TImath.com. F Distributions. Statistics
|
|
|
- Margaret Ball
- 9 years ago
- Views:
Transcription
1 F Distributions ID: 9780 Time required 30 minutes Activity Overview In this activity, students study the characteristics of the F distribution and discuss why the distribution is not symmetric (skewed right) and only has positive values. Students then use the Fcdf command to find probabilities and to confirm percentiles. They move on to find critical values and then compute a confidence interval. Topic: Continuous Distributions and their Properties Graph the probability density function Calculate probabilities Calculate the xth percentile Calculate a confidence interval Teacher Preparation Students should already be familiar with the normal distribution and it characteristics, as well as finding and interpreting confidence intervals for normal distributions. It is recommended, though not required, that students already be familiar with the chi-square distribution for sample variances. Students will need to have access to charts of F distribution critical values. These appear in most textbooks. To download the student worksheet, go to education.ti.com/exchange and enter 9780 in the keyword search box. Associated Materials FDistributions_Student.doc Suggested Related Activities To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box. Chi-Square Distributions (TI-84 Plus family) 9737 Is It Rare? (TI-84 Plus family) 9094 Central Limit Theorem (TI-84 Plus family with TI-Navigator) 1957 Percentiles (TI-84 Plus family) Texas Instruments Incorporated Teacher Page F Distributions
2 Problem 1 Characteristics of the F Distribution Step 1: Introduce the F distribution. Once the students have graphed the F distribution with 6 and 10 d.f., have them compare this distribution to others they have seen. Allow students to change the degrees of freedom for one or both samples. Students should note that as with the chi-square distribution, the values of the F distribution cannot be negative, and the graph is skewed to the right. Unlike the chi-square distribution, the graph does not become more symmetric as the number of degrees of freedom increases. Step : Students are to determine whether the graph changes when the degrees of freedom are interchanged. They can choose to graph the distribution from the previous step and then enter Y as FPdf(x, 10, 6), or type two new functions. Students will see that the distributions are different when the degrees of freedom are interchanged (unless, of course, the degrees of freedom are the same for each sample). Problem Probabilities and Percentiles Step 3: Ask students what would be true about the variances of two samples if F was near 1 and why. The variances would be almost the same. When the numerator and denominator of a fraction are the same, the fraction has a value of 1. The value gets further from 1 as the numerator and denominator have greater differences. Discuss why the graph is skewed right. Students can look at graphs in Problem 1 during the discussion. Zero is the leftmost limit, as a fraction of two nonnegative numbers must be nonnegative. There is, however, no limit to how large the ratio can be. 011 Texas Instruments Incorporated Page 1 F Distributions
3 Step 4: Students are to find the probability that F is less than 1 for two samples, where n 1 = 16 and n = 6. FCdf finds the area under the curve, to the left of the given F value. The command can be selected by pressing MENU > > Distributions > F Cdf. When students are typing the values in the parentheses, be sure they enter them in this order: lower bound, upper bound, d.f. for numerator, d.f. for denominator. Students may think to use negative infinity for the lower bound, but since the values must be nonnegative, 0 can also be used. Step 5: To check the area under the graph, students should use the ShadeF( tool (press =, move to the DRAW menu). Type 0, 1, 15, 5 inside the parentheses. Step 6: If needed, explain or review the notion of a percentile. Students are to find the F value at the 95th percentile using an F distribution chart. Students can check their value on the graph using the ShadeF tool. The command entered on the Home screen for the graph at the right is ShadeF(0,.0889, 15, 5). Problem 3 Critical Values for an F Distribution Step 7: Now that students can find an F value for a given area to the left of it, students can construct confidence intervals. As with the chi-square distribution, the critical values are denoted as left and right with subscripts L and R. Using an F distribution chart, have students find the critical values that would be used for F(6, 10) at the 95% level. Step 8: Students are then asked to find the critical values for F(0, 15) at the 98% level. 011 Texas Instruments Incorporated Page F Distributions
4 Problem 4 Constructing a Confidence Interval Step 9: Now that students can find critical values, they can construct confidence intervals. Introduce the expression for the confidence interval for a ratio of variances. Step 10: A scenario is given on the student worksheet. Students are to construct a 95% confidence interval for the ratio of the population variances. s s 1 s FR s FL The screenshot at the right shows a check of finding the critical values using the Fcdf command. We are 95% confident that the ratio of the population variances is between and If using Mathprint OS: Students can the values in the formula as stacked fractions on the Home screen. To do this, press ƒ ^ and select n/d. Then enter the value of the numerator, press, and enter the value of the denominator. Press Í to evaluate. To move out of the fraction, press ~. Then press the multiplication key. Note: Students do not need to place parentheses around the fractions. Step 11: Have students discuss their answer to Question 10. Students should say that because ( 67. ) F is in the confidence interval, ( 41. ) there is no significant difference in the variances. 011 Texas Instruments Incorporated Page 3 F Distributions
5 Solutions student worksheet 1. Sample: As with the chi-square distribution, the F values cannot be negative, and the graph is skewed to the right. Unlike the chi-square distribution, the graph does not become more symmetric as the number of degrees of freedom increases.. No, not unless the degrees of freedom are the same for each sample. 3. The variances would be almost the same. When the numerator and denominator of a fraction are the same, the fraction has a value of 1. The value gets further from 1 as the numerator and denominator have greater differences. 4. About 51.5% and between about 1.63 and about No, because 1, the ratio of equal variances, is outside of the confidence interval, the variances, and therefore the standard deviations, are probably not equal. 011 Texas Instruments Incorporated Page 4 F Distributions
Getting Started with Statistics. Out of Control! ID: 10137
Out of Control! ID: 10137 By Michele Patrick Time required 35 minutes Activity Overview In this activity, students make XY Line Plots and scatter plots to create run charts and control charts (types of
TIgeometry.com. Geometry. Angle Bisectors in a Triangle
Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.
