Relative Frequency Histogram. Density Curve. Continuous Distribution. Continuous Random Variable. Meaning of Area Under Curve. Normal Distribution


 Berenice Wilcox
 2 years ago
 Views:
Transcription
1 Relative Frequency Histogram Percent Moeling Continuous Test scores 1 Density function, f (x) Density Curve Percent A smooth curve that fit the istribution Test scores Use a mathematical moel to escribe the variable. 3 Continuous Density Function (Curve) 1. Mathematical Formula Shows Probability Densities,, for All Values of x, & [ Is Not Probability ]. Property Total Area Uner Curve is 1. Probability Density Function (Value, Density) Value 4 x Continuous Ranom Variable P( c ) f ( x ) x c Meaning of Area Uner Curve : What percentage of the istribution is in between 7 an 6? Probability Is Area Uner Curve! c P(7) (Height) 61
2 Uniform Skewe to right Symmetrical Skewe to left 1. BellShape & Symmetrical. Mean, Meian, Moe Are Equal 3. Ranom Variable Has Infinite Range < x < f() Mean Meian Moe 7 Probability Density Curve Stanar 9 Probability Density Function 1 1 x f ( x ) e π f (x ) Density of Ranom Variable x Mean of the Stanar Deviation of the π ; e.71 x Value of Ranom Variable ( < x < ) Notation: N (, ) Α normal istribution with mean an stanar eviation 10 Effect of Varying Parameters ( & ) N (7, ) Α normal istribution with mean 7 an stanar eviation. Possible situations: Test scores, pulse rates, f() B N (130, 4) Α normal istribution with mean 130 an stanar eviation 4. Possible situations: Weight, Cholesterol levels, A C
3 Probability is area uner curve! Probability c P( c x ) f ( x) x Stanar Stanar : A normal istribution with mean 0 an stanar eviation 1. Notation: 1 c x 13 ~ N ( 0, 1) Cap letter 0 14 Area uner Stanar Curve P (1 < < 3) 0 z How to fin the proportion of the are uner the stanar normal curve below z or say P ( < z )? P ( > 3) Use Stanar Table!!! 1 16 Stanar P( > 0.3) Area above Areas in the upper tail of the stanar normal istribution
4 Stanar Stanar P(0 < < 0.3) Area between 0 an.3.16 Areas in the upper tail of the stanar normal istribution P(< 0.3) Area below.3.66 Areas in the upper tail of the stanar normal istribution Area Area P ( < < 1.00 ).6 P ( .00 < <.00 ) P ( < < 3.00 ) P ( < <.33 )
5 Stanarize the 1 Stanarize the N (, ) a b N ( 0, 1) a 0 Stanar b 0 One table! a b P ( a < < b) P < < 6 10 Stanarizing For a normal istribution that has a mean an s.. 10, what percentage of the istribution is between an 6.? 10 Stanarizing P( 6.) P(0.1) Obtaining the Probability Probability Table (Portion) Area P(3. ) P(3. ) P(.1 0) Area
6 10 P(.9 7.1) P(.9 7.1) P(.1.1) 1 10 P( > ) P( > ) P( >.30) Area Area P( > ) More on 10 6% 3% Value is the 6 n percentile 33 The work hours per week for resients in Ohio has a normal istribution with hours & 9 hours. Fin the percentage of Ohio resients whose work hours are A. between & 60 hours. P( 60)? B. less than 0 hours. P( 0)? P( 60)? P( 60) P(0 ) % P( 0)? P( 0) P(.44) %
7 What is z given P( < z) ).0?.0 Fining Values.0 0 z.4 Upper Tail Area z.4 Probability Table (Portion) Fining Values : The weight of new born infants is normally istribute with a mean 7 lb an stanar eviation of 1. lb. Fin the 0th percentile. Area to the left of 0th percentile in In the table there is a area value 0.00 corresponing to a zscore of.4. 0th percentile x lb 3 Fining Values : The Boy Mass Inex for a particular population is normally istribute with a mean an stanar eviation of 4. Fin the 0th percentile. Area to the left of 0th percentile in In the table there is a area value 0.00 corresponing to a zscore of.4. Fining Values : The Boy Mass Inex for a particular population is normally istribute with a mean an stanar eviation of 4. Fin the 40th percentile th percentile +.4 x 4.36 Fining Values : The Boy Mass Inex for a particular population is normally istribute with a mean an stanar eviation of 4. Fin the 40th percentile. Area to the left of 40th percentile in In the table there is a area value 0.40 corresponing to a zscore of.. Stanine Score (Stanar Nine) ? % 4% 4% th percentile. x 4 17
Chapter 3 Normal Distribution
Chapter 3 Normal Distribution Density curve A density curve is an idealized histogram, a mathematical model; the curve tells you what values the quantity can take and how likely they are. Example Height
More informationThe Normal Distribution
Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution
More informationHistograms and density curves
Histograms and density curves What s in our toolkit so far? Plot the data: histogram (or stemplot) Look for the overall pattern and identify deviations and outliers Numerical summary to briefly describe
More informationzscores AND THE NORMAL CURVE MODEL
zscores AND THE NORMAL CURVE MODEL 1 Understanding zscores 2 zscores A zscore is a location on the distribution. A z score also automatically communicates the raw score s distance from the mean A
More informationChapter 2. The Normal Distribution
Chapter 2 The Normal Distribution Lesson 21 Density Curve Review Graph the data Calculate a numerical summary of the data Describe the shape, center, spread and outliers of the data Histogram with Curve
