CHEM 213 Chemical Analysis Practice Exam 2

Size: px
Start display at page:

Download "CHEM 213 Chemical Analysis Practice Exam 2"

Transcription

1 CHEM 213 Chemical Analysis Practice Exam (of 10) 2 10 (of 10) 3 10 (of 10) 4 15 (of 15) 5 5 (of 5) 6 10 (of 10) 7 10 (of 10) Σ 70_ KEY Name: (please print)

2 1. Calculate the ph of water containing 0.10 M KCl at 25 ºC. Use Kielland s table of activity coefficients for aqueous solutions on page 9 of this exam for your calculations. (10 points) The relevant equilibrium is: 2H 2 H H - K w K w = a H3+ a H- = [H 3 + ]γ H3+ [H - ]γ H- The autoprotolysis reaction of water tells us that [H 3 + ] = [H - ]. However, the activity coefficients are not equal. The ionic strength of 0.10 M KCl is: µ = ½ [0.1(1) (1) 2 ] = 0.1 M Looking up the values for the activity coefficients of H 3 + and H -, the following equation results: K w = [H 3 + ]γ H3+ [H - ]γ H- = (x)(0.83)(x)(0.76) x = The concentrations of H 3 + and H - are equal and are both greater than M. The activities of H 3 + and H - are not equal in this solution: a H3+ = [H 3 + ]γ H3+ = ( )(0.83) = a H- = [H - ]γ H- = ( )(0.76) = Finally, we calculate the ph: ph = -log a H3+ = -log( ) =

3 2. Consider the following equilibria, in which all ions are aqueous: (1) Ag + + Cl - AgCl(aq) K = (2) AgCl(aq) + Cl - - AgCl 2 K = (3) AgCl(s) Ag + + Cl - K = a. Calculate the numerical value of the equilibrium constant for the reaction AgCl(s) AgCl(aq) (3 points) K total = K 1 K 2 = Ag + + Cl - AgCl(aq) K 1 = AgCl(s) Ag + + Cl - K 2 = AgCl(s) AgCl(aq) K total =? b. Calculate the concentration of AgCl(aq) in equilibrium with excess undissolved solid AgCl. (4 points) The answer to (a) tells us [AgCl(aq)] = c. Find the numerical value of K for the reaction AgCl 2 - AgCl(s) + Cl - (3 points) K total = K 1 K 2 K 3 = AgCl 2 AgCl(aq) + Cl - K 1 = 1/ Ag + + Cl - AgCl(s) K 2 = 1/ AgCl(aq) Ag + + Cl - K 3 = 1/ AgCl 2 AgCl(s) + Cl - K total =? 3

4 3. Sodium hypochlorite (NaCl, the active ingredient of almost all bleaches, was dissolved in a solution buffered to ph Find the ratio [Cl - ]/[HCl] in this solution. (pk a = 7.53 for hypochlorous acid, HCl) (10 points) The pk a of hypochlorous acid, HCl is equal to The ph is known, so the ratio [Cl - ]/[HCl] can be calculated form the Henderson-Hasselbach equation. HCl(aq) + H 2 H 3 + (aq) + Cl - (aq) ph = pk a + log([cl - ]/[HCl]) 6.20 = log([cl - ]/[HCl]) = log([cl - ]/[HCl]) = 10 -log([cl-]/[hcl]) = [Cl - ]/[HCl] = [Cl - ]/[HCl] Finding the ratio [Cl - ]/[HCl] requires knowing only the ph and the pk a. We do not need to know how much NaCl was added, nor the volume. 4

5 4. (a) Find the ph of a solution prepared by dissolving 1.00 g of glycine amide hydrochloride (pk a = 8.00) plus 1.00 g of glycine amide in L. (3 points) H 2 N NH 2 Glycine amide C 2 H 6 N 2 MW = ph = pk a + log([b]/[bh + ] = log[(1.00 g/ g/mol)/(1.00 g/ g/mol)] = 8.37 (b) How many grams of glycine amide should be added to 1.00 g of glycine amide hydrochloride to give 100 ml of solution with ph 8.00? (3 points) ph = pk a + log(mol B/mol BH = log(mol B)/(1.00 g/ g/mol) mol B = =0.423 g glycine amide. (c) What would be the ph if the solution in (a) were mixed with 5.00 ml of M HCl? (3 points) B + H 3 + BH + + H 2 Initial moles Final moles ph = log( / ) = 8.33 (d) What would be the ph if the solution in (c) were mixed with ml of M NaH? (3 points) BH + + H - B + H 2 Initial moles Final moles ph = log( / ) = 8.41 (e) What would be the ph if the solution in (a) were mixed with ml of M NaH? (This is exactly the quantity of NaH required to neutralize the glycine amide hydrochloride.) (3 points) The solution in (a) contains mmol glycien amide hydrochloride and mmol glycine amide. Now we are adding mmol of H -, which will convert all of the glycine amide hydrochloride into glycine amide. The new solution contains = mmol of glycine amide in ml. The 5

