Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)


 Derick Lawson
 3 years ago
 Views:
Transcription
1 Lab 4: 3phase circuits. Objective: to study voltagecurrent relationships in 3phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321) Theory: The total 3phase power supplied to a 3phase load is a sum of powers dissipated by each of the load resistors and is constant if the load is balanced. This property makes 3phase circuits quite attractive. Therefore, it is important to ensure that the load is balanced. Since our PS is Yconnected, the ratio of linetoline voltage to linetoneutral must be approximately equal to 3. Denoting the impedance angle as θ, the real threephase power can be calculated as: 2 E P= 3E cos 3 load lineiline θ = R The reactive threephase power can be calculated as: 2 E Q= 3E sin 3 load lineiline θ = X The apparent threephase power can be calculated as: S = E I = P + Q 3 line line 2 2 The power factor is PF = cosθ = P S See class notes for definitions of real, reactive, and apparent powers. Page 1
2 Experiment: Part I resistive load 1) Using the Power Supply (PS) and the DAI module (Metering window), measure the following linetoline voltages: Figure 04 1 To do this, connect three AC voltmeters to the indicated terminals of PS, turn the PS ON and adjust its output voltage to its highest value (turn the voltage adjusting knob to its most right position). Record these values of linetoline voltage. 2) Turn the power OFF and reconnect three voltmeters to measure the voltage from each line to the neutral. Measure and record these linetoneutral voltages. 3) Start the Oscilloscope and observe three linetoneutral voltages. What do you conclude regarding the phase shift between them? Export your Oscilloscope data to a file. 4) Construct the following circuit using the Variable resistance module: Page 2
3 Figure 04 2 Notice that this circuit represents a Y connected load. Set the load resistance to 600 Ω and apply a voltage of 120 V (linetoneutral). In the metering window, turn ON three power meters and set them to Watts. Record the values to a Data table. 5) Connect the Δ circuit as shown in Figure 043: Figure 04 3 To test that the circuit is connected correctly, turn all load resistors OFF (all switches in lower positions), apply an input voltage of approximately 30 V and then turn ON the load switches for 600 Ω resistors one after another. While doing this, the corresponding ammeters must start reading nonzero currents. When all three load resistors (of equal ratings) are connected, the currents reported by three ammeters should be approximately equal. Note: in this configuration, ammeters read the load currents. Page 3
4 Once the correct wiring is verified, apply an AC voltage of 120 V (while controlling the input voltages by the voltmeters) and record values of voltages, currents, and powers to your Data table. Turn the PS OFF. 6) Reconnect the AC ammeters to read the line currents as depicted in Figure Figure 04 4 Leave the voltmeters in the circuit to read the linetoline voltages as in Figure 43. Apply an AC voltage of 120 V and record values of voltages, currents, and powers to your Data table. Turn the PS OFF. 7) Construct a Y connected load similar to one depicted in Figure 042 but without any meters. Connect the load s neutral to the neutral of PS through the ammeter. Set three load resistances to 600 Ω and apply an input voltage of approximately 30 V. The current through the neutral wire must be approximately zero since the load is balanced. Next, unbalance the load by inserting a 1200 Ω resistor in parallel to one of the load resistors. Do you observe any changes in the value of current? Part II inductive load 8) Construct the Y connected load as indicated in Figure 045: Page 4
5 Figure 04 5 Set the power meters in the Metering window to measure VARs, set each inductance section to reactance of 600 Ω and apply the AC voltage of 120 V linetoneutral. Record the values of line currents, voltages across the inductances, and reactive powers for each inductive load to your Data table. Turn the PS OFF. 9) Construct the circuit shown in Figure 046: Figure 04 6 Page 5
