Slide 1 / 26. Inductance by Bryan Pflueger

Size: px
Start display at page:

Download "Slide 1 / 26. Inductance. 2011 by Bryan Pflueger"

Transcription

1 Slide 1 / 26 Inductance 2011 by Bryan Pflueger

2 Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one another because they each generate a magnetic flux through each of the coils centers. To show the proportionality of the induced magnetic field to the current we take into account the number of turns as well as the mutual inductance of the two coils, denoted M 21. Equation for Mutual Inductance

3 Slide 3 / 26 Mutual Inductance The emfs have a negative sign because according to Lenses Law they have to oppose any change to the magnetic field. Units of Mutual Inductance The units of mutual inductance is the Henry, H, named in honor of the American Physicist Joseph Henry.

4 Slide 4 / 26 Self Inductance In mutual inductance we explained how two separate circuits effect one another, but now we will discuss the case in which the circuit induces an emf in itself by means of self inductance. If a loop of wire with N number of coils is in a circuit and if the current varies then so does the magnetic flux resulting in an induced emf. Once again the induced emf will oppose any change to the current, so it lessens the chance of any fluctuations in the magnitude of the current. Equation for Self Inductance

5 Slide 5 / 26 Self Inductance We already know how to deal with a resistor, battery, and parallel plate capacitors in circuits, but an inductor generates a non-conservative electric field. In order to use them in a circuit we have to determine a general principle which is analogous to Kirchoff's Loop rule. For a circuit with a varying emf and an inductor there are two electric fields. The first is a conservative electric field, E c, which is produced by the battery and the second is a non-conservative electric field, E n, produced by a varying magnetic flux within the inductor. For now we will assume the inductor's coils have negligible resistance and therefore only a relatively small electric field is required to move charges throughout the circuit. Since the electric field in the circuit is nonzero charge will begin to build up on the terminals of the inductors, and the net electric field inside the inductor will be zero,e c + E n = 0.

6 Slide 6 / 26 Self Inductance If we apply Faraday's Law to the previous scenario depicted here, we can determine there is a true potential difference across the inductor related to the conservative electric field, even though the inductor produces a non-conservative electric field within its coils. x Varying emf L Since the non-conservative electric field produced by the inductor is nonzero everywhere except for inside the inductor we can change the integration from the entire loop just to the segment containing the inductor. y The sum of the electric fields within the inductor are zero, E c + E n = 0, so we can rewrite the equation as:

7 Slide 7 / 26 Self Inductance x Varying emf L The integration of this simply is the potential difference at the points x and y along the circuit. y We can conclude that the inductor has a potential difference across its terminals which are related to the conservative electric field and we see that the inductor does not resist the current, rather it resists any change (di/dt).

8 Slide 8 / 26 1 An inductor with inductance L is placed in series with a battery. The equation for the for the current in the inductor is given by the I=be -2t. Which of the following represents the emf induced in the inductor at t=1? A -2Lb/e B Lb/e 2 C -2Lb/e 2 D -Lb/3e 3 E zero

9 Slide 9 / 26 Magnetic Field Energy A battery has a potential difference of #, a resistor of resistance r, and an inductor of self inductance L are all placed in a series circuit. The current through the circuit will initially be zero, but it will eventually reach its max value of #. This is because the inductor is resisting the change in the current, but slowly the current will grow to its max value as will the potential difference across the inductor. In between these two points in time we can write several equations which will allow us to calculate the power stored in the inductor after a long time. positive because the current is increasing

10 Slide 10 / 26 Magnetic Field Energy The equation we just found for the potential energy stored in an inductor can be applied to any other shape, such as a toroidal solenoid whose volume is equal to the circumfrence multiplied by its area. The value of its self inductance is: The value of its Potential Energy is given by:

11 Slide 11 / 26 Magnetic Field Energy The magnetic energy density is given as the ratio of the potential energy and the volume of the inductor. It is denote by u. The magnetic energy density can also be represented in terms of the magnetic field. The magnetic field inside the toroidal solenoid is:

12 Slide 12 / 26 2 An inductor of Inductance.5H is placed in series with a battery which supplies a steady current of 2A. After a long time what is the energy stored within the inductor? A B C D E 1J 2 J 3 J 4 J 5 J

13 Slide 13 / 26 R-L Circuit Initially when switch S 1 is closed the current flowing through that segment of the circuit is zero, but after a long time the current is at its maximum of #/R; however, we want to discuss the case in between these two points in time. R L Initially the current is zero, so the rate of change of current is: When the current has reached its maximum value, di/dt=0.

14 Slide 14 / 26 R-L Circuit Using Kirchoff's loop rule we know the net voltage drop in the loop must be equal to zero, therefore: Current for a R-L Circuit in terms of time

15 Slide 15 / 26 R-L Circuit

16 Slide 16 / 26 R-L Circuit After the circuit has reached it maximum current, what happens if we open S 1 and close S 2? We know that the inductor wants to prevent any change in the current so initially it will remain at I max, but eventually it will dissipate and drop down to zero. R L Current Decay with Respect to time

17 Slide 17 / 26 R-L Circuit Current Decay

18 Slide 18 / 26 R-L Circuit Time Constant The R-L Circuit is dependent on R/L. In one time constant the currents value changes by I(1-1/e), when it is connected to the battery and by 1/e, when it is decaying.

