# Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only test differences between groups High school class? College year? Can examine ONLY the effects of 1 IV on 1 DV Limited to single group OR repeated measures designs 1

2 Limitations of the t-test Testing differences between group means IV: Gender (Male & Female) IV: High-school class (First-year, Sophomore, Junior, & Senior) Using the t-test, we must either collapse categories or not run the analysis Limitations of the t-test 1 Independent Variable Gender differences in depression IV: Gender (Male & Female) DV: Level of depression (BDI score) Independent Variables Gender and social support on depression IV 1 : Gender (Male & Female) IV : Social support (High, Medium, & Low) DV: Level of depression (BDI score)

3 Limitations of the t-test or more Independent Variables Simultaneously examine the impact of or more IVs on a single DV Examine how the effects of or more IVs COMBINE to affect a single DV Limitations of the t-test Single time point OR repeated measures designs 1 group at time points = repeated measures groups at 1 time point = independent groups Single time point AND repeated measures designs or more groups at or more time points 3

4 The Analysis of Variance (ANOVA) The ANOVA can test hypotheses that the t-test cannot Probably the most commonly abused statistical test Many varieties of ANOVA One-Way (between subjects) Factorial ANOVA (between or within subjects) Repeated Measures (within subjects) Mixed-Model (between & within subjects) One-Way ANOVA Varieties of ANOVA 1 continuous Dependent Variable 1 Independent Variable consisting of or more categorical groups The one-way ANOVA with groups is equivalent to the independent groups t-test 4

5 Varieties of ANOVA Factorial ANOVA 1 continuous Dependent Variable or more Independent Variables consisting of or more categorical groups for each IV IVs = Two-Way Factorial ANOVA 3 IVs = Three-Way Factorial ANOVA We call these factorial designs because EACH level of each IV is paired with EVERY level of ALL other IVs x Contingency Table Level 1 IV Level IV 1 Level 1 Level DATA DATA Col 1 DATA DATA Col Row 1 Row Note: Each Level 1 of IV 1 is paired with BOTH Level 1 and Level of IV 5

6 x Contingency Table Social Support High Low Gender Male DATA DATA Row 1 Female DATA DATA Row Col 1 Col Note: Each Level 1 of IV 1 is paired with BOTH Level 1 and Level of IV Repeated Measures ANOVA Varieties of ANOVA Time points = IV The DV is assessed at EACH time point 6

7 Mixed-Model ANOVA Varieties of ANOVA 1 continuous Dependent Variable 1 or more Independent Variables consisting of or more categorical groups (between) 1 Independent Variable consisting of or more categorical time points (within) The DV is assessed at EACH time point ANOVA models we will consider One-Way ANOVA Two- and Three-way Factorial ANOVA Repeated measures ANOVA Mixed-model ANOVA ANOVA 7

8 Choosing the Best Test The Underlying Model A statistical model by example: Assume: the average 18 year old human being weighs approximately 138 pounds Men, on average, weigh 1 pounds more than the average human weight Women, on average, weigh 10 pounds less than the average human weight 8

9 The Underlying Model For any given human being, I can break weight down into 3 components: Average weight for all individual 138 lbs Average weight for each group Men: +1 lbs Women: - 10 lbs The individual s unique difference The Underlying Model Male weight Weight = 138 lbs + 1 lbs + uniqueness Female weight Weight = 138 lbs 10 lbs + uniqueness If you understand this process, you understand the basic theory behind the ANOVA 9

10 Partitioning Variance The idea behind the ANOVA test is to divide or separate (partition) variance observed in the data into categories of what we CAN and what we CANNOT explain Variance Explained Unexplained The Structural Model Mathematically, we partition the total variance of our data using the structural form of the ANOVA model X ij = µ + τ j +ε ij The structural model translates as follows: The score for any single individual is equal to the sum of the population mean plus the mean of the group plus the individual s unique contribution 10