6 After verifying the correct wiring, set the resistance of each load to 600 Ω and the reactance of each inductive load to 600 Ω. Apply an AC voltage of 120 V linetoneural and record the measured values of line currents, voltages across the inductances, and reactive powers to your Data table. Turn the PS OFF. 10) Reconnect voltmeters as shown in Figure 047 Figure 04 7 Apply an AC voltage of 120 V linetoneural and record the measured values of line currents, voltages across the resistors, and real powers dissipated in the three resistors to your Data table. Turn the PS OFF. Save the Data table and disassemble your circuit. In your report: 1. Calculate the ratio of the average linetoline voltage to the average linetoneutral voltage for measurements in Parts 1 and 2. Does this ratio approximately equal to 3? 2. Using Matlab and the data exported from the Oscilloscope, plot (on the same axes) the three linetoneutral voltages. What is the approximate phase difference between them? 3. Using Matlab and the Data table you recorded in Part 4, report the line currents and the voltages across the load resistors you have measured. Are the voltages and currents reasonably well balanced? Calculate the power dissipated by each load and compare it to the measured values. Discuss possible sources of discrepancy. Calculate the total 3phase power. Page 6
7 4. Using Matlab and the Data table you recorded in Part 5, report the load currents and the linetoline voltages you have measured. Are the voltages and currents reasonably well balanced? Calculate the power dissipated by each load and compare it to the measured values. Discuss possible sources of discrepancy. Calculate the total 3phase power. 5. Using Matlab and the Data table you recorded in Part 6, report the line currents you have measured. Calculate the average load current and the average line current. Calculate the ratio of the average line current to the average load current. Is this ratio approximately equal to 3? 6. Describe your observations in Part 7. What do you conclude regarding unbalancing the load? 7. Using Matlab and the Data table you recorded in Part 8, report the line currents and the voltages across the loads that you have measured. Are the voltages and currents reasonably well balanced? Calculate the reactive power for each of the inductive loads and compare it to the measured values. Discuss possible sources of discrepancy. Calculate the total 3phase reactive power. 8. Using Matlab and the Data table you recorded in Parts 9 and 10, report the line currents and the voltages across the inductances and across the resistors that you have measured. Are the voltages and currents reasonably well balanced? Calculate the reactive power for each of the inductive loads and compare it to the measured values. Calculate the real power for each of the resistive loads and compare it to the measured values. Discuss possible sources of discrepancy. Calculate the total 3phase real power. Calculate the total 3phase reactive power. Calculate the total 3phase apparent power. Calculate the power factor using the total 3phase real and apparent powers. Page 7
Lab 6: Transformers in parallel and 3phase transformers.
Lab 6: Transformers in parallel and 3phase transformers. Objective: to learn how to connect transformers in parallel; to determine the efficiency of parallel connected transformers; to connect transformers
More informationChapter 24. ThreePhase Voltage Generation
Chapter 24 ThreePhase Systems ThreePhase Voltage Generation Threephase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal
More informationTHREEPHASE POWER SYSTEMS ECE 454/554: Power Systems Laboratory
THREEPHSE POER SYSTEMS ECE 5/55: Power Systems Laboratory Contributors: Dr... ElKeib Mr. Clifton Black Dr. Tim. Haskew Mr. Johnny Carlisle Mr. Neil Hutchins Objectives Learn how to perform measurements
More informationEquipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Singlephase transformer operations. Objective: to examine the design of singlephase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
More informationEquipment: Power Supply, DAI, Splitphase/Capacitor start motor (8251), Electrodynamometer (8960), timing belt.