6 concentration of glycine amide is ( mmol)/( mmol) = M. The ph is determined by hydrolysis of glycine amide: H 2 N NH 2 + H 2 + H 3 N NH 2 + H x x x x x = K b = K w K a = = 1.58 x 10-6 x = 4.32 x 10-4 M ph = -log(k w /x) = Find the activity (not the activity coefficient) of the (C 3 H 7 ) 4 N + (tetrapropylammonium) ion in a solution containing M (C 3 H 7 ) 4 N + Br - plus M (CH 3 ) 4 N + Cl -. (α x = 800 pm for (C 3 H 7 ) 4 N + ) (5 points) For M (C 3 H 7 ) 4 N + Br - plus M (CH 3 ) 4 N + Cl -, µ = 0.01 M, γ = for an ion of charge ±1 with α = 800 pm. a = (0.005)(0.912) =

7 6. Calculate the ph at each point listed for the titration of ml of M cocaine (K b = ) with M HN 3. The points to calculate are V a = 0.0, 10.0, 20.0, 25.0, 30.0, 40.0, 49.0, 49.9, 50.0, 50.1, and 60.0 ml. (10 points) N CH 3 H CH 3 + H K B = 2.6x H - N The titration reaction is B + H + BH + Representative calculations: At V a = 0.0 ml: B + H 2 BH + + H x x x x 2 /(0.100 x) x = , ph = -log(k w /x) = At V a = 20.0 ml: B + H + BH + Initial: Final: ph = pk a (for BH + ) + log([b]/[bh + ]) ph = log(30.0/20.0) = 8.59 At V a = V c = 50 ml: All B has been converte to the conjugate acid BH +. The formal concentration of BH + is (100/150)(0.100) = M. The ph is determined by the reaction BH + + H 2 B + H x x x x 2 /( x) = K a = K w /K b x = ph = At V a = 51.0 L, there is excess H 3 + : [H 3 + ] = (1.0,151.0)(0.200) = , ph = 2.88 V a (ml) ph V a (ml) ph V a (ml) ph

8 7. How many milliliters of M KH should be added to 3.38 g of oxalic acid to give a ph of 4.40 when diluted to 500 ml? (10 points) H H xalic acid (H 2 x) MW = pk 1 = pk 2 = The desired ph is above pk 2. We know that a 1:1 mole ratio of Hx - :x 2- would have ph = pk 2 = If the ph is to be 4.40, there must be more x 2- than Hx - present. We must add enough base to convert all of the H 2 x to Hx -, plus enough additional base to convert the right amount of Hx-0- to x 2-. H 2 x + H - Hx - + H 2 Hx - + H - x 2- + H 2 In 3.38 g of H 2 x there are mol. The volume of M KH needed to react with this much H 2 x to make Hx - is: ( mol)(0.800 mol/l) = ml. To produce a ph of 4.40 requires: Hx - + H - x 2- Initial moles: x 0 Final moles: x 0 x ph = pk 2 = log([x 2- ]/[Hx - ]) 4.40 = log(x/( x) x = mol The volume of KH needed to deliver mole is: ( mol)/( M) = ml. The total volume of KH needed to bring the ph up to 4.40 is = ml 8

9 9

AP FREE RESPONSE QUESTIONS ACIDS/BASES

AP FREE RESPONSE QUESTIONS ACIDS/BASES AP FREE RESPONSE QUESTIONS ACIDS/BASES 199 D A chemical reaction occurs when 100. milliliters of 0.200molar HCl is added dropwise to 100. milliliters of 0.100molar Na 3 P0 solution. (a) Write the two net

More information

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19) Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H

