# 12: Analysis of Variance. Introduction

Size: px
Start display at page:

Transcription

1 1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider means from k independent groups, where k is or greater. The technique is called analysis of variance, or ANOVA for short. Illustrative data (anova.sav). e consider AGE of study participants from three different clinical centers. Ages (years) are: Center 1 (n 1 = ): 60, 66, 65, 55, 6, 70, 51, 7, 58, 61, 71, 41, 70, 57, 55, 63, 64, 76, 74, 54, 58, 73 Center (n = 18): 56, 65, 65, 63,,57, 47, 7, 56, 5, 75, 66, 6, 68, 75, 60, 73, 63, 64 Center 3 (n = 3): 67, 56, 65, 61, 63, 59, 4, 53, 63, 65, 60, 57, 6, 70, 73, 63, 55, 5, 58, 68, 70, 7, 45 1 Data are entered as two separate variables, one for the dependent variable and one for the group ( independent ) variable. Data are stored in anova.sav are stored as variables AGE and CENTER. The first five and last five observations are: OBS AGE CENTER etc. etc. etc Page 1.1 (C:\data\StatPrimer\anova-a.wpd /18/07)

2 EDA Summary statistics. Let N denote the total sample size (e.g., N = 63). Let (no subscript) represent the mean of all N subjects, combined. This is called the grand mean. For the illustrative AGE data, = Group means, standard deviations, and sample sizes are denoted with subscripts. For the illustrative data: = 6.546, s 1 = 8.673, n 1 = = 63.78, s = 7.789, n = 18 = 60.86, s 3 = 8.004, n 3 = 3 e note that group means and standard deviations are all within a couple of years of each other. Graphical Analysis. A side-by-side boxplot is one of the best way to compare group locations, spreads, and shapes. (Detailed instruction on how to draw and interpret boxplots was presented in Chapter 4). A side-by-side boxplot for the illustrative data, shown at the bottom of the page, shows distributions with similar shapes, locations and spreads. It may be worth noting that group 3 has a low outside value. SPSS. Click Analyze > Descriptive Statistics > Explore and place the dependent variable in the Dependent list and the group variable in the Factor list. Other graphical technique such as side-by-side dot plots, stem-and-leaf plots, mean±sd, mean±se, and confidence interval plots may also be employed to compare the groups. Figure 1 Page 1. (C:\data\StatPrimer\anova-a.wpd /18/07)

3 Null and Alternative Hypotheses Hypothesis Test (ANOVA) The name analysis of variance may mislead some students to think the technique is used to compare group variances. In fact, analysis of variance uses variance to cast inference on group means. The null and alternative hypotheses are: H 0: 1 = =... = k H : H is false ( at least one population mean differs ) 1 0 where i represents the population mean of group i. hether an observed difference between group mean is surprising will depends on the spread (variance) of the observations within groups. idely different averages can more likely arise by chance if individual observations within groups vary greatly. e must therefore take into account the variance within group when assessing differences between groups. Consider the dot-plots below. Surely the difference demonstrated between the first three groups is more likely to be significantly that the difference demonstrated by the second three groups. Thus, if the variance between groups exceeds what is expected in terms of the variance within groups, we will reject the null hypothesis. Let ² represent the variance within groups in the population. Let ² B denote the variance between groups within the population. The null and alternative hypotheses may now be restated as: 0 B 1 B H : H : > The variance between groups may be thought of as a signal of group differences. The variance within groups may be thought of as background noise. hen the signal exceeds the noise, we will reject the null hypothesis. Page 1.3 (C:\data\StatPrimer\anova-a.wpd /18/07)

4 Variance Between Groups Let s B represent the sample variance between groups: (1) This statistic, also called the Means Square Between (MSB), is a measure of the variability of group means around the grand mean (Fig. ). The SS B (sum of squares between) is () where n i represents the size of group i, represents the mean of group i, and represents the grand mean. For the illustrative data, SS B = [()( ) + (18)( ) + (3)( ) ] = This statistic has degrees of freedom: (3) where k represents the number of groups. For the illustrative data, df B = 3 1. For the illustrative data, s B = / = Figure 3. Variability between. Page 1.4 (C:\data\StatPrimer\anova-a.wpd /18/07)

5 Variance ithin Groups The variance within (s ) quantifies the spread of values within groups (Fig. 3). In the jargon of ANOVA, the variance within is also called the Mean Square ithin (MS) and is calculated: (4) where the sum of squares within (SS ) is: (5) and the degrees of freedom within is: (6) For the illustrative data, SS = [( 1)(8.673 ) + (18 1)(7.789 ) + (3 1)(8.004 )] = and df w = 63 3 = 60. Thus, s = / 60 = w An alternative formula for the variance within is: (7) where s² i represent the variance in group i and df i represent the degrees in the group (df i = ni 1). This alternative formula shows the variance within as a weighted average of group variances with weights determined by group degrees of freedom. Figure 4. Variability within groups Page 1.5 (C:\data\StatPrimer\anova-a.wpd /18/07)