Lab 10: Splitphase induction motor. Objective: to examine the construction of the splitphase motor; to learn its wiring connections; to observe its starting and running operations; to measure its starting
More informationLecture Notes ELE A6
ecture Notes EE A6 Ramadan ElShatshat Three Phase circuits 9/12/2006 EE A6 Threephase Circuits 1 Threephase Circuits 9/12/2006 EE A6 Threephase Circuits 2 Advantages of Threephase Circuits Smooth
More informationThree phase circuits
Three phase circuits THREE PHASE CIRCUITS THREEPHASE ADVANTAGES 1. The horsepower rating of threephase motors and the kva rating of threephase transformers are 150% greater than singlephase motors
More informationChapt ha e pt r e r 12 RL Circuits
Chapter 12 RL Circuits Sinusoidal Response of RL Circuits The inductor voltage leads the source voltage Inductance causes a phase shift between voltage and current that depends on the relative values of
More informationGoals. Introduction R = DV I (7.1)
Lab 7. Ohm s Law Goals To understand Ohm s law, used to describe the behavior of electrical conduction in many materials and circuits. To calculate the electrical power dissipated as heat in electrical
More informationPHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:
PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors
More informationThe TwoWattmeter Method
The TwoWattmeter Method In a three phase, wye or delta three wire system, under balanced or unbalanced conditions, with any power factor, the twowattmeter method is a practical and commonly used method
More informationEquipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.
Lab 9: Synchronous motor. Objective: to examine the design of a 3phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the fullload characteristic of
More informationBasic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture  33 3 phase System 4
Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture  33 3 phase System 4 Hello everybody. So, in the last class we have been
More informationTHREE PHASE CIRCUITS
THREE PHASE CIRCUITS A. PREPARATION 1. Three Phase Voltages and Systems 2. The Determination of Phase Sequence 3. Blondel's Theorem and Its Consequences 4. References B. EXPERIMENT 1. Equipment List 2.
More informationEquipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.
Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine
More informationPower measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1
Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a RL circuit and i =
More information1) 10. V 2) 20. V 3) 110 V 4) 220 V
1. The diagram below represents an electric circuit consisting of a 12volt battery, a 3.0ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10
More informationPHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
More informationSeries and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected endtoend. A parallel
More informationUNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 10  Balanced ThreePhase Networks Overview: Threephase networks can be connected either in a
More informationBALANCED THREEPHASE CIRCUITS
BALANCED THREEPHASE CIRCUITS The voltages in the threephase power system are produced by a synchronous generator (Chapter 6). In a balanced system, each of the three instantaneous voltages have equal
More informationCircuitsCircuit Analysis
Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9volt battery is connected to a 4ohm resistor and a 5ohm resistor as shown in the diagram below. A 3.0ohm resistor,
More informationModule 19 Units 13 ThreePhase Transformers
Module 19 Units 13 ThreePhase Transformers 1. What is the difference between a threephase transformer and a bank of singlephase transformers? Windings from all three phases are wound on the same core
More informationChapter 12. RL Circuits. Objectives
Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine
More informationLIST OF EXPERIMENTS BASIC ELECTRICAL ENGINEERING
IST OF EXPERIMETS BASIC EECTRICA EGIEERIG 1. To verify KC and K. To study the I characteristics of an incandescent lamp. 3. To measure single phase power by using three ammeter method. 4. To measure the
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationEquipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.
Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its noload and fullload characteristics while operating on AC; to determine its noload and fullload
More informationA fter studying this unit, you should be able to:
Unit 12 ThreePhase Circuits objectives A fter studying this unit, you should be able to: Discuss the differences between threephase and singlephase voltages. Discuss the characteristics of delta and
More informationInductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
More informationUnit 7: Electric Circuits
Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude
More informationComputerBased Instruments for EMS
Electric Power / Controls 1800LabVolt www.labvolt.com 86718E0 3086718E000006~ ComputerBased Instruments for EMS User uide Electric Power / Controls ComputerBased Instruments for EMS User uide 86718E0
More informationLab 14: 3phase alternator.
Lab 14: 3phase alternator. Objective: to obtain the noload saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive
More informationA) The potential difference across the 6ohm B) 2.0 A resistor is the same as the potential difference across the 3ohm resistor. D) 4.
1. A 2.0ohm resistor and a 4.0ohm resistor are connected in series with a 12volt battery. If the current through the 2.0ohm resistor is 2.0 amperes, the current through the 4.0ohm resistor is A) 1.0
More informationInduction Motor (NoLoad Test) Induction Motor (Blocked Rotor Test) Example (NoLoad/Blocked Rotor Tests) The results of the noload and blocked rotor tests on a threephase, 60 hp, 2200 V, sixpole, 60
More informationChapter 11 Balanced ThreePhase Circuits
Chapter 11 Balanced ThreePhase Circuits 11.12 ThreePhase Systems 11.3 Analysis of the YY Circuit 11.4 Analysis of the Y Circuit 11.5 Power Calculations in Balanced ThreePhase Circuits 11.6 Measuring
More informationCircuits. Page The diagram below represents a series circuit containing three resistors.
Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question
More informationECE 431. Experiment #1. ThreePhase ac Measurements. PERFORMED: 26 January 2005 WRITTEN: 28 January 2005. Jason Wells
ECE 41 Experiment #1 Three ac Measurements PERFORMED: 6 January 005 WRTTEN: 8 January 005 Jason Wells LEADER: Jason Wells RECORDER: Nathaniel Hakes 1 ntroduction The primary objectives of the experiment
More informationSeries and Parallel Circuits
Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the
More informationUnderstanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE
Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements
More informationChapter 10. RC Circuits. Objectives
Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine
More informationThreephase AC circuits
Threephase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationThreePhase AC Power Circuits
Electricity and New Energy ThreePhase AC Power Circuits Student Manual 86360F0 Order no.: 8636000 Revision level: 10/2014 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2010
More information(3 )Three Phase Alternating Voltage and Current
EEE 2015 EECTRCS (3) Monophase 1 Three phase Three phase electric power is a common method of alternating current electric power generation, transmission, and distribution. t is a type of polyphase system
More informationE3630A. Triple Power Supply Operating Instructions
E3630A Triple Power Supply Operating Instructions Page 1 of 7 Instructions for the use of the E3630A Triple Power Supply This pamphlet is intended to give you (the student) an overview on the use of the
More information3Phase AC Calculations Revisited
AN110 Dataforth Corporation Page 1 of 6 DID YOU KNOW? Nikola Tesla (18561943) came to the United States in 1884 from Yugosiavia. He arrived during the battle of the currents between Thomas Edison, who
More informationAnalog and Digital Meters
Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters
More informationResistors in Series and Parallel Circuits
69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM8656 2 D cell 1.5 volt Introduction
More informationAlternating current threephase circuits
Unit. C HEEPHE CCU lternating current threephase circuits Unit. C HEEPHE CCU COE: hreephase systems characteristics Generation of threephase voltages hreephase loads Y and Y transformation nstantaneous
More informationResistors in Series and Parallel
Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the
More informationPower Factor Correction for Power Systems First Semester Report Spring Semester 2007
Power Factor Correction for Power Systems First Semester Report Spring Semester 2007 by Pamela Ackerman Prepared to partially fulfill the requirements for EE401 Department of Electrical and Computer Engineering
More informationVOLTAGE REGULATOR AND PARALLEL OPERATION
VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by
More informationMeters  Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A
Meters  Ohm s Law APPARATUS 1. Board on which two wires are mounted, each 1 m long, equipped with a sliding contact 2. Rheostat (variable resistance), 0... 7 Ω 3. DC ammeter (full scale: 2 A) 4. Voltmeter
More informationEXPERIMENT 4: MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR RC CIRCUIT
Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4: MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR RC CIRCUIT
More informationREVIEW QUESTIONS. A6 Test Preparation
A6 Test Preparation Note: The lessons, exercises and tests in this manual are great preparation for taking the ASE A6 (electrical) certification test. However, that s only for the topics we ve covered.