More information

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base? You might need to know the following K values: CHAPTERS 15 FAKE TEST QUESTIONS CH 3 COOH K a = 1.8 x 10 5 Benzoic Acid K a = 6.5 x 10 5 HNO 2 K a = 4.5 x 10 4 NH 3 K b = 1.8 x 10 5 HF K a = 7.2 x 10 4

More information

Review for Solving ph Problems:

Review for Solving ph Problems: Review for Solving ph Problems: Acid Ionization: HA H 2 O A - H 3 O CH 3 COOH H 2 O CH 3 COO - H 3 O Base Ionization: B H 2 O BH OH - 1) Strong Acid complete dissociation [H ] is equal to original [HA]

More information

Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria

Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria Key Questions 1. A 0.0100 M solution of a weak acid HA has a ph of 2.60. What is the value of K a for the acid? [Hint: What

More information

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution. T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient

More information

Solubility Product Constant

Solubility Product Constant Solubility Product Constant Page 1 In general, when ionic compounds dissolve in water, they go into solution as ions. When the solution becomes saturated with ions, that is, unable to hold any more, the

More information

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

Name period Unit 9: acid/base equilibrium

Name period Unit 9: acid/base equilibrium Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton

More information

n molarity = M = N.B.: n = litres (solution)

n molarity = M = N.B.: n = litres (solution) 1. CONCENTRATION UNITS A solution is a homogeneous mixture of two or more chemical substances. If we have a solution made from a solid and a liquid, we say that the solid is dissolved in the liquid and

More information

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see

More information

General Chemistry II Chapter 20

General Chemistry II Chapter 20 1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2

4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2 4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations

More information

Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq)

Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq) Common Ion Effects If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction. The ion that appears in both reactions is the common ion. Buffers

More information

We remember that molarity (M) times volume (V) is equal to moles so this relationship is the definition of the equivalence point.

We remember that molarity (M) times volume (V) is equal to moles so this relationship is the definition of the equivalence point. Titrations Titration - a titration is defined as the determination of the amount of an unknown reagent (analyte) through the use of a known amount of another reagent (titrant) in an essentially irreversible

More information

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved. Sample Exercise 17.1 Calculating the ph When a Common Ion is Involved What is the ph of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of

More information

Acids and Bases. Chapter 16

Acids and Bases. Chapter 16 Acids and Bases Chapter 16 The Arrhenius Model An acid is any substance that produces hydrogen ions, H +, in an aqueous solution. Example: when hydrogen chloride gas is dissolved in water, the following

More information

MOLARITY = (moles solute) / (vol.solution in liter units)

MOLARITY = (moles solute) / (vol.solution in liter units) CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Molarity of Ions in Solution

Molarity of Ions in Solution APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.

More information

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11 SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

More information

SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK

SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK Solutions of Electrolytes and Nonelectrolytes SAMPLE PROBLEM 8.1 Indicate whether solutions of each of the following contain only ions, only molecules, or mostly molecules and a few ions: a. Na 2 SO 4,

More information

Titration curves. Strong Acid-Strong Base Titrations

Titration curves. Strong Acid-Strong Base Titrations Titration curves A titration is a procedure for carrying out a chemical reaction between two solutions by the controlled addition from a buret of one solution (the titrant) to the other, allowing measurements

More information

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

More information

Chemistry 106 Fall 2007 Exam 3 1. Which one of the following salts will form a neutral solution on dissolving in water?

Chemistry 106 Fall 2007 Exam 3 1. Which one of the following salts will form a neutral solution on dissolving in water? 1. Which one of the following salts will form a neutral solution on dissolving in water? A. NaCN B. NH 4 NO 3 C. NaCl D. KNO 2 E. FeCl 3 2. Which one of the following is a buffer solution? A. 0.10 M KCN

More information

CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHEM 1212 Test II MULTIPLE CHOICE. Choose the one alternative that est completes the statement or answers the question. 1) At 1000 K, the equilirium constant for the reaction is K p = 0.013. 2NO (g) +

More information

CHM1 Review for Exam 12

CHM1 Review for Exam 12 Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

More information

Stoichiometry and Aqueous Reactions (Chapter 4)

Stoichiometry and Aqueous Reactions (Chapter 4) Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.

