August 2012 EXAMINATIONS Solution Part I


 Brenda Patterson
 1 years ago
 Views:
Transcription
1 August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample, the probability that less than 4% are in favour of this policy is The sample size is closest to (A) (3) The 90th percentile of daily sales is closest to (D) (4) In the next 4 days, the probability that their average daily sales exceed $600 is closest to (A) (5) In the next 4 days, the probability that the daily dales exceed $500 in only one of these days is closest to (E) (6) If Line 1 and Line are independent, the probability that Line 1 produces more parts than Line in any single day is closest to (D) (7) If Line 1 and Line are independent, what is the probability that the average number of parts produced by Line 1 is greater than that produced by Line in the next 5 days? (E) (8) This firm specifies that the estimation of this proportion has a margin of error 0.05 with 90% confidence. The smallest sample size required is closest to (B) (9) The smallest sample size required is closest to (A) (10) A 90% confidence interval for the real proportion is closest to (D) (11) What is the standard deviation of your sample? (D) (1) Which one of the following statements is true? (B) (13) How will it change your OLS estimate for the slope of the regression line, 1? (B) (14) How do you interpret the slope estimate for x 3? (C) (15) Which one of these variables will cause perfect multicollinearity? (E) (16) When the true value under the alternative hypothesis shifts closer to the value under the null hypothesis, while the critical value stays the same, (A) (17). If you do not find out about his systematic mistakes, what consequences will they have on the results of your tests? (B) (18) What kind of data is it? (D) (19) What is your set of hypotheses corresponding to your research question? (A) (0) What is the Pvalue of your test for the hypotheses that you identified in question (19)? (C)
2 Page 1 of 16 UNIVERSITY OF TORONTO Faculty of Arts and Science August 01 EXAMINATIONS ECO0Y1Y Duration  3 hours Examination Aids: Calculator Solution Part II: Short Answer Questions [60 points] (1) [1 points] You are hired as a consultant by the marketing department of Crown Bank and asked to analyze the data of customer satisfaction survey. A key measure of customer satisfaction is the response on a scale from 1 to 10 to the question, Considering all business you do with Crown Bank, what is your overall satisfaction with Crown Bank? If the response is 9 or 10, the customer is considered delighted by Crown Bank. The department wants to know if customers are more likely to be delighted in the areas with more Crown Bank ATMs. They obtained random samples from two areas that have the same area, but vary in ATM density (number of ATMs per capita). The following table shows the result. Area 1 Area ATM density (per km ) 10 3 Total responses Responses with 9 or (a) [4 points] What is the set of hypotheses that the marketing department wants to test? [A set of hypotheses] H 0 : p 1 p =0 H 1 : p 1 p >0 (b) [8 points] Conduct the test for the hypothesis you identified in question (a) by the Pvalue method. Use the significance level =0.05. Write a short report to the marketing department about the result. For full marks, you should clearly state the test statistic, the Pvalue, and the decision. [Analysis, 3 items & 3 or 4 sentences]
3 Page of 16 Since, it satisfies the success/failure conditions. Thus, we can use normal approximation for the distribution of difference in population proportions. Test statistic: ( pˆ ˆ 1 p ) z 1.788, where p ˆ pˆ(1 pˆ) n1 n Pvalue: P ( Z 1.788) Decision: Since the Pvalue is 0.037, less than 0.05, we reject the null hypothesis. There is sufficient evidence to suggest that customers are more likely to be delighted in the areas with more Crown Bank ATMs. () [15 points] Insurance companies track life expectancy information to assist in determining the cost of life insurance policies. Last year the average life expectancy of all policyholders was 77 years. ABI Insurance wants to determine if their clients now have a longer life expectancy, on average, so they randomly sample some of their recently paid policies. The insurance company will only change their premium structure if there is evidence that people who buy their policies are living longer than before. The sample has 8 observations, a mean of 78.6 years, and a standard deviation of 4.48 years. (a) [ points] What set of hypotheses does the ABI insurance wish to test? [A set of hypotheses] H 0 :=77, H 1 : >77 (b) [4 points] Conduct the test for the hypotheses you identified in question (a) by rejection region method. For full marks, you should clearly state the rejection region, the test statistic, and the decision. Based on the result, what will the insurance company do to its premium structure? [Analysis, 3 items & 3 sentences]
4 Page 3 of 16 Since sample size is n=8, degrees of freedom for t statistic is 7. The critical value for =0.05 for one sided test when degrees of freedom is 7 is Thus rejection region is t x The test statistic is t SE( x) 4.48/ Since t=1.890>1.703, we reject the null hypothesis. There is sufficient evidence to suggest that the life expectancy of policy holders for ABI Insurance increased from 77 years. Thus, the company will change its premium structure. (c) [5 points] Suppose the true mean life expectancy of policyholders is years. Obtain the power of the test. [Analysis, one value] Given =0.05, the critical value of the test in original unit is c= = Given the mean of the distribution under the alternative is 81.18, t statistic corresponding to the critical value is t Thus, the power of the test, the probability of rejecting the wrong null, is given by P(t>.05)=10.05= Hypothesis Test =.05 (H 0 := 0,H A :> 0 )
5 Page 4 of 16 (d) [4 points] Obtain the 0.99 confidence interval for the mean life expectancy of the policyholders and interpret the result. [Analysis, a set of values & 1 sentences] For =n1=7, the critical value for =0.005 is.771 x.771 SE( X ) (76.54,80.946) With 0.99 confidence, the mean life expectancy of policy holders of ABI Insurance is at least years and at most years. (3) [18 points] A researcher would like to know if productivity of factory workers changes by better lighting in the room. In order to investigate this question, he collected data from a factory. He randomly chose 17 workers and sent them to work in room 1. He randomly chose another set of 17 workers and sent them to work in room. Then he set the lighting of room 1 at the regular level and the lighting of room to be brighter. Other than the lighting, work conditions in the two rooms were identical. He collected data on daily productivity of each worker in the two rooms. The theoretical model to be estimated is as follows: productivity i = room i + age i + 4 experience i + Where productivity i =number of production by worker i on that day room i =1 if worker i is in room, 0 if worker i is in room 1 age i =age of worker i experience i = years of experience of worker i at the factory The regression result is given as follows. productivity i = room i age i experience i + (9.68) (1.63) (0.51) (0.50) n=34, R =0.8584
6 Page 5 of 16 (a) [4 points] What is the set of hypotheses that the researcher would like to test? [A set of hypotheses] H 0 : 1 =0, H 1 : 1 0 (b) [4 points] Conduct the test you stated in (a) by the rejection region method. For full marks, you have to clearly state the rejection region, the test statistic, and the decision. Based on the result of the test, report and interpret the result of the research. [Analysis,3 items, 3 sentences] Given significance level and degrees of freedom corresponding critical value is.04. Thus, the rejection region is: t>.04, t<.04. Based on the regression result, the test statistic is Since t=3.644>.04, it is in the rejection region. Thus we reject the null hypothesis in favor of the alternative. There is sufficient evidence to suggest that 1 is statistically significantly zero. This estimate suggests that the lighting in a room changes productivity of workers. (c) [4 points] Conduct the test of overall significance for this model by the rejection region method. Use the significance level =0.05.For full marks, you have to clearly state the rejection region, the test statistic, and the decision.[analysis, 3 items & 1 sentences] With significance level =0.05 and degrees of freedom, the rejection region is F>.9. The F statistics is obtained as follows. R / k F 60.6 (1 R ) / n k 1 Since F=60.6>.9, we reject the null hypothesis in favor of the alternative. There is enough evidence to suggest that at least one beta is statistically significantly different from zero.
7 Page 6 of 16 (d) [6 points] Suppose that the researcher lets each worker choose whether to work in the room with the brighter lighting or the one with the regular lighting. Then, which assumptions, if any, of the multiple regression model will be violated? Can the coefficient estimates obtained from this sample be reliable? Explain. [45 sentences] The exogeneity assumption of x is violated. (i.e. E(x j i )=0 for all i and j) If workers choose their room to work in, it is likely to create endogeneity. For example, workers who care about producing more, may tend to choose brighter room. It means workers morale may be lurking variables and positively correlate with both x i and y i. In this case, the coefficient estimate for room1 is biased upward and is not reliable as an estimate of the effect of brighter lighting to the productivity. (4) [15 points] A sales manager is interested in determining if there is a relationship between college GPA and sales performance among salespeople hired within the last year. He selected a sample of recently hired salespeople and recorded the number of units each salesperson sold in the last month. Variables obtained were: ID i = identification number of salesperson i, unitssold i =the number of units sold last month by salesperson i, GPA i = college GPA of salesperson i. The mean of unitssold i was.4 units and the mean of GPA i was 3.09.The table below shows the regression result..reg unitssold GPA Source SS df MS Number of obs = F( 1, 13) = 46.8 Model Prob > F = Residual Rsquared = Adj Rsquared = Total Root MSE = unitssold Coef. Std. Err. t P> t [95% Conf. Interval] GPA _cons Mean of GPA=3.09 (a) [4 points]write down the theoretical model that is being estimated. [An equation] unitssold i = GPA i + i
8 Page 7 of 16 (b) [5 points] Interpret the coefficient estimate for GPA i. [Interpretation, 1 sentence] An increase in GPA by 1 point is associated with an increase of the number of units sold last month by a salesperson by 7.4 units on average. (c) [6 points] Obtain the 0.9 prediction band of sales performance for a salesperson with GPA of 3.0. [Analysis & a pair of values] yˆ t / SE ( b ) ( x 1 x) s n e s e * (1.087) (3 3.09) (1.631) 15 (1.631) (18.78,4.75)
MULTIPLE REGRESSION EXAMPLE
MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if
More informationRegression Analysis. Data Calculations Output
Regression Analysis In an attempt to find answers to questions such as those posed above, empirical labour economists use a useful tool called regression analysis. Regression analysis is essentially a
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationIntroduction to Stata
Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the midrange of how easy it is to use. Other options include SPSS,
More informationIAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results
IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is Rsquared? Rsquared Published in Agricultural Economics 0.45 Best article of the
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationREGRESSION LINES IN STATA
REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression
More informationRegression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
More informationLecture 15. Endogeneity & Instrumental Variable Estimation
Lecture 15. Endogeneity & Instrumental Variable Estimation Saw that measurement error (on right hand side) means that OLS will be biased (biased toward zero) Potential solution to endogeneity instrumental
More informationECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2
University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages
More informationPlease follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software
STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used
More informationNonlinear Regression Functions. SW Ch 8 1/54/
Nonlinear Regression Functions SW Ch 8 1/54/ The TestScore STR relation looks linear (maybe) SW Ch 8 2/54/ But the TestScore Income relation looks nonlinear... SW Ch 8 3/54/ Nonlinear Regression General
More informationMODEL I: DRINK REGRESSED ON GPA & MALE, WITHOUT CENTERING
Interpreting Interaction Effects; Interaction Effects and Centering Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Models with interaction effects
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More information1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ
STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material
More informationCorrelation and Regression
Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look
More informationInteraction effects between continuous variables (Optional)
Interaction effects between continuous variables (Optional) Richard Williams, University of Notre Dame, http://www.nd.edu/~rwilliam/ Last revised February 0, 05 This is a very brief overview of this somewhat
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationQuantitative Methods for Economics Tutorial 9. Katherine Eyal
Quantitative Methods for Economics Tutorial 9 Katherine Eyal TUTORIAL 9 4 October 2010 ECO3021S Part A: Problems 1. In Problem 2 of Tutorial 7, we estimated the equation ŝleep = 3, 638.25 0.148 totwrk
More informationDETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS
DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS Nađa DRECA International University of Sarajevo nadja.dreca@students.ius.edu.ba Abstract The analysis of a data set of observation for 10
More informationDepartment of Economics Session 2012/2013. EC352 Econometric Methods. Solutions to Exercises from Week 10 + 0.0077 (0.052)
Department of Economics Session 2012/2013 University of Essex Spring Term Dr Gordon Kemp EC352 Econometric Methods Solutions to Exercises from Week 10 1 Problem 13.7 This exercise refers back to Equation
More informationEcon 371 Problem Set #3 Answer Sheet
Econ 371 Problem Set #3 Answer Sheet 4.3 In this question, you are told that a OLS regression analysis of average weekly earnings yields the following estimated model. AW E = 696.7 + 9.6 Age, R 2 = 0.023,
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationSTAT 350 Practice Final Exam Solution (Spring 2015)
PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects
More informationChapter 23 Inferences About Means
Chapter 23 Inferences About Means Chapter 23  Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300minute
More informationMarginal Effects for Continuous Variables Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 21, 2015
Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 21, 2015 References: Long 1997, Long and Freese 2003 & 2006 & 2014,
More informationLectures 8, 9 & 10. Multiple Regression Analysis
Lectures 8, 9 & 0. Multiple Regression Analysis In which you learn how to apply the principles and tests outlined in earlier lectures to more realistic models involving more than explanatory variable and
More informationMODELING AUTO INSURANCE PREMIUMS
MODELING AUTO INSURANCE PREMIUMS Brittany Parahus, Siena College INTRODUCTION The findings in this paper will provide the reader with a basic knowledge and understanding of how Auto Insurance Companies
More informationStatistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY
Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY ABSTRACT: This project attempted to determine the relationship
More informationESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics
ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Quantile Treatment Effects 2. Control Functions
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationRegression in Stata. Alicia Doyle Lynch HarvardMIT Data Center (HMDC)
Regression in Stata Alicia Doyle Lynch HarvardMIT Data Center (HMDC) Documents for Today Find class materials at: http://libraries.mit.edu/guides/subjects/data/ training/workshops.html Several formats
More informationChicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationRegression stepbystep using Microsoft Excel
Step 1: Regression stepbystep using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression
More informationCollege Education Matters for Happier Marriages and Higher Salaries Evidence from State Level Data in the US
College Education Matters for Happier Marriages and Higher Salaries Evidence from State Level Data in the US Anonymous Authors: SH, AL, YM Contact TF: Kevin Rader Abstract It is a general consensus
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More informationDiscussion Section 4 ECON 139/239 2010 Summer Term II
Discussion Section 4 ECON 139/239 2010 Summer Term II 1. Let s use the CollegeDistance.csv data again. (a) An education advocacy group argues that, on average, a person s educational attainment would increase
More informationWeek TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationStatistics 112 Regression Cheatsheet Section 1B  Ryan Rosario
Statistics 112 Regression Cheatsheet Section 1B  Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More information17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More information2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
More informationFailure to take the sampling scheme into account can lead to inaccurate point estimates and/or flawed estimates of the standard errors.