More informationNumerical Measures of Central Tendency
Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A
More informationSTAT 155 Introductory Statistics. Lecture 5: Density Curves and Normal Distributions (I)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 5: Density Curves and Normal Distributions (I) 9/12/06 Lecture 5 1 A problem about Standard Deviation A variable
More information62 The Standard Normal Distribution. Uniform Distribution. Density Curve. Area and Probability. Using Area to Find Probability
62 The Standard Normal Distribution This section presents the standard normal distribution which has three properties: 1. Its graph is bellshaped. 2. Its mean is equal to 0 (μ = 0). 3. Its standard deviation
More informationLecture I. Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions.
Lecture 1 1 Lecture I Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions. It is a process consisting of 3 parts. Lecture
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1
Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 12 9 34 22 56
More informationDensity Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
More information6 3 The Standard Normal Distribution
290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since
More informationFREQUENCY AND PERCENTILES
FREQUENCY DISTRIBUTIONS AND PERCENTILES New Statistical Notation Frequency (f): the number of times a score occurs N: sample size Simple Frequency Distributions Raw Scores The scores that we have directly
More informationThe basics of probability theory. Distribution of variables, some important distributions
The basics of probability theory. Distribution of variables, some important distributions 1 Random experiment The outcome is not determined uniquely by the considered conditions. For example, tossing a
More informationUnit 21 Student s t Distribution in Hypotheses Testing
Unit 21 Student s t Distribution in Hypotheses Testing Objectives: To understand the difference between the standard normal distribution and the Student's t distributions To understand the difference between
More informationNormal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.
Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e (y µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:
More informationRemember this? We know the percentages that fall within the various portions of the normal distribution of z scores
More on z scores, percentiles, and the central limit theorem z scores and percentiles For every raw score there is a corresponding z score As long as you know the mean and SD of your population/sample
More informationContinuous Random Variables and Probability Distributions. Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4  and Cengage
4 Continuous Random Variables and Probability Distributions Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4  and Cengage Continuous r.v. A random variable X is continuous if possible values
More informationUnit 16 Normal Distributions
Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions
More informationA frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes
A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that
More informationLecture 2: Discrete Distributions, Normal Distributions. Chapter 1
Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:304:30, Wed 45 Bring a calculator, and copy Tables
More informationEach exam covers lectures from since the previous exam and up to the exam date.
Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,
More informationthe number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?
Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of
More informationMCQ S OF MEASURES OF CENTRAL TENDENCY
MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)
More informationSession 1.6 Measures of Central Tendency
Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices
More informationLet m denote the margin of error. Then
S:105 Statistical Methods and Computing Sample size for confidence intervals with σ known t Intervals Lecture 13 Mar. 6, 009 Kate Cowles 374 SH, 335077 kcowles@stat.uiowa.edu 1 The margin of error The
More information6.2 Normal distribution. Standard Normal Distribution:
6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution
More informationChapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures Graphs are used to describe the shape of a data set.
Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can
More informationChapter 6. The Standard Deviation as a Ruler and the Normal Model. Copyright 2012, 2008, 2005 Pearson Education, Inc.
Chapter 6 The Standard Deviation as a Ruler and the Normal Model Copyright 2012, 2008, 2005 Pearson Education, Inc. The Standard Deviation as a Ruler The trick in comparing very differentlooking values
More informationChapter 7 What to do when you have the data
Chapter 7 What to do when you have the data We saw in the previous chapters how to collect data. We will spend the rest of this course looking at how to analyse the data that we have collected. Stem and
More informationDef: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.
Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationThe Normal Distribution
The Normal Distribution Cal State Northridge Ψ320 Andrew Ainsworth PhD The standard deviation Benefits: Uses measure of central tendency (i.e. mean) Uses all of the data points Has a special relationship
More informationChapter 4 The Standard Deviation as a Ruler and the Normal Model
Chapter 4 The Standard Deviation as a Ruler and the Normal Model The standard deviation is the most common measure of variation; it plays a crucial role in how we look at data. Z scores measure standard
More informationChapter 6: Continuous Probability Distributions
Chapter 6: Continuous Probability Distributions Chapter 5 dealt with probability distributions arising from discrete random variables. Mostly that chapter focused on the binomial experiment. There are
More informationMath 140 (4,5,6) Sample Exam II Fall 2011
Math 140 (4,5,6) Sample Exam II Fall 2011 Provide an appropriate response. 1) In a sample of 10 randomly selected employees, it was found that their mean height was 63.4 inches. From previous studies,
More information4: Probability. What is probability? Random variables (RVs)
4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random
More informationUnit 7: Normal Curves
Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities
More information2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table
2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations
More information8. THE NORMAL DISTRIBUTION
8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,
More informationContinuous Random Variables Random variables whose values can be any number within a specified interval.
Section 10.4 Continuous Random Variables and the Normal Distribution Terms Continuous Random Variables Random variables whose values can be any number within a specified interval. Examples include: fuel
More informationSTP 226 Example EXAM #1 (from chapters 13, 5 and 6)
STP 226 Example EXAM #1 (from chapters 13, 5 and 6) Instructor: ELA JACKIEWICZ Student's name (PRINT): Class time: Honor Statement: I have neither given nor received information regarding this exam, and
More informationNormal Distribution Example 1
PubH 6414 Worksheet 6a: Normal Distribution 1 of 6 Normal Distribution Example 1 Assume that cholesterol levels for women ages 2034 are approximately normally distributed with µ = 185 and σ = 39. Cholesterol
More informationUniversity of California, Los Angeles Department of Statistics. Normal distribution
University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes
More information13.2 Measures of Central Tendency
13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers
More informationThe Normal Curve. The Normal Curve and The Sampling Distribution
Discrete vs Continuous Data The Normal Curve and The Sampling Distribution We have seen examples of probability distributions for discrete variables X, such as the binomial distribution. We could use it
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will get observations
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationSection 1.3 Exercises (Solutions)
Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146148. 1.109 Sketch some normal curves. (a) Sketch
More informationSampling Distribution of a Normal Variable
Ismor Fischer, 5/9/01 5.1 5. Formal Statement and Examples Comments: Sampling Distribution of a Normal Variable Given a random variable. Suppose that the population distribution of is known to be normal,
More informationExercise 1.12 (Pg. 2223)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More information5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
More information4.3 Areas under a Normal Curve
4.3 Areas under a Normal Curve Like the density curve in Section 3.4, we can use the normal curve to approximate areas (probabilities) between different values of Y that follow a normal distribution Y
More information1 of 6 9/30/15, 4:49 PM
Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics  Ensley Assignment: Online 09  Section 6.2 1. In January 2011, the average monthly rental rate for onebedroom apartments in
More informationFrequency Distributions
Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data to get a general overview of the results. Remember, this is the goal
More informationMind on Statistics. Chapter 2
Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and crosstabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table
More informationContinuous Distributions
MAT 2379 3X (Summer 2012) Continuous Distributions Up to now we have been working with discrete random variables whose R X is finite or countable. However we will have to allow for variables that can take
More informationDescriptive Statistics
Descriptive Statistics Suppose following data have been collected (heights of 99 fiveyearold boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9
More information2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56
2. Describing Data We consider 1. Graphical methods 2. Numerical methods 1 / 56 General Use of Graphical and Numerical Methods Graphical methods can be used to visually and qualitatively present data and
More informationGraphing Data Presentation of Data in Visual Forms
Graphing Data Presentation of Data in Visual Forms Purpose of Graphing Data Audience Appeal Provides a visually appealing and succinct representation of data and summary statistics Provides a visually
More informationDescriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination
Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg  ) Chromium (mg kg  ) Copper (mg kg  ) Lead (mg kg  ) Mercury
More informationMATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
More informationChapter 3: Data Description Numerical Methods
Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,
More informationMeasures of Center Section 32 Definitions Mean (Arithmetic Mean)
Measures of Center Section 31 Mean (Arithmetic Mean) AVERAGE the number obtained by adding the values and dividing the total by the number of values 1 Mean as a Balance Point 3 Mean as a Balance Point
More informationCHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS
CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CENTRAL LIMIT THEOREM (SECTION 7.2 OF UNDERSTANDABLE STATISTICS) The Central Limit Theorem says that if x is a random variable with any distribution having
More informationUnivariate Descriptive Statistics
Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin
More informationDEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Continuous Probability Distribution
DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Dr. Mohammad Zainal Continuous Probability Distribution 2 When a RV x is discrete,
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More informationChapter 1: Looking at Data Distributions. Dr. Nahid Sultana
Chapter 1: Looking at Data Distributions Dr. Nahid Sultana Chapter 1: Looking at Data Distributions 1.1 Displaying Distributions with Graphs 1.2 Describing Distributions with Numbers 1.3 Density Curves
More informationExponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
More informationThe right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationMODELLING OF TWO STRATEGIES IN INVENTORY CONTROL SYSTEM WITH RANDOM LEAD TIME AND DEMAND
art I. robobabilystic Moels Computer Moelling an New echnologies 27 Vol. No. 23 ransport an elecommunication Institute omonosova iga V9 atvia MOEING OF WO AEGIE IN INVENOY CONO YEM WIH ANOM EA IME AN
More informationResearch Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 2000: Page 1:
Research Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 2000: Page 1: THE NORMAL CURVE AND "Z" SCORES: The Normal Curve: The "Normal" curve is a mathematical abstraction which conveniently
More informationLesson 7 ZScores and Probability
Lesson 7 ZScores and Probability Outline Introduction Areas Under the Normal Curve Using the Ztable Converting Zscore to area area less than z/area greater than z/area between two zvalues Converting
More informationComment on the Tree Diagrams Section
Comment on the Tree Diagrams Section The reversal of conditional probabilities when using tree diagrams (calculating P (B A) from P (A B) and P (A B c )) is an example of Bayes formula, named after the
More informationTImath.com. Statistics. Areas in Intervals
Areas in Intervals ID: 9472 TImath.com Time required 30 minutes Activity Overview In this activity, students use several methods to determine the probability of a given normally distributed value being
More informationDescriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2
Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number
More informationIntroduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
More informationThis is Descriptive Statistics, chapter 2 from the book Beginning Statistics (index.html) (v. 1.0).
This is Descriptive Statistics, chapter from the book Beginning Statistics (index.html) (v..). This book is licensed under a Creative Commons byncsa. (http://creativecommons.org/licenses/byncsa/./)
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationHISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
More informationProbability. Distribution. Outline
7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The
More information7. Normal Distributions
7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bellshaped
More informationJOHN W. TUKEY. Tukey was converted to statistics by the real problems experience and the real data experience during the Second World War.
74 Chapter Number and Title JOHN W. TUKEY AT&T Archives The Philosopher of Data Analysis He started as a chemist, became a mathematician, and was converted to statistics by what he called the real problems
More informationMath Chapter 3 review
Math 116  Chapter 3 review Name Find the mean for the given sample data. Unless otherwise specified, round your answer to one more decimal place than that used for the observations. 1) Bill kept track
More informationBasic Statistics. Probability and Confidence Intervals
Basic Statistics Probability and Confidence Intervals Probability and Confidence Intervals Learning Intentions Today we will understand: Interpreting the meaning of a confidence interval Calculating the
More informationMonte Carlo Method: Probability
John (ARC/ICAM) Virginia Tech... Math/CS 4414: The Monte Carlo Method: PROBABILITY http://people.sc.fsu.edu/ jburkardt/presentations/ monte carlo probability.pdf... ARC: Advanced Research Computing ICAM:
More informationfind confidence interval for a population mean when the population standard deviation is KNOWN Understand the new distribution the tdistribution
Section 8.3 1 Estimating a Population Mean Topics find confidence interval for a population mean when the population standard deviation is KNOWN find confidence interval for a population mean when the
More informationSummarizing Data: Measures of Variation
Summarizing Data: Measures of Variation One aspect of most sets of data is that the values are not all alike; indeed, the extent to which they are unalike, or vary among themselves, is of basic importance
More informationWe will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:
MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having
More informationLesson 4 Measures of Central Tendency
Outline Measures of a distribution s shape modality and skewness the normal distribution Measures of central tendency mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central
More informationSolutions to Homework 6 Statistics 302 Professor Larget
s to Homework 6 Statistics 302 Professor Larget Textbook Exercises 5.29 (Graded for Completeness) What Proportion Have College Degrees? According to the US Census Bureau, about 27.5% of US adults over
More informationChapter 7. Estimates and Sample Size
Chapter 7. Estimates and Sample Size Chapter Problem: How do we interpret a poll about global warming? Pew Research Center Poll: From what you ve read and heard, is there a solid evidence that the average
More informationWhat Does the Normal Distribution Sound Like?
What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation
More informationx Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 31 Example 31: Solution
Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 9 Paired Data. Paired data. Paired data
UCLA STAT 3 Introuction to Statistical Methos for the Life an Health Sciences Instructor: Ivo Dinov, Asst. Prof. of Statistics an Neurology Chapter 9 Paire Data Teaching Assistants: Jacquelina Dacosta
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More information