11 For our weight example: The Structural Model µ = population weight = 138 lbs τ = group difference in weight = 1 or 10 lbs ε = unique contribution of an individual s score µ& τ can be explained ε cannot be explained Uniqueness Oftentimes, we value our uniqueness In statistics, unique variance is BAD Since we can t explain unique variance, we call it error Thus, the ANOVA seeks to examine the relative proportion of explainable variance in our data to the unexplainable variance 11

12 Assumptions of the ANOVA Owing to the mathematical construction of the ANOVA, the underlying assumptions of the test are very important Homogeneity of variance Normality Independence of Observations The Null Hypothesis Homogeneity of Variance Homogeneity of variance refers to the variance for each group being equal to the variance of every other group Really, we mean that the variance of each group is equal to the variance of the error for the total analysis σ 1 = σ = σ 3 = σ j = σ e 1

13 Homogeneity of Variance Heterogeneity of variance is another BAD thing Heterogeneous variances can greatly influence the results you obtain, making it either more or less likely that you will reject H 0 Visual inspection of variances Tests of homogeneity of variance Normality The ANOVA procedure assumes that scores are normally distributed More accurately, it assumes that ERRORS are normally distributed Random sampling and random assignment Lacking normality, consider mathematical transformations Logarithmic & square root transformations 13

14 Independence of Observations Simple: The scores for 1 group are not dependent on the scores from another group Don t share subjects between groups If violated What is wrong with your experimental design? Are you using the appropriate test? The Null Hypothesis Less an assumption and more a theoretical point: H 0 : µ 1 = µ = µ 3 = µ 4 = µ 5 This is almost ALWAYS the basic form of your null hypothesis 14

15 Calculating the One-Way ANOVA In order to calculate the One-Way ANOVA statistic, we need to complete a number of intermediate steps Because there are several intermediate steps, we keep track of our progress with something called a summary table The Summary Table Source df Sum of Squares (SS) Mean Square (MS) F 15

16 One-Way ANOVA: Partitioning Variance The idea behind the ANOVA test is to divide or separate (partition) variance observed in the data into categories of what we CAN and what we CANNOT explain Variance The Summary Table Source df (k-1) Sum of Squares (SS) Mean Square (MS) F k(n-1) (N-1) Note: df + df =df 16

17 Note: x j Sum of Squares = The treatment group mean x.. = The grand mean (mean of all scores) X ij = Each individual score The Summary Table Source df (k-1) Sum of Squares (SS) SS n( X X ) = j.. Mean Square (MS) F k(n-1) SS = SS SS (N-1) SS = ( X ij X.. ) 17

18 The Summary Table Source df (k-1) Sum of Squares (SS) SS n( X X ) = j.. Mean Square (MS) SS MS = df F k(n-1) SS = SS SS SS MS = df (N-1) SS = ( X ij X.. ) The Summary Table Source df (k-1) Sum of Squares (SS) SS n( X X ) = j.. Mean Square (MS) SS MS = df F MS F = MS k(n-1) SS = SS SS SS MS = df (N-1) SS = ( X ij X.. ) 18

19 Example: Anorexia Nervosa 3 Group Tx Control IPT CBT Example: Anorexia Nervosa 3 Group Tx Change in Weight Descriptives Control IPT CBT 95% Confidence Interval for Mean N Mean Std. Deviation Std. Lower Bound Upper Bound

20 Example: Anorexia Nervosa 3 Group Tx Test of Homogeneity of Variances Change in Weight Levene Statistic df1 df Sig H 0 : σ 1 = σ = σ 3 H 1 : σ 1 σ σ 3 Fail to reject H 0... Example: Anorexia Nervosa 3 Group Tx Change in Weight ANOVA Between Groups Within Groups Sum of Squares df Mean Square F Sig F(,34) =.54, p <.05 0

21 Example: Anorexia Nervosa Group Tx Control CBT Example: Anorexia Nervosa Group Tx Descriptives Change in Weight Control CBT 95% Confidence Interval for Mean N Mean Std. Deviation Std. Lower Bound Upper Bound Minimum Maximum