More information

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!! Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

Chemical equilibria Buffer solutions

Chemical equilibria Buffer solutions Chemical equilibria Buffer solutions Definition The buffer solutions have the ability to resist changes in ph when smaller amounts of acid or base is added. Importance They are applied in the chemical

More information

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water

This value, called the ionic product of water, Kw, is related to the equilibrium constant of water HYDROGEN ION CONCENTRATION - ph VALUES AND BUFFER SOLUTIONS 1. INTRODUCTION Water has a small but definite tendency to ionise. H 2 0 H + + OH - If there is nothing but water (pure water) then the concentration

More information

TOPIC 11: Acids and Bases

TOPIC 11: Acids and Bases TOPIC 11: Acids and Bases ELECTROLYTES are substances that when dissolves in water conduct electricity. They conduct electricity because they will break apart into Ex. NaCl(s)! Na + (aq) + Cl - (aq), and

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution. Chapter 8 Acids and Bases Definitions Arrhenius definitions: An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages

More information

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases Acid-Base Chemistry ν There are a couple of ways to define acids and bases ν Brønsted-Lowry acids and bases ν Acid: H + ion donor ν Base: H + ion acceptor ν Lewis acids and bases ν Acid: electron pair

More information

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN - QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions

More information

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Mole Calculations Chemical Equations and Stoichiometry Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Chemical Equations and Problems Based on Miscellaneous

More information

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase STOICHIOMETRY Objective The purpose of this exercise is to give you some practice on some Stoichiometry calculations. Discussion The molecular mass of a compound is the sum of the atomic masses of all

More information

Chapter 9 Lecture Notes: Acids, Bases and Equilibrium

Chapter 9 Lecture Notes: Acids, Bases and Equilibrium Chapter 9 Lecture Notes: Acids, Bases and Equilibrium Educational Goals 1. Given a chemical equation, write the law of mass action. 2. Given the equilibrium constant (K eq ) for a reaction, predict whether

More information

Summer 2003 CHEMISTRY 115 EXAM 3(A)

Summer 2003 CHEMISTRY 115 EXAM 3(A) Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate

More information

Practical Lesson No 4 TITRATIONS

Practical Lesson No 4 TITRATIONS Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution

More information

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration Acid-Base Indicators and Titration Curves Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical

More information

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent 1 Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent % (v/v) = volume of solute x 100 volume of solution filled

More information

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,

More information

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium

More information

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O Chem 100 Mole conversions and stoichiometry worksheet 1. How many Ag atoms are in.4 mol Ag atoms? 6.0 10 Ag atoms 4.4 mol Ag atoms = 1.46 10 Ag atoms 1 mol Ag atoms. How many Br molecules are in 18. mol

More information

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria Chemistry 13 NT The most difficult thing to understand is the income tax. Albert Einstein 1 Chem 13 NT Solubility and Complex-ion Equilibria Module 1 Solubility Equilibria The Solubility Product Constant

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water. Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the

More information

Similarities The ph of each of these solutions is the same; that is, the [H + ] is the same in both beakers (go ahead and count).

Similarities The ph of each of these solutions is the same; that is, the [H + ] is the same in both beakers (go ahead and count). Compare 1 L of acetate buffer solution (0.50 mol of acetic acid and 0.50 mol sodium acetate) to 1 L of HCl solution AcO - AcO - H+ Cl - AcO - AcO - Cl - Cl - AcO - Cl - Cl - Cl - Cl - AcO - AcO - AcO -

More information

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V 44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts

More information

UNIT (6) ACIDS AND BASES

UNIT (6) ACIDS AND BASES UNIT (6) ACIDS AND BASES 6.1 Arrhenius Definition of Acids and Bases Definitions for acids and bases were proposed by the Swedish chemist Savante Arrhenius in 1884. Acids were defined as compounds that

More information

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration GOAL AND OVERVIEW Antacids are bases that react stoichiometrically with acid. The number of moles of acid that

More information

Answer Key, Problem Set 5 (With explanations)--complete

Answer Key, Problem Set 5 (With explanations)--complete Chemistry 122 Mines, Spring 2016 Answer Key, Problem Set 5 (With explanations)complete 1. NT1; 2. NT2; 3. MP; 4. MP (15.38); 5. MP (15.40); 6. MP (15.42); 7. NT3; 8. NT4; 9. MP; 10. NT5; 11. NT6; 12. MP;

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Acid-Base Titrations. Setup for a Typical Titration. Titration 1 Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these

More information

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

More information

Chapter 10 Acid-Base titrations Problems 1, 2, 5, 7, 13, 16, 18, 21, 25

Chapter 10 Acid-Base titrations Problems 1, 2, 5, 7, 13, 16, 18, 21, 25 Chapter 10 AcidBase titrations Problems 1, 2, 5, 7, 13, 16, 18, 21, 25 Up to now we have focused on calculations of ph or concentration at a few distinct points. In this chapter we will talk about titration

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Equilibria Involving Acids & Bases

Equilibria Involving Acids & Bases Week 9 Equilibria Involving Acids & Bases Acidic and basic solutions Self-ionisation of water Through reaction with itself: The concentration of water in aqueous solutions is virtually constant at about

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must

More information

For weak bases alone in water: [H + ] = K a

For weak bases alone in water: [H + ] = K a General Chemistry II Jasperse Buffers/itrations/Solubility. Extra Practice Problems 1 General ypes/groups of problems: Buffers General p1 itration Graphs and Recognition p10 What Kind of Solution/pH at

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

Equilibrium Constants The following equilibrium constants will be useful for some of the problems.

Equilibrium Constants The following equilibrium constants will be useful for some of the problems. 1 CH302 Exam 4 Practice Problems (buffers, titrations, Ksp) Equilibrium Constants The following equilibrium constants will be useful for some of the problems. Substance Constant Substance Constant HCO

More information

Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

More information

1. How many hydrogen atoms are in 1.00 g of hydrogen?

1. How many hydrogen atoms are in 1.00 g of hydrogen? MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 10-24 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration.

Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions... 2A Rationale... 2B Distinguishing between amount and concentration, g and %w/v...

More information

Titration. Lecture # 8. Titrations in Analytical Chemistry. Other Forms of Titration. End Point vs. Equivalence Point. Minimizing Titration Error

Titration. Lecture # 8. Titrations in Analytical Chemistry. Other Forms of Titration. End Point vs. Equivalence Point. Minimizing Titration Error Lecture # MnO 5 H C O H CO Mn H O (purple) (colorless) (colorless) (colorless) Volumetric Analysis 0 ml s in Analytical Chemistry 11 Gravimetric Analysis Other Forms of End Point vs. Equivalence Point

More information

Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

More information

Ch 15: Acids and Bases

Ch 15: Acids and Bases Ch 15: Acids and Bases A c i d s a n d B a s e s C h 1 5 P a g e 1 Homework: Read Chapter 15 Work out sample/practice exercises in the sections, Bonus problems: 39, 41, 49, 63, 67, 83, 91, 95, 99, 107,

More information

Illinois Central College CHEMISTRY 132 Laboratory Section: solution 2-50 ml beakers KHSO 3

Illinois Central College CHEMISTRY 132 Laboratory Section: solution 2-50 ml beakers KHSO 3 Exercise 8 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Redox Titration Name: Equipment 1-25.00 ml burette 0.100 N KMn 4 solution 2-50 ml beakers KHS 3 solution of unknown Normality

More information

Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry Chapter 3! : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2

More information

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase. Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations

More information

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe: Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

More information

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Acids and Bases. Problem Set: Chapter 17 questions 5-7, 9, 11, 13, 18, 43, 67a-d, 71 Chapter 18 questions 5-9, 26, 27a-e, 32

Acids and Bases. Problem Set: Chapter 17 questions 5-7, 9, 11, 13, 18, 43, 67a-d, 71 Chapter 18 questions 5-9, 26, 27a-e, 32 Acids and Bases Problem Set: Chapter 17 questions 5-7, 9, 11, 13, 18, 43, 67a-d, 71 Chapter 18 questions 5-9, 26, 27a-e, 32 Arrhenius Theory of Acids An acid base reaction involves the reaction of hydrogen

More information

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant. UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in

More information

The Mole. 6.022 x 10 23

The Mole. 6.022 x 10 23 The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons

More information

Electrical Conductivity of Aqueous Solutions

Electrical Conductivity of Aqueous Solutions Electrical Conductivity of Aqueous Solutions PRE-LAB ASSIGNMENT: Reading: Chapter 4.-4.3 in Brown, LeMay, Bursten & Murphy.. Using Table in this handout, determine which solution has a higher conductivity,.

More information