More informationChapter 13: Electric Circuits
Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel
More informationIntro to Power Lab Concepts
1 Intro to Power Lab Concepts Created by the University of Illinois at UrbanaChampaign TCIPG PMU Research Group 1 Table of Contents 1. PRELAB DC Power
More informationELECTRICAL AND COMPUTER ENGINEERING. ELEC 302 Lab 4 Transformers in Three Phase Circuits
ELECTRICL D COMPUTER EGIEERIG THE CITDEL ELEC 302 Lab Transformers in Three Circuits REFERECE: ppropriate chapters of ELEC 31 text. OBJECTIVE: The objective of this experiment is the experimental observation
More informationAC Generators. Basic Generator
AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number
More informationFirst Year (Electrical & Electronics Engineering)
Z PRACTICAL WORK BOOK For The Course EE113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationPreview of Period 12: Electric Circuits
Preview of Period 2: Electric Circuits 2. Voltage, Current, and esistance How are voltage, current, and resistance related? 2.2 esistance and Voltage of esistors in Connected in Series How does current
More informationThreePhase A.C. Circuits
Chapter 3 ThreePhase A.C. Circuits earning Outcomes This chapter introduces the concepts and principles of the threease electrical supply, and the corresponding circuits. On completion you should be
More informationOhm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and nonlinear behavior.
Ohm s Law Object To study resistors, Ohm s law, linear behavior, and nonlinear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More information615xx, 616xx, 617xxx, 646x, 64xx, 65xx Series Programmable AC source
Chroma Systems Solutions, Inc. AC Power Definitions 615xx, 616xx, 617xxx, 646x, 64xx, 65xx Series Programmable AC source Keywords: Peak, RMS, Phase, Inrush Current, Power Factor, Crest Factor, Apparent
More informationBasic Electrical Theory
Basic Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives At the end of this presentation the learner will be able to; Identify the characteristics
More informationRESONANCE AND FILTERS
14221 RESONANCE AND FILTERS Experiment 5, Current in a Parallel Resonant Circuit, For more courses visit www.ciewc.edu OBJECTIVES: 1. To verify by experiment, that the line current (I line ) is at its
More informationBasic AC Reactive Components IMPEDANCE
Basic AC Reactive Components Whenever inductive and capacitive components are used in an AC circuit, the calculation of their effects on the flow of current is important. EO 1.9 EO 1.10 EO 1.11 EO 1.12
More informationPractice Problems  Chapter 33 Alternating Current Circuits
Multiple Choice Practice Problems  Chapter 33 Alternating Current Circuits 4. A highvoltage powerline operates at 500 000 Vrms and carries an rms current of 500 A. If the resistance of the cable is
More informationLab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu
Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab
More informationExperiment #6, Series and Parallel Circuits, Kirchhoff s Laws
Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding
More informationElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits
Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be
More information3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.
Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:
More informationApprentice Electrical Technician Test (ETT) Preparation Guide
Apprentice Electrical Technician Test (ETT) Preparation Guide APPRENTICE ELECTRICAL TECHNICIAN TEST (ETT) About the Test There are 40 questions with a maximum time limit of three hours. This is a closed
More informationApplication guide for power factor testing of power & distribution transformers
Application guide for power factor testing of power & distribution transformers Introduction The transformer is probably one of the most useful electrical devices ever invented. It can raise or lower the
More informationEELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws
EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3 1 Lab Overview: Many electric loads such as electric heaters and light bulbs can
More informationSeries and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
More informationTHE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals
More informationRESONANCE AND FILTERS
14221 RESONANCE AND FILTERS Experiment 4, Resonant Frequency and Impedance of a Parallel Circuit, For more courses visit www.ciewc.edu OBJECTIVES: 1. To demonstrate the resonant frequency of a parallel
More informationTransformer / Line Loss Calculations
70072015307 TECHNICAL NOVEMBER 2006 Transformer / Line Loss Calculations This document gives a brief overview of transformer loss and line loss calculations and describes how these calculations are implemented