Analyzing Complex Survey Data: Some key issues to be aware of Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 24, 2015 Rather than repeat material that is
More informationDEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests
DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationMulticollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015
Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,
More informationUsing R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
More information1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
More informationChapter 5: Basic Statistics and Hypothesis Testing
Chapter 5: Basic Statistics and Hypothesis Testing In this chapter: 1. Viewing the tvalue from an OLS regression (UE 5.2.1) 2. Calculating critical tvalues and applying the decision rule (UE 5.2.2) 3.
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationACTM State ExamStatistics
ACTM State ExamStatistics For the 25 multiplechoice questions, make your answer choice and record it on the answer sheet provided. Once you have completed that section of the test, proceed to the tiebreaker
More informationGLM I An Introduction to Generalized Linear Models
GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationSimple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
More informationAddressing Alternative. Multiple Regression. 17.871 Spring 2012
Addressing Alternative Explanations: Multiple Regression 17.871 Spring 2012 1 Did Clinton hurt Gore example Did Clinton hurt Gore in the 2000 election? Treatment is not liking Bill Clinton 2 Bivariate
More informationSTATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
More informationRockefeller College University at Albany
Rockefeller College University at Albany PAD 705 Handout: Hypothesis Testing on Multiple Parameters In many cases we may wish to know whether two or more variables are jointly significant in a regression.
More informationUsing Minitab for Regression Analysis: An extended example
Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationSIMPLE REGRESSION ANALYSIS
SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More informationThe average hotel manager recognizes the criticality of forecasting. However, most
Introduction The average hotel manager recognizes the criticality of forecasting. However, most managers are either frustrated by complex models researchers constructed or appalled by the amount of time
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationExamples of Multiple Linear Regression Models
ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A crosssectonal sample of 7 cars sold n
More informationSTA 4163 Lecture 10: Practice Problems
STA 463 Lecture 0: Practice Problems Problem.0: A study was conducted to determine whether a student's final grade in STA406 is linearly related to his or her performance on the MATH ability test before
More informationMEASURING THE INVENTORY TURNOVER IN DISTRIBUTIVE TRADE
MEASURING THE INVENTORY TURNOVER IN DISTRIBUTIVE TRADE Marijan Karić, Ph.D. Josip Juraj Strossmayer University of Osijek Faculty of Economics in Osijek Gajev trg 7, 31000 Osijek, Croatia Phone: +385 31
More informationPremaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
More informationSolución del Examen Tipo: 1
Solución del Examen Tipo: 1 Universidad Carlos III de Madrid ECONOMETRICS Academic year 2009/10 FINAL EXAM May 17, 2010 DURATION: 2 HOURS 1. Assume that model (III) verifies the assumptions of the classical
More informationThe calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n
EXAMPLE 1: Paired ttest and tinterval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel
More information2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
More information2. Linear regression with multiple regressors
2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measuresoffit in multiple regression Assumptions
More informationInternational Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA Email: peverso1@swarthmore.edu 1. Introduction
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationData Analysis Methodology 1
Data Analysis Methodology 1 Suppose you inherited the database in Table 1.1 and needed to find out what could be learned from it fast. Say your boss entered your office and said, Here s some software project
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationExample: Boats and Manatees
Figure 96 Example: Boats and Manatees Slide 1 Given the sample data in Table 91, find the value of the linear correlation coefficient r, then refer to Table A6 to determine whether there is a significant
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationUCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
More informationHandling missing data in Stata a whirlwind tour
Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationCOMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.
277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies
More information5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationRegression Analysis: Basic Concepts
The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationStata Walkthrough 4: Regression, Prediction, and Forecasting
Stata Walkthrough 4: Regression, Prediction, and Forecasting Over drinks the other evening, my neighbor told me about his 25yearold nephew, who is dating a 35yearold woman. God, I can t see them getting
More informationLesson Lesson Outline Outline
Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationLab 5 Linear Regression with Withinsubject Correlation. Goals: Data: Use the pig data which is in wide format:
Lab 5 Linear Regression with Withinsubject Correlation Goals: Data: Fit linear regression models that account for withinsubject correlation using Stata. Compare weighted least square, GEE, and random
More informationSimple Linear Regression in SPSS STAT 314
Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,
More information