19 Slide 19 / 26 3 An inductor of unknown inductance and a resistor of 12# are placed in series with a battery that supplies a current throughout the circuit. The current in the inductor is given by the equation, I=I o -I o e -3t. What is the value of the inductance? A.167H B.25H C D E 4H 36H Not enough information provided

20 Slide 20 / 26 L-C Circuit If we place a completely charged capacitor whose potential difference is V and has an initial charge of Q, Q=CV, in series with an inductor an interesting case occurs. Since the capacitor stores energy in its electric field and the inductor will store the energy in its magnetic field, this will cause an oscillation of the energy back and forth from the inductor to the capacitor. As the Capacitor discharges the current will slowly reach its maximum value, then it will be stored in the inductor's magnetic field. After the current has reached its maximum value current will continue to flow and start to recharge the capacitor, but with opposite polarity. This will be a continuous process that will constantly reverse the polarity of the capacitor.

21 Slide 21 / 26 L-C Circuit Using Kirchoff's Loop Rule we set up an equation for the net voltage drop in the circuit Divide by -L and sub in for di/dt This is the same equation you would derive for simple harmonic motion, as well as an equation for its position and its angular frequency.

22 Slide 22 / 26

23 Slide 23 / 26 L-C Circuit By confirming that the equations are analogous for the circuit and the mass spring system, we can also setup one for the energy of the system. Remember charge Q is the max amount of charge, and q is just the charge sometime during the discharge and charging states. Energy in conserved in the circuit, and by solving for the current we can find out how it is dependent on the charge on the capacitor.

24 Slide 24 / 26 4 A fully charged capacitor and an inductor are placed in series with each other and have a frequency of #. If the inductance was quadrupled and the capacitance was cut in half, which of the following represents the new frequency? A B C D E

25 Slide 25 / 26 L-R-C Circuit Before in the L-C Circuit the energy was conserved, but what if a resistor were place in series with the other two components to form an L-R-C circuit. In this case the energy would continue to dissipate as it passes through the resistor each time. When the value of r still allows for some oscillation of the energy it is considered to be underdamped. If the circuit no longer oscillates then it is considered critically damped. If there is an even greater resistor in the circuit it will be overdamped and the capacitor will approach zero even faster.

26 Slide 26 / 26 L-R-C Circuit Charge with Respect to Time Q 0 t

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Last time : energy storage elements capacitor.

Last time : energy storage elements capacitor. Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Physics 2102 Lecture 19. Physics 2102

Physics 2102 Lecture 19. Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii. Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 164 Summary Gauss's

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively?

Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively? Your omments I am not feeling great about this mierm...some of this stuff is really confusing still and I don't know if I can shove everything into my brain in time, especially after spring break. an you

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Capacitors in Circuits

Capacitors in Circuits apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively

More information

Inductance and Magnetic Energy

Inductance and Magnetic Energy Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 11-5 11. Self-Inductance... 11-5 Example 11. Self-Inductance

More information

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

A Capacitor Paradox. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 10, 2002; updated June 16, 2013)

A Capacitor Paradox. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (July 10, 2002; updated June 16, 2013) Problem A Capacitor Paradox Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 085 (July 0, 00; updated June 6, 03) Two capacitors of equal capacitance C are connected in parallel

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

More information

CAPACITIVE REACTANCE. We have already discussed the operation of a capacitor in a DC circuit, however let's just go over the main principles again.

CAPACITIVE REACTANCE. We have already discussed the operation of a capacitor in a DC circuit, however let's just go over the main principles again. Reading 13 Ron Bertrand VK2DQ http://www.radioelectronicschool.com CAPACITOR IN A DC CIRCUIT CAPACITIVE REACTANCE We have already discussed the operation of a capacitor in a DC circuit, however let's just

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

More information

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )

Outline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... ) Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor Non-Ideal Inductor Dr. P.J. Randewijk

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits

CHAPTER 30: Inductance, Electromagnetic Oscillations, and AC Circuits HAPTE 3: Inductance, Electromagnetic Oscillations, and A ircuits esponses to Questions. (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on the same axis.

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

Course Syllabus: AP Physics C Electricity and Magnetism

Course Syllabus: AP Physics C Electricity and Magnetism Course Syllabus: AP Physics C Electricity and Magnetism Course Description: AP Physics C is offered as a second year physics course to students who are planning to major in the physical sciences or in

More information

Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-1 Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: Coil 1 produces a flux

More information

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an on-line knowledge enhancement module for a PGCE programme. It is used to cover

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

RLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit.

RLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit. ircuits It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiment, it s wrong. ichard Feynman (1918-1988) OBJETIVES To observe free and driven

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Aircraft Electrical System

Aircraft Electrical System Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Module 22: Inductance and Magnetic Field Energy

Module 22: Inductance and Magnetic Field Energy Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux

More information

Inductors. AC Theory. Module 3

Inductors. AC Theory. Module 3 Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

More information

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

Energy in Electrical Systems. Overview

Energy in Electrical Systems. Overview Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

Alternating Current Circuits and Electromagnetic Waves

Alternating Current Circuits and Electromagnetic Waves Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster

More information

Chapter 19 DC Circuits

Chapter 19 DC Circuits Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

More information

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy)

EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electro-mechanical systems

More information

Mutual Inductance and Transformers F3 3. r L = ω o

Mutual Inductance and Transformers F3 3. r L = ω o utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011 AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

First Year (Electrical & Electronics Engineering)

First Year (Electrical & Electronics Engineering) Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

More information

RC Circuits. 1 Introduction. 2 Capacitors

RC Circuits. 1 Introduction. 2 Capacitors 1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review

More information

2 A bank account for electricity II: flows and taxes

2 A bank account for electricity II: flows and taxes PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more

More information

Physics 9 Fall 2009 Homework 8 - Solutions

Physics 9 Fall 2009 Homework 8 - Solutions 1. Chapter 34 - Exercise 9. Physics 9 Fall 2009 Homework 8 - s The current in the solenoid in the figure is increasing. The solenoid is surrounded by a conducting loop. Is there a current in the loop?

More information

A Resonant Circuit. I. Equipment

A Resonant Circuit. I. Equipment Physics 14 ab Manual A Resonant Circuit Page 1 A Resonant Circuit I. Equipment Oscilloscope Capacitor substitution box Resistor substitution box Inductor Signal generator Wires and alligator clips II.

More information

Vessel holding water. Charged capacitor. Questions. Question 1

Vessel holding water. Charged capacitor. Questions. Question 1 ELEN236 Capacitors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

FREQUENTLY ASKED QUESTIONS October 2, 2012

FREQUENTLY ASKED QUESTIONS October 2, 2012 FREQUENTLY ASKED QUESTIONS October 2, 2012 Content Questions Why do batteries require resistors? Well, I don t know if they require resistors, but if you connect a battery to any circuit, there will always

More information

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery: RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a non-conducting material: In the diagram

More information

1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.

1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

AP Physics C: Electricity and Magnetism: Syllabus 3

AP Physics C: Electricity and Magnetism: Syllabus 3 AP Physics C: Electricity and Magnetism: Syllabus 3 Scoring Components SC1 SC2 SC3 SC SC5 SC6 SC7 The course provides and provides instruction in electrostatics. The course provides and provides instruction

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information

Inductors & Inductance. Electronic Components

Inductors & Inductance. Electronic Components Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The

More information

People s Physics Book

People s Physics Book The Big Idea When current flows through wires and resistors in a circuit as a result of an electric potential, charge does not build up significantly anywhere on the path. Capacitors are devices placed

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

More information

Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

More information

Application Notes. Magnetics. Determining L min for Buck/Boost Converters

Application Notes. Magnetics. Determining L min for Buck/Boost Converters Application Notes Magnetics etermining min for Buck/Boost onverters Fundamental oncepts 172 alculating Minimum nductance Buck Type onverters 174 Boost Type onverters 177 Buck-Boost onverters 180-171 APPATON

More information

Experiment 8 RC Circuits

Experiment 8 RC Circuits Experiment 8 ircuits Nature, to be commanded, must be obeyed. F. Bacon (1561-1626) OBJETIVE To study a simple circuit that has time-dependent voltages and current. THEOY ircuits with steady currents and

More information

Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors. Introducing Coupled Inductors Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Experiment 1 The DC Machine

Experiment 1 The DC Machine Experiment 1 The DC Machine ECEN 4517 R. W. Erickson and D. Maksimovic The purpose of this experiment is to become familiar with operating principles, equivalent circuit models, and basic characteristics

More information

Experiment #9: RC and LR Circuits Time Constants

Experiment #9: RC and LR Circuits Time Constants Experiment #9: RC and LR Circuits Time Constants Purpose: To study the charging and discharging of capacitors in RC circuits and the growth and decay of current in LR circuits. Part 1 Charging RC Circuits

More information

AP R Physics C Electricity and Magnetism Syllabus

AP R Physics C Electricity and Magnetism Syllabus AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a two-course sequence. It is offered in the

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Resistance Review Following the potential around a circuit Multiloop Circuits RC Circuits

Resistance Review Following the potential around a circuit Multiloop Circuits RC Circuits DC Circuits esistance eview Following the potential around a circuit Multiloop Circuits C Circuits Homework for today: ead Chapters 6, 7 Chapter 6 Questions, 3, 0 Chapter 6 Problems, 7, 35, 77 Homework

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

THE LUCAS C40 DYNAMO & ITS ARMATURE.

THE LUCAS C40 DYNAMO & ITS ARMATURE. THE LUCAS C40 DYNAMO & ITS ARMATURE. H. Holden, March 2011. The Dynamo as a DC generating machine was used extensively in the pre- Alternator era, from the early 1900 s up to the late 1960 s and early

More information