More informationALTERNATING CURRENTS
ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q1. What is the SI unit of? Q2. What is the average value of alternating emf over one cycle? Q3. Does capacitor allow ac to pass through it? Q4. What
More informationExperiment 6 Parallel Circuits
Experiment 6 Parallel Circuits EL 111  DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to investigate
More informationLABORATORY 1 WRITEUP  PHYSICS 517/617. Prof. L. S. Durkin July 5, 1992
LABORATORY 1 WRITEUP  PHYSICS 517/617 Prof. L. S. Durkin July 5, 1992 DISCLAIMER: There are many ways to write up a lab report, none of them superior to any other. Below is an example of an acceptable
More informationOhm s Law and Simple DC Circuits
Ohm s Law and Simple DC Circuits 2EM Object: Apparatus: To confirm Ohm s Law, to determine the resistance of a resistor, and to study currents, potential differences, and resistances in simple direct current
More informationDigital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
More informationMethod 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15
The University of New South Wales School of Electrical Engineering and Telecommunications ELEC Electrical and Telecommunications Engineering Tutorial Solutions Q. In the figure below a voltage source and
More informationDC Circuits. 3. Three 8.0 resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13
DC Circuits 1. The two ends of a 3.0 resistor are connected to a 9.0V battery. What is the current through the resistor? a. 27 A c. 3.0 A b. 6.3 A d. 0.33 A 2. The two ends of a 3.0 resistor are connected
More informationPHASOR DIAGRAMS II Fault Analysis Ron Alexander Bonneville Power Administration
PHASOR DIAGRAMS II Fault Analysis Ron Alexander Bonneville Power Administration For any technician or engineer to understand the characteristics of a power system, the use of phasors and polarity are essential.
More informationATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only
ATTACHMENT F CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category
More informationKirchhoff s Laws. Kirchhoff's Law #1  The sum of the currents entering a node must equal the sum of the currents exiting a node.
Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1  The sum of the currents
More informationPHYS245 Lab: Resistors in parallel and resistors in series
PHYS245 Lab: esistors in parallel and resistors in series Purpose Understand parallel and series circuits Use DMM as Ammeter or Voltmeter in d.c. circuits Understand combination rules. Equipment list:
More information11. MEASUREMENT OF POWER CONSUMPTION OF THE NONBALANCED THREEPHASE LOAD
. MEASEMENT OF OE CONSMTION OF THE NONBALANCED THEEHASE LOAD Task of the measurement. Measure the active power and the reactive power of the nonsymmetrical phase load in Yconnection. Do not connect
More informationSinglePhase. ThreePhase
ThreePhase Transformers When more power is needed  three transformers can be tied together. This is called threephase. Here s a simple way of comparing singlephase to threephase power. SinglePhase
More informationR A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +
Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the
More informationApril 8. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  218 LC in parallel
More informationInput and Output Impedances of Resistive Circuits
Input and Output Impedances of Resistive Circuits Last time we saw that according to Thevinin s Theorem and Norton s Theorem, any kind of signal source (which we have arbitrarily modeled as a network of
More informationAPJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EE100 Basics of Electrical SAMPLE QUESTION PAPER Maximum Marks 100 Part A (10 questions) Attempt all the questions 10*4=40 1. We have two identical 10 V electromotive
More informationFaculty of Engineering and Information Technology. Lab 3 Transformers
Faculty of Engineering and Information Technology Subject: 485 Fundamentals of Electrical Engineering Assessment umber: 3 Assessment Title: Lab 3 Transformers Tutorial Group: Students ame(s) and umber(s)
More informationELECE8407 Electromechanics. Laboratory exercise 1: Transformer
ELECE8407 Electromechanics Laboratory exercise 1: Transformer ELECE8407 Electromechanics 2 In the exercise, the properties of a coretype transformer are tested by carrying out the following measurements
More informationMeasurement of Power in single and 3Phase Circuits. by : N.K.Bhati
Measurement of Power in single and 3Phase Circuits by : N.K.Bhati A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module 1. Power in
More information