22 Example: Anorexia Nervosa Group Tx Test of Homogeneity of Variances Change in Weight Levene Statistic df1 df Sig H 0 : σ 1 = σ = σ 3 H 1 : σ 1 σ σ 3 Fail to reject H 0 Example: Anorexia Nervosa Group Tx Change in Weight ANOVA Between Groups Within Groups Sum of Squares df Mean Square F Sig F(1,4) = 36.44, p <.05

23 Example: Anorexia Nervosa Group Tx Independent Groups t-test Group Statistics Experimental Group Change in Weight Control CBT One-way ANOVA N Mean Std. Deviation Std. Mean Descriptives Change in Weight Control CBT 95% Confidence Interval for Mean N Mean Std. Deviation Std. Lower Bound Upper Bound Example: Anorexia Nervosa Group Tx Independent groups t-test Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means Change in Weight Equal variances assumed Equal variances not assumed One-way ANOVA F Sig. t df Sig. (-tailed) Mean Difference Std. Difference ANOVA Change in Weight Sum of Squares df Mean Square F Sig. Between Groups Within Groups

24 Example: Anorexia Nervosa Group Tx Shouldn t the results of the F- and t-tests be equal if the tests are equivalent? F(1,4) = 36.44, p <.05 t(4) = -6.04, p <.05 t = F 4

### c. The factor is the type of TV program that was watched. The treatment is the embedded commercials in the TV programs.

STAT E-150 - Statistical Methods Assignment 9 Solutions Exercises 12.8, 12.13, 12.75 For each test: Include appropriate graphs to see that the conditions are met. Use Tukey's Honestly Significant Difference

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Factor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21

1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Testing Hypotheses using SPSS

Is the mean hourly rate of male workers \$2.00? T-Test One-Sample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 One-Sample Test Test Value = 2 95% Confidence Interval Mean of the

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### ANOVA Analysis of Variance

ANOVA Analysis of Variance What is ANOVA and why do we use it? Can test hypotheses about mean differences between more than 2 samples. Can also make inferences about the effects of several different IVs,

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### SPSS Guide: Tests of Differences

SPSS Guide: Tests of Differences I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### T-tests. Daniel Boduszek

T-tests Daniel Boduszek d.boduszek@interia.eu danielboduszek.com Presentation Outline Introduction to T-tests Types of t-tests Assumptions Independent samples t-test SPSS procedure Interpretation of SPSS

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### ANSWERS TO EXERCISES AND REVIEW QUESTIONS

ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS

### Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish

Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### PSYCHOLOGY 320L Problem Set #3: One-Way ANOVA and Analytical Comparisons

PSYCHOLOGY 30L Problem Set #3: One-Way ANOVA and Analytical Comparisons Name: Score:. You and Dr. Exercise have decided to conduct a study on exercise and its effects on mood ratings. Many studies (Babyak

### Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics

Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### Factorial Analysis of Variance

Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### 6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test

6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test Having finally arrived at the bottom of our decision tree, we are now going

### Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### 7. Comparing Means Using t-tests.

7. Comparing Means Using t-tests. Objectives Calculate one sample t-tests Calculate paired samples t-tests Calculate independent samples t-tests Graphically represent mean differences In this chapter,

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### DDBA 8438: The t Test for Independent Samples Video Podcast Transcript

DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,

### Introduction to Hypothesis Testing. Copyright 2014 Pearson Education, Inc. 9-1

Introduction to Hypothesis Testing 9-1 Learning Outcomes Outcome 1. Formulate null and alternative hypotheses for applications involving a single population mean or proportion. Outcome 2. Know what Type

### Hypothesis Testing. Male Female

Hypothesis Testing Below is a sample data set that we will be using for today s exercise. It lists the heights for 10 men and 1 women collected at Truman State University. The data will be entered in the

### General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM

EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable

### ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

### Research Methods & Experimental Design

Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### Lecture 7: Binomial Test, Chisquare

Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two

### Analysis of numerical data S4

Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:

### Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

### INTERPRETING THE REPEATED-MEASURES ANOVA

INTERPRETING THE REPEATED-MEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Basic Statistcs Formula Sheet

Basic Statistcs Formula Sheet Steven W. ydick May 5, 0 This document is only intended to review basic concepts/formulas from an introduction to statistics course. Only mean-based procedures are reviewed,

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### An example ANOVA situation. 1-Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)

An example ANOVA situation Example (Treating Blisters) 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### Mind on Statistics. Chapter 16 Section Chapter 16

Mind on Statistics Chapter 16 Section 16.1 1. Which of the following is not one of the assumptions made in the analysis of variance? A. Each sample is an independent random sample. B. The distribution

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### Contrasts ask specific questions as opposed to the general ANOVA null vs. alternative

Chapter 13 Contrasts and Custom Hypotheses Contrasts ask specific questions as opposed to the general ANOVA null vs. alternative hypotheses. In a one-way ANOVA with a k level factor, the null hypothesis

### Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS. Dan Flynn

Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS Dan Flynn Just as t-tests are useful for asking whether the means of two groups are different, analysis of variance

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality

Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality 1 To help choose which type of quantitative data analysis to use either before

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### Power & Effect Size power Effect Size

Power & Effect Size Until recently, researchers were primarily concerned with controlling Type I errors (i.e. finding a difference when one does not truly exist). Although it is important to make sure

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples

Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours

### UNDERSTANDING THE ONE-WAY ANOVA

UNDERSTANDING The One-way Analysis of Variance (ANOVA) is a procedure for testing the hypothesis that K population means are equal, where K >. The One-way ANOVA compares the means of the samples or groups

### Chapter V Health Insurance Plans of Indian General Insurance Companies: A Comparative Study with Reference to Coverage and Non Coverage

Chapter V Health Insurance Plans of Indian General Insurance Companies: A Comparative Study with Reference to Coverage and Non Coverage As far as the status of health insurance in Indian insurance market

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### SPSS Resources. 1. See website (readings) for SPSS tutorial & Stats handout

Analyzing Data SPSS Resources 1. See website (readings) for SPSS tutorial & Stats handout Don t have your own copy of SPSS? 1. Use the libraries to analyze your data 2. Download a trial version of SPSS

### Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

### Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.

Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us

### Example for testing one population mean:

Today: Sections 13.1 to 13.3 ANNOUNCEMENTS: We will finish hypothesis testing for the 5 situations today. See pages 586-587 (end of Chapter 13) for a summary table. Quiz for week 8 starts Wed, ends Monday

### CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

### Comparing Two or more than Two Groups

CRJ 716 Using Computers in Social Research Comparing Two or more than Two Groups Comparing Means, Conducting T-Tests and ANOVA Agron Kaci John Jay College Chapter 9/1: Comparing Two or more than Two Groups

### Sample Size Determination

Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)

### E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

### ANNOTATED OUTPUT--SPSS Simple Linear (OLS) Regression

Simple Linear (OLS) Regression Regression is a method for studying the relationship of a dependent variable and one or more independent variables. Simple Linear Regression tells you the amount of variance

### ACTM State Exam-Statistics

ACTM State Exam-Statistics For the 25 multiple-choice questions, make your answer choice and record it on the answer sheet provided. Once you have completed that section of the test, proceed to the tie-breaker

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

### SPSS BASICS. (Data used in this tutorial: General Social Survey 2000 and 2002) Ex: Mother s Education to eliminate responses 97,98, 99;

SPSS BASICS (Data used in this tutorial: General Social Survey 2000 and 2002) How to do Recoding Eliminating Response Categories Ex: Mother s Education to eliminate responses 97,98, 99; When we run a frequency

### The impact/s of Using Mobile Phone on English Language Vocabulary Retention

International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 4 (3): 541-547 Science Explorer Publications The impact/s of Using Mobile Phone

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some