6 ANOVA Table and F Statistic The statistics describe thus far are arranged to form an ANOVA table as follows: Source Sum of Squares Degrees of freedom Mean Squares Between SSB df B = k 1 ithin SS df w = N k = SS / df B = SS / df B Total SS T = SS B + SS df = df B + df w The ANOVA table for the illustrative data is: Source Sum of Squares Degrees of freedom Mean Squares Between ithin Total B The ratio of the variance between (s ) and the variance within (s ) is the ANOVA F statistic: (8) Under the null hypothesis, this test statistic has an F sampling distribution with df 1 and df degrees of freedom. The p value for the test is represented as the area under F df1,df to the right tail of the F stat. For the illustrative example, Fstat = / = 0.50 with and 60 degrees of freedom. Using the F table we note F,60,.95 = Therefore, p >.05 (Fig. 4). The more precise p value can be computed with inpepi > hatis.exe and other probability calculator (p =.60). SPSS: Click Analyze > Compare Means > One-way ANOVA. Then select the dependent variable and independent variable, and click OK. Figure 5. Page 1.6 (C:\data\StatPrimer\anova-a.wpd /18/07)

7 OPTIONAL: HEN k =, ANOVA = EQUAL VARIANCE T TEST ANOVA is an extension of the equal variance independent t test. hereas the independent t tests compares the two groups (k = ) by testing H 0: 1 =, ANOVA tests k groups, where k represents any integer greater than 1. Moreover, 1. The variance within groups calculated by ANOVA is equal to the pooled estimate of variance used in the independent t test (s = s ) w. df B in the ANOVA in testing two groups = 1 = 1 p 3. df w in the ANOVA = N = n 1+n = the degrees of freedom in the independent t test 4. the F from the ANOVA = the (t )² from the independent t test stat stat 5. when =.05, F 1, N-,.95 = t N-,.975 OPTIONAL: SAMPLE SIZE REQUIREMENTS FOR ANOVA Sample size requirements for an ANOVA can be determined by asking how big a sample is needed to detect a difference of at a type I error rate of with power 1. It is also necessary to assume a value of variance within groups ( ). Computational solutions are available in Sokal & Rohlf (1996, pp ). Calculations have been scripted on the website and can be accessed by clicking Statistical Tools > Statistical Tests > Sample Size > Comparing Means. Illustrative example. Suppose we test H 0: 1 = = 3. Prior studies estimate the measurement has standard deviation (within groups) of 8. To find a mean difference of 5, the above website derives the following results: Sample size Per Group: Type I error=0.05 Type I error=0.01 Type I error=0.001 Power=80% Power=90% Power=95% i The output provides samples sizes per group (n ) at various power and levels. For example, under the stated assumptions, we need n = 54 (per group) for 90% power at =.05. Page 1.7 (C:\data\StatPrimer\anova-a.wpd /18/07)

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

### Unit 31: One-Way ANOVA

Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### 2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of

### A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

### 2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

### N-Way Analysis of Variance

N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Confidence Intervals for the Difference Between Two Means

Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

### Elementary Statistics Sample Exam #3

Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to

### How To Test For Significance On A Data Set

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### Chapter 7 Section 1 Homework Set A

Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### 7. Comparing Means Using t-tests.

7. Comparing Means Using t-tests. Objectives Calculate one sample t-tests Calculate paired samples t-tests Calculate independent samples t-tests Graphically represent mean differences In this chapter,

### Consider a study in which. How many subjects? The importance of sample size calculations. An insignificant effect: two possibilities.

Consider a study in which How many subjects? The importance of sample size calculations Office of Research Protections Brown Bag Series KB Boomer, Ph.D. Director, boomer@stat.psu.edu A researcher conducts

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation

### How To Check For Differences In The One Way Anova

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

### General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### Difference of Means and ANOVA Problems

Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### Chapter 19 Split-Plot Designs

Chapter 19 Split-Plot Designs Split-plot designs are needed when the levels of some treatment factors are more difficult to change during the experiment than those of others. The designs have a nested

### HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

### General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

### Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Assessing Measurement System Variation

Assessing Measurement System Variation Example 1: Fuel Injector Nozzle Diameters Problem A manufacturer of fuel injector nozzles installs a new digital measuring system. Investigators want to determine

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.

SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation

### Introduction. Statistics Toolbox

Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### Interaction between quantitative predictors

Interaction between quantitative predictors In a first-order model like the ones we have discussed, the association between E(y) and a predictor x j does not depend on the value of the other predictors

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay

Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure

### Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

### CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

### PSYC 381 Statistics Arlo Clark-Foos, Ph.D.

One-Way Within- Groups ANOVA PSYC 381 Statistics Arlo Clark-Foos, Ph.D. Comparing Designs Pros of Between No order or carryover effects Between-Groups Design Pros of Within More costly Higher variability

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

### When to use Excel. When NOT to use Excel 9/24/2014

Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### Introduction to Statistics with GraphPad Prism (5.01) Version 1.1

Babraham Bioinformatics Introduction to Statistics with GraphPad Prism (5.01) Version 1.1 Introduction to Statistics with GraphPad Prism 2 Licence This manual is 2010-11, Anne Segonds-Pichon. This manual

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely