A 1.
More informationInductors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Inductors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationEMI and t Layout Fundamentals for SwitchedMode Circuits
v sg (t) (t) DT s V pp = n  1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for SwitchedMode Circuits secondary primary
More informationImpedance Matching. Using transformers Using matching networks
Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More information8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
More informationElectromagnetic Induction
Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can knowledge
More informationd di Flux (B) Current (H)
Comparison of Inductance Calculation Techniques Tony Morcos Magnequench Technology Center Research Triangle Park, North Carolina 1 VCM Baseline: Geometry Axiallymagnetized MQ3F 42 NdFeB disk Br = 131kG
More informationTRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947
AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter
More informationApplication Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
More informationOPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
More informationProduct Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 5191992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
More informationChapter 30 Inductance
Chapter 30 Inductance  Mutual Inductance  SelfInductance and Inductors  MagneticField Energy  The R Circuit  The C Circuit  The RC Series Circuit . Mutual Inductance  A changing current in
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationTransistor Tuned Amplifiers
5 Transistor Tuned Amplifiers 389 Transistor Tuned Amplifiers 5. Tuned Amplifiers 5. Distinction between Tuned Amplifiers and other Amplifiers 5.3 Analysis of Parallel Tuned Circuit 5.4 Characteristics
More information7 Testing of Transformers
7 Testing of Transformers The structure of the circuit equivalent of a practical transformer is developed earlier. The performance parameters of interest can be obtained by solving that circuit for any
More informationChapter 25 Alternating Currents
Physics Including Human Applications 554 Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each
More information30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
More informationObjectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
More informationLab #4 examines inductors and capacitors and their influence on DC circuits.
Transient DC Circuits 1 Lab #4 examines inductors and capacitors and their influence on DC circuits. As R is the symbol for a resistor, C and L are the symbols for capacitors and inductors. Capacitors
More informationChapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationUnit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
More information14: Power in AC Circuits
E1.1 Analysis of Circuits (20157265) AC Power: 14 1 / 11 Average Power E1.1 Analysis of Circuits (20157265) AC Power: 14 2 / 11 Average Power Intantaneous Power dissipated inr: p(t) = v2 (t) R E1.1 Analysis
More informationStepup, stepdown, and isolation transformers
Stepup, stepdown, and isolation transformers This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationDC Circuits: Operational Amplifiers Hasan Demirel
DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.
More informationAudio Transformers. by Bill Whitlock. Jensen Transformers, Inc. 9304 Deering Avenue Chatsworth, CA 91311
Audio Transformers by Bill Whitlock Jensen Transformers, Inc. 9304 Deering Avenue Chatsworth, CA 91311 This work first published by Focal Press in 2001 as Chapter 11 Handbook for Sound Engineers, Thi Edition
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationPhasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)
V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector
More informationAlternatingCurrent Circuits
hapter 1 Alternatingurrent ircuits 1.1 A Sources... 11. Simple A circuits... 13 1..1 Purely esistive load... 13 1.. Purely Inductive oad... 15 1..3 Purely apacitive oad... 17 1.3 The Series ircuit...
More informationDiode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although halfwave rectification
More information= V peak 2 = 0.707V peak
BASIC ELECTRONICS  RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
More informationLecture 22. Inductance. Magnetic Field Energy. Outline:
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationIndustrial Applications. Annex (by Dominik Pieniazek, P.E. VI Engineering, LLC)
Overcurrent Protection & Coordination for Industrial Applications Annex (by Dominik Pieniazek, P.E. VI Engineering, LLC) Current Transformer Basics 2 50 50 50 50 Don t let polarity marks fool you! Current
More informationEE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationLab 6: Transformers in parallel and 3phase transformers.
Lab 6: Transformers in parallel and 3phase transformers. Objective: to learn how to connect transformers in parallel; to determine the efficiency of parallel connected transformers; to connect transformers
More information