Descriptive Statistics
|
|
|
- Austin Turner
- 9 years ago
- Views:
Transcription
1 Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) Initial impression is of indigestibility 1
2 Put data into ascending order Sorted data Much more can now be seen but hardly succinct: need simple summaries 2
3 all values are between 96.1 cm and cm middle value is 18.7 cm - indication of location values quarter of way up and down data are 15.6 and cm - indication of spread these comprise the five number summary for these data Middle value is known as the Median Also upper and lower quartiles Definitions need some care 3
4 Median is middle value. Definition of Median For five values there is a definite middle one But not for four values? 4
5 Definition of Median Median is the middle value of a sample when the sample size is odd Median is the average of the two middle values when sample size is even Definitions for quartiles are similar and given more precisely in appendix 1 of handout (see web page) 5
6 Graphical displays of the data Display the five figure summary - Box and Whisker plots 12 Top of box is upper quartile Height (cm) 11 Line across box is at level of median 1 Bottom of box is lower quartile Whiskers can extend to maximum and minimum but 6
7 Alternative Box and Whisker plots 12 Whiskers extend to only a given multiple of the box height Height (cm) 11 This is intended to allows outliers to be seen 1 7
8 Histograms A useful way to display all the data in a sample: Divide range into bins and plot numbers/fractions in bins Choose bin width judiciously Proportion.4 Proportion Height (cm) Height (cm) Proportion.4 Proportion Height (cm) (2, 6 15 and 5 bins: clockwise) Height (cm) 8
9 Histograms for increasing sample size Samples of sizes 99, 3, 1, 1 99 heights 3 heights Proportion.1 Proportion Height (cm) 1 heights Height (cm) 1 heights Proportion.4 Proportion Height (cm) Height (cm) Form gets more regular as sample size increases - tends to a limiting form - notion of a population and inferential statistics 9
10 Populations, Parameters and Inference Sample rarely of interest in its own right Value lies in its representativeness of a greater whole, about which we wish to learn Inferential Statistics seeks to draw conclusions about a population from a sample Sample must be representative of population - random selection Population often defined in terms of unknown parameters µ, σ Estimated by sample analogues or statistics, such as m or s 1
11 . 9. Describing Populations Distributional form: we consider only the Normal distribution: symmetric bell-shaped curve Associated parameters: measure of location µ (mean) measure of spread σ (SD) σ µ Height (cm) (e.g.) 11
12 Sample Estimates of µ and σ Estimate µ by sample mean (arithmetic mean - simple average ) m x 1 + = x x n where x 1, x 2,,x n are the values in the sample (n.b. size n) Estimate of σ is sample standard deviation (SD): n s = ( x1 m) + ( x2 m) + + ( xn m) n 1 For sample of 99 boys m = cm s = 5.21 cm (note units) {cf median 18.7 cm quartiles, 15.6 cm, cm IQR = 5.5 cm} 12
13 little need these days to work directly with these formulae indeed, using a computer is preferable as well as laboursaving appendix 2 describes some peculiarities of SD formula for those interested mean and SD appropriate summaries for a Normal distribution what about non-normal data? 13
14 Skewed data Medians and quartiles - always legitimate tools means and SDs - less easy to give general answers.4.3 Fraction Cumulative dose of phototherapy, J/cm2 Non-Normal data, especially skewed unduly mean influenced by large values in sample 14
15 Quantitative use of the Normal curve Interpretable feature of curve is area under curve.9 Shaded area = Probability a child's height < X (= 112 cm here) Height (cm) Area under whole curve is 1: area under curve up to X is P x Probability randomly chosen member of population has value < X 15
16 Cumulative probabilities Given X, and µ, σ the value of P can be found but you need a computer P is the cumulative probability at X In example µ = 18 cm σ = 4.7 cm and X = 112 cm Gives P =.826 I.e. about 8% of five year old boy have height < 112 cm 16
17 Some obvious results: Other probabilities probability value is larger than X is 1-P I.e or about 2% of boys have height above 112cm Symmetry means that it follows that proportion.1974 of boys have height below 14 cm (14 cm is 4 cm below mean, and 112 cm was 4 cm above mean) Allows virtually all other probabilities to be found 17
18 Q = probability height < 11cm = mean - 7 cm =.68 Q = probability height > 115cm = mean + 7 cm = Height (cm) µ = 18 cm Can also ask inverse question: given P what is X? For example, 3% of boys have height less than what? I.e. P =.3 and X = cm X is the inverse cumulative probability of P. 18
19 Z-scores P depends on X but there is a simpler structure underlying the relationship. X can be expressed as being so many SDs from the mean I.e. X = µ + Zσ and P depends on X only through Z Allows quicker apprehension of the Normal distribution (e.g. 95% within ± 2 SDs of mean, 68% within ± 1 SD of mean) Z P Proportion within Z SDs of mean (=2P-1)
20 Why is the Normal Distribution Important? Empirically important - many variables are Normal There are reasons why some variables are Normal e.g. polygenic control - see appendix 3 Means are more Normal 2
21 Distribution of sample means Population Sample size Fraction Fraction X Sample size Sample means Sample size Fraction.5 Fraction Sample means Sample means Figure 8: histograms of 1 observations form a population and of 5 sample means for samples of size 1, 5 and 1. 21
22 Assessing Normality Quite a preoccupation - not as necessary as might be thought cf. Distribution-free or non-parametric methods Many methods that assume Normality are robust (or other types of assumption are more important) Assessing Normality is not straightforward and its importance depends on purpose of analysis 22
23 Assessing Normality - a Quick and Dirty method About 2½% of population lies below µ - 2σ About 16% of population lies below µ - σ If variable is positive and µ < σ then Normal distribution highly questionable If variable positive and µ 2σ then Normal distribution might be just about OK If value lies inbetween then appropriateness should be judged accordingly Handy method when reading papers - not at all foolproof 23
24 Plot data: I histogram Histogram is obvious way to see if shape of distribution of sample is close to that of Normal curve In small samples this is not easy: Expt==1 Expt==2 Expt==3.2 Samples of size 1 from distribution known to be Normal Fraction Expt==4 Expt==7 Expt==5 Expt==8 Expt==6 Expt== X Histograms 24
25 Plot data: II Normal Probability Plot Normal Probability Plot for C Mean: StDev: Percent Data Plot ordered sample values against appropriate y-value If data are Normal then straight line will result 25
26 How does a Normal probability plot work? Depends on expected positions for ordered values in a Normal sample Sample size µ 2σ µ σ µ µ+σ Ordered variable µ+2σ 26