Z-table p-values: use choice 2: normalcdf(
P-values with the Ti83/Ti84 Note: The majority of the commands used in this handout can be found under the DISTR menu which you can access by pressing [ nd ] [VARS]. You should see the following: NOTE:
Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540
To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
TImath.com Algebra 1. Absolutely!
Absolutely! ID: 8791 Time required 45 minutes Activity Overview In this activity, students first solve linear absolute value equations in a single variable using the definition of absolute value to write
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
3.4 The Normal Distribution
3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
Graphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
6 3 The Standard Normal Distribution
290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
Exact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Lesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
Normal Probability Distribution
Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
Trigonometric Ratios TEACHER NOTES. About the Lesson. Vocabulary. Teacher Preparation and Notes. Activity Materials
About the Lesson In this activity, students discover the trigonometric ratios through measuring the side lengths of similar triangles and calculating their ratios. The formal definitions of the sine, cosine,
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
Graphing Calculator Workshops
Graphing Calculator Workshops For the TI-83/84 Classic Operating System & For the TI-84 New Operating System (MathPrint) LEARNING CENTER Overview Workshop I Learn the general layout of the calculator Graphing
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
Descriptive Statistics
Descriptive Statistics Descriptive statistics consist of methods for organizing and summarizing data. It includes the construction of graphs, charts and tables, as well various descriptive measures such
Confidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER
seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical
TImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Module 3: Correlation and Covariance
Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS
Procedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
Chapter 23. Two Categorical Variables: The Chi-Square Test
Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
How Many Drivers? Investigating the Slope-Intercept Form of a Line
. Activity 1 How Many Drivers? Investigating the Slope-Intercept Form of a Line Any line can be expressed in the form y = mx + b. This form is named the slopeintercept form. In this activity, you will
The Standard Normal distribution
The Standard Normal distribution 21.2 Introduction Mass-produced items should conform to a specification. Usually, a mean is aimed for but due to random errors in the production process we set a tolerance
TIphysics.com. Physics. Bell Ringer: Mechanical Advantage of a Single Fixed Pulley ID: 13507
Bell Ringer: Mechanical Advantage of a Single Fixed Pulley ID: 13507 Based on an activity by Irina Lyublinskaya Time required 15 minutes Topic: Work and Energy Calculate the mechanical advantages and efficiencies
23. RATIONAL EXPONENTS
23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,
Means, standard deviations and. and standard errors
CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard
CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS
CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CENTRAL LIMIT THEOREM (SECTION 7.2 OF UNDERSTANDABLE STATISTICS) The Central Limit Theorem says that if x is a random variable with any distribution having
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
Need for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-
Triangular Distributions
Triangular Distributions A triangular distribution is a continuous probability distribution with a probability density function shaped like a triangle. It is defined by three values: the minimum value
Chapter 3. The Normal Distribution
Chapter 3. The Normal Distribution Topics covered in this chapter: Z-scores Normal Probabilities Normal Percentiles Z-scores Example 3.6: The standard normal table The Problem: What proportion of observations
An introduction to using Microsoft Excel for quantitative data analysis
Contents An introduction to using Microsoft Excel for quantitative data analysis 1 Introduction... 1 2 Why use Excel?... 2 3 Quantitative data analysis tools in Excel... 3 4 Entering your data... 6 5 Preparing
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Activity 8 Normal Distribution
Activity 8 Normal Distribution Topic Area: Data Analysis and Probability NCTM Standard: Select and use appropriate statistical methods to analyze data. Objective: The student will be able to utilize the
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Normal distributions in SPSS
Normal distributions in SPSS Bro. David E. Brown, BYU Idaho Department of Mathematics February 2, 2012 1 Calculating probabilities and percents from measurements: The CDF.NORMAL command 1. Go to the Variable
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
The Normal Distribution
Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution
REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
Introduction to the TI-Nspire CX
Introduction to the TI-Nspire CX Activity Overview: In this activity, you will become familiar with the layout of the TI-Nspire CX. Step 1: Locate the Touchpad. The Touchpad is used to navigate the cursor
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................
Polynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
Key Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.
Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that
Basic Use of the TI-84 Plus
Basic Use of the TI-84 Plus Topics: Key Board Sections Key Functions Screen Contrast Numerical Calculations Order of Operations Built-In Templates MATH menu Scientific Notation The key VS the (-) Key Navigation
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
Elements of Denotation and Connotation
Teacher Notes Activity at a Glance Subject: English Subject Area: English/Language Arts Category: Literary Devices Topic: Denotation and Connotation Elements of Denotation and Connotation Activity 1 Exploring
Comparing and Plotting Rational Numbers on a Number Line
Comparing and Plotting Rational Numbers on a Number Line Student Probe Plot 4 on the number Lesson Description In this lesson students will plot rational numbers on a number This lesson is limited to positive
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
TEACHER NOTES MATH NSPIRED
Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Probability Distributions
CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