27 Normal plot for non-normal data Normal Probability Plot for C Mean: StDev: Percent Fraction Data Variable 27
Descriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)
Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
Variables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
AP Statistics Solutions to Packet 2
AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
Normal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
6.2 Normal distribution. Standard Normal Distribution:
6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution
Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data
A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine [email protected] 1. Statistical Methods in Water Resources by D.R. Helsel
The Normal Distribution
Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Week 1. Exploratory Data Analysis
Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]
consider the number of math classes taken by math 150 students. how can we represent the results in one number?
ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of
The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
Lecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel [email protected] Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
Lecture 2. Summarizing the Sample
Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting
STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
6 3 The Standard Normal Distribution
290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since
Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.
Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e -(y -µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!
STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.
Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Chapter 3. The Normal Distribution
Chapter 3. The Normal Distribution Topics covered in this chapter: Z-scores Normal Probabilities Normal Percentiles Z-scores Example 3.6: The standard normal table The Problem: What proportion of observations
Northumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
4.3 Areas under a Normal Curve
4.3 Areas under a Normal Curve Like the density curve in Section 3.4, we can use the normal curve to approximate areas (probabilities) between different values of Y that follow a normal distribution Y
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
The Normal distribution
The Normal distribution The normal probability distribution is the most common model for relative frequencies of a quantitative variable. Bell-shaped and described by the function f(y) = 1 2σ π e{ 1 2σ
THE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Lesson 7 Z-Scores and Probability
Lesson 7 Z-Scores and Probability Outline Introduction Areas Under the Normal Curve Using the Z-table Converting Z-score to area -area less than z/area greater than z/area between two z-values Converting
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
8. THE NORMAL DISTRIBUTION
8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,
Lesson 4 Measures of Central Tendency
Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central
1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
Means, standard deviations and. and standard errors
CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Characteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
Mind on Statistics. Chapter 2
Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
AP * Statistics Review. Descriptive Statistics
AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production
Using SPSS, Chapter 2: Descriptive Statistics
1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,
Sampling Distributions
Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
2. Filling Data Gaps, Data validation & Descriptive Statistics
2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)
Key Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
First Midterm Exam (MATH1070 Spring 2012)
First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems
Section 1.3 Exercises (Solutions)
Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
Objectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI)
Objectives 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Statistical confidence (CIS gives a good explanation of a 95% CI) Confidence intervals. Further reading http://onlinestatbook.com/2/estimation/confidence.html
10 20 30 40 50 60 Mark. Use this information and the cumulative frequency graph to draw a box plot showing information about the students marks.
GCSE Exam Questions on Frequency (Grade B) 1. 200 students took a test. The cumulative graph gives information about their marks. 200 160 120 80 0 10 20 30 50 60 Mark The lowest mark scored in the test
Non Parametric Inference
Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable
2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.
Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible
Probability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
Statistics 2014 Scoring Guidelines
AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home
How To Write A Data Analysis
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
DATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction
CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous
Chapter 5: Normal Probability Distributions - Solutions
Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
Lesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
Exploratory Data Analysis. Psychology 3256
Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find
Interpretation of Somers D under four simple models
Interpretation of Somers D under four simple models Roger B. Newson 03 September, 04 Introduction Somers D is an ordinal measure of association introduced by Somers (96)[9]. It can be defined in terms
Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes
Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simcha Pollack, Ph.D. St. John s University Tobin College of Business Queens, NY, 11439 [email protected]
Normal Distribution Lecture Notes
Normal Distribution Lecture Notes Professor Richard Blecksmith [email protected] Dept. of Mathematical Sciences Northern Illinois University Math 101 Website: http://math.niu.edu/ richard/math101 Section
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
Mathematical goals. Starting points. Materials required. Time needed
Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials
Mark Scheme (Results) June 2011. GCSE Mathematics (1380) Paper 3H (Non-Calculator)
Mark Scheme (Results) June 011 GCSE Mathematics (1380) Paper 3H (Non-Calculator) Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range
How Does My TI-84 Do That
How Does My TI-84 Do That A guide to using the TI-84 for statistics Austin Peay State University Clarksville, Tennessee How Does My TI-84 Do That A guide to using the TI-84 for statistics Table of Contents
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Unit 7: Normal Curves
Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities
