# Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Size: px
Start display at page:

Download "Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution."

Transcription

1 T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient for general laboratory use is molarity, which is defined: Moles of solute Molarity = or M = Liters of solution n solute L soln Chemical reactions are written in terms of moles of reactants and products; this molarity concentration unit relates moles of solute to volume of solution. Thus, easily measured solution volumes provide a simple method of measuring moles of reactants. EXAMPLE: What is the molarity of a solution made by dissolving 5.67 g of potassium chloride in enough water to make ml of solution? This data gives a relationship between amount of solute and volume of solution: 5.67 g KCl / ml. To find molarity we must convert grams KCl to moles KCl and ml solution to L: 5.67 g KCl 1 mol KCl 1000 ml mol KCl x x = or M KCl ml 74.6 g KCl L L Whenever the solution concentration is given in molarity, M, you must change to the equivalent units, mol/l or mol/1000 ml, to use as a conversion factor. EXAMPLE: What mass of solute is contained in 15.0 ml of a M KCl solution? The conversion sequence is: ml solution L solution mol KCl g KCl 1 L mol KCl 74.6 g KCl 15.0 ml x x x = g KCl 1000 ml L mol KCl

2 T-28 OR, use the conversion sequence: ml solution mol KCl g KCl mol KCl 74.6 g KCl 15.0 ml x x = g KCl 1000 ml mol KCl EXAMPLE: What mass of potassium chloride would be needed to prepare ml of a M solution? OR 1 L mol KCl 74.6 g KCl ml x x x = 9.32 g KCl (needed) 1000 ml L mol KCl mol KCl 74.6 g KCl ml x x = 9.32 g KCl (needed) 1000 ml mol KCl Please note: the preceding two EXAMPLES are the same kind of problem worded differently: conversion from volume of solution to mass of solute. EXAMPLE: Silver nitrate solution is added to ml of a M potassium chloride solution until no more precipitate forms. What mass of silver chloride will be formed? The chemical equation for the reaction is: KCl (aq) + AgNO 3 (aq) AgCl (s) + KNO 3 (aq) Since the concentration and volume of silver nitrate solution are not specified, we can assume it is in excess. First find the number of moles of KCl in the ml of M solution: mol KCl (A) ml x = mol KCl 1000 ml

3 T-29 From the mole ratio in the balanced chemical equation: 1 mol AgCl (B) mol KCl x = mol AgCl formed 1 mol KCl Then convert to grams of AgCl: g AgCl (C) mol AgCl x = 1.79 g AgCl formed mol AgCl Steps (A), (B), and (C) may be combined: mol KCl 1 mol AgCl g AgCl ml x x x = 1.79 g AgCl 1000 ml 1 mol KCl mol AgCL Please note: the steps in solving this problem are essentially the same as used in Tutorial 3; the only difference is the method of first finding moles: thereafter they are identical problems. If volume and concentration of both reactant solutions are given then you are dealing with a limiting reagent problem. The first step is to find the moles of each reactant from the volume and concentration of the solution. Once moles are found the process is the same as shown in Tutorial 3, p T-23. The following equations are needed for some of the problems in this Tutorial. Na 2 SO 4 (aq) + BaCl 2 (aq) BaSO 4 (s) + 2NaCl (aq) BaCl 2 (aq) + 2AgNO 3 (aq) 2AgCl (s) + Ba(NO 3 ) 2 (aq) Ca(OH) 2 (aq) + 2HCl (aq) CaCl 2 (aq) + 2H 2 O (l) 2Al(OH) 3 (s) + 3H 2 SO 4 (aq) Al 2 (SO 4 ) 3 (aq) + 6H 2 O (l) AlCl 3 (aq) + 3NaOH (aq) Al(OH) 3 (s) + 3NaCl (aq) 3KOH (aq) + H 3 PO 4 (aq) K 3 PO 4 (aq) + 3H 2 O (l)

4 T-30 1) Calculate the molarity of the following solutions: a) 15.5 g of potassium chloride in ml of solution. b) 1.25 x 10 2 g of silver nitrate in ml of solution. c) g of barium chloride in ml of solution. d) 15.0 mg of calcium hydroxide in 50.0 ml of solution. e) g of aluminum chloride in ml of solution. f) 1.00 g of potassium hydroxide in L of solution. g) g of sodium carbonate in ml of solution. h) 2.50 x 10 6 kg of potassium phosphate in ml of solution. 2) What mass of solute is contained in ml of a M sodium hydroxide solution? 3) What mass of solute is needed to prepare ml of a 1.50 M potassium nitrate solution? 4) What mass of solute is contained in ml of a 1.00 M barium nitrate solution? 5) What volume of M silver nitrate contains gram of silver nitrate? 6) What volume of M aluminum chloride solution contains 5.00 g of solute? 7) ml of a M sodium chloride solution was evaporated to dryness. What mass of solid remained? 8) In what total volume must 5.00 g of sodium nitrate be dissolved to make a M solution? 9) Barium chloride solution is added to ml of a M sodium sulfate solution until no more precipitate forms. What mass of barium sulfate forms? 10) Excess barium chloride solution is added to ml of M silver nitrate solution. What mass of silver chloride is formed? 11) What mass of aluminum hydroxide is required to completely react with 50.0 ml of M sulfuric acid solution? 12) Excess sodium hydroxide solution is added to ml of M aluminum chloride solution. What mass of aluminum hydroxide is formed?

5 T-31 13) What volume of 1.25 M sulfuric acid is needed to dissolve g of aluminum hydroxide? What is the molarity of the resulting solution of aluminum sulfate? (Assume final solution volume = volume of sulfuric acid used.) 14) Silver chloride is formed by mixing silver nitrate and barium chloride solutions. What volume of 1.50 M barium chloride solution is needed to form g of silver chloride? 15) What volume of M potassium hydroxide solution is needed to react completely with a solution containing 1.00 g of phosphoric acid? 16) What volume of 1.25 M hydrochloric acid is needed to react completely with a solution containing 2.50 g of calcium hydroxide? 17) ml of M barium chloride solution is mixed with ml of silver nitrate solution. What mass of silver chloride will be formed? 18) 15.0 ml of M barium chloride solution is mixed with 25.0 ml of M silver nitrate solution. What mass of silver chloride will be formed? 19) ml of M aluminum chloride solution is mixed with ml of M sodium hydroxide solution. What mass of aluminum hydroxide will be formed? 20) ml of a solution containing 2.55 g of potassium hydroxide is mixed with ml of a 1.50 M phosphoric acid solution. Will the resulting mixture be acidic or basic? What will be the molarity of the potassium phosphate formed? (Assume the volumes are additive.) 21) ml of 1.50 M phosphoric acid solution is titrated with M potassium hydroxide solution. What volume of base solution is needed for complete neutralization? 22) ml of a barium chloride solution is titrated with M silver nitrate solution ml of the silver nitrate solution is required to completely precipitate the chloride ion as silver chloride. What is the molarity of the barium chloride solution? 23) ml of a phosphoric acid solution required ml of a M potassium hydroxide solution for neutralization. What is the molarity of the acid? 24) ml of a M calcium hydroxide solution is titrated with M hydrochloric acid solution. What volume of acid is needed for complete neutralization? 25) ml of M hydrochloric acid is titrated with a calcium hydroxide solution, and ml of the base is required for complete neutralization. What is the molarity of the calcium hydroxide solution?

6 T-32 Answers to Problems 1) a) M KCl 10) g AgCl b) 7.36 x 10 4 M AgNO 3 11) g Al(OH) 3 c) 5.33 x 10 4 M BaCl 2 12) g Al(OH) 3 d) 4.05 x 10 3 M Ca(OH) 2 13) 11.5 ml H 2 SO 4 ; M Al 2 (SO 4 ) 3 e) M AlCl 3 14) 1.22 ml BaCl 2 f) M KOH 15) 122 ml KOH g) M Na 2 CO 3 16) 54.0 ml HCl h) 2.36 x 10 5 M K 3 PO 4 17) AgNO 3 limiting; 1.79 g AgCl 2) g NaOH 18) BaCl 2 limiting; g AgCl 3) 37.9 g KNO 3 19) NaCl limiting; g Al(OH) 3 4) 26.1 g Ba(NO 3 ) 2 20) acidic; M K 3 PO 4 5) 20.8 ml AgNO 3 21) 247 ml KOH 6) 166 ml AlCl 3 22) M BaCl 2 7) 2.92 g NaCl 23) M H 3 PO 4 8) 235 ml 24) 23.6 ml HCl 9) 2.92 g BaSO 4 25) M Ca(OH) 2

### 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

### Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

### Stoichiometry Review

Stoichiometry Review There are 20 problems in this review set. Answers, including problem set-up, can be found in the second half of this document. 1. N 2 (g) + 3H 2 (g) --------> 2NH 3 (g) a. nitrogen

### Name: Class: Date: 2 4 (aq)

Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

### 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

### Unit 10A Stoichiometry Notes

Unit 10A Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

### Acid-Base Titrations. Setup for a Typical Titration. Titration 1

Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these

### n molarity = M = N.B.: n = litres (solution)

1. CONCENTRATION UNITS A solution is a homogeneous mixture of two or more chemical substances. If we have a solution made from a solid and a liquid, we say that the solid is dissolved in the liquid and

### Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

### IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

### Formulas, Equations and Moles

Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

### MOLARITY = (moles solute) / (vol.solution in liter units)

CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.

### Chemical Calculations

Moles and Molecules Moles and Chemical Reactions Moles, Chemical Reactions, and Molarity All done as UNIT CONVERSIONS!!! and practice, practice, practice CHM 1010 Sinex 1 Mass moles particles conversions

### Chemistry: Chemical Equations

Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

### Molarity of Ions in Solution

APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.

### Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

### Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

### Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations

### Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

### Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent

### 4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2

4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations

### Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase

STOICHIOMETRY Objective The purpose of this exercise is to give you some practice on some Stoichiometry calculations. Discussion The molecular mass of a compound is the sum of the atomic masses of all

### Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

### W1 WORKSHOP ON STOICHIOMETRY

INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

### Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts

### Limiting Reagent Worksheet #1

Limiting Reagent Worksheet #1 1. Given the following reaction: (Balance the equation first!) C 3 H 8 + O 2 -------> CO 2 + H 2 O a) If you start with 14.8 g of C 3 H 8 and 3.44 g of O 2, determine the

### 6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

### Writing Chemical Equations

Writing Chemical Equations Chemical equations for solution reactions can be written in three different forms; molecular l equations, complete ionic i equations, and net ionic equations. In class, so far,

### CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES The meaning of stoichiometric coefficients: 2 H 2 (g) + O 2 (g) 2 H 2 O(l) number of reacting particles 2 molecules of hydrogen react with 1 molecule

### Balancing Chemical Equations Worksheet

Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.

### IB Chemistry. DP Chemistry Review

DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

### Unit 9 Stoichiometry Notes (The Mole Continues)

Unit 9 Stoichiometry Notes (The Mole Continues) is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

### Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

### stoichiometry = the numerical relationships between chemical amounts in a reaction.

1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

### Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an

### Formulae, stoichiometry and the mole concept

3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

### SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

### CHEMISTRY II FINAL EXAM REVIEW

Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas

### UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS 4.1 Formula Masses Recall that the decimal number written under the symbol of the element in the periodic table is the atomic mass of the element. 1 7 8 12

### CHEMICAL REACTIONS. Chemistry 51 Chapter 6

CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,

### CHM1 Review for Exam 12

Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

### Concentration of a solution

Revision of calculations Stoichiometric calculations Osmotic pressure and osmolarity MUDr. Jan Pláteník, PhD Concentration of a solution mass concentration: grams of substance per litre of solution molar

### Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

### Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you

### Writing and Balancing Chemical Equations

Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

### Balancing Chemical Equations Practice

Science Objectives Students will describe what reactants and products in a chemical equation mean. Students will explain the difference between coefficients and subscripts in chemical equations. Students

### Experiment 1 Chemical Reactions and Net Ionic Equations

Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical

### General Chemistry Lab Experiment 6 Types of Chemical Reaction

General Chemistry Lab Experiment 6 Types of Chemical Reaction Introduction Most ordinary chemical reactions can be classified as one of five basic types. The first type of reaction occurs when two or more

### Stoichiometry and Aqueous Reactions (Chapter 4)

Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.

### PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

### 6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must

### Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

### Chemical Reactions 2 The Chemical Equation

Chemical Reactions 2 The Chemical Equation INFORMATION Chemical equations are symbolic devices used to represent actual chemical reactions. The left side of the equation, called the reactants, is separated

### Unit 2: Quantities in Chemistry

Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

### Calculations for Solutions Worksheet and Key

Calculations for Solutions Worksheet and Key 1) 23.5g of NaCl is dissolved in enough water to make.683. a) What is the molarity (M) of the solution? b) How many moles of NaCl are contained in 0.0100 L

### Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical

### Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles

### SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK

Solutions of Electrolytes and Nonelectrolytes SAMPLE PROBLEM 8.1 Indicate whether solutions of each of the following contain only ions, only molecules, or mostly molecules and a few ions: a. Na 2 SO 4,

### Unit 7 Stoichiometry. Chapter 12

Unit 7 Stoichiometry Chapter 12 Objectives 7.1 use stoichiometry to determine the amount of substance in a reaction 7.2 determine the limiting reactant of a reaction 7.3 determine the percent yield of

### MOLES AND MOLE CALCULATIONS

35 MOLES ND MOLE CLCULTIONS INTRODUCTION The purpose of this section is to present some methods for calculating both how much of each reactant is used in a chemical reaction, and how much of each product

### Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure

### Experiment 3 Limiting Reactants

3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

### Solubility Product Constant

Solubility Product Constant Page 1 In general, when ionic compounds dissolve in water, they go into solution as ions. When the solution becomes saturated with ions, that is, unable to hold any more, the

### REVIEW QUESTIONS Chapter 8

Chemistry 51 ANSWER KEY REVIEW QUESTIONS Chapter 8 1. Identify each of the diagrams below as strong electrolyte, weak electrolyte or non-electrolyte: (a) Non-electrolyte (no ions present) (b) Weak electrolyte

### Chapter 3 Stoichiometry

Chapter 3 Stoichiometry 3-1 Chapter 3 Stoichiometry In This Chapter As you have learned in previous chapters, much of chemistry involves using macroscopic measurements to deduce what happens between atoms

### Problem Solving. Stoichiometry of Gases

Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.

### Chapter 14 Solutions

Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

### Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

### Stoichiometry. Lecture Examples Answer Key

Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2

### Aqueous Ions and Reactions

Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for

### CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

### Molar Mass Worksheet Answer Key

Molar Mass Worksheet Answer Key Calculate the molar masses of the following chemicals: 1) Cl 2 71 g/mol 2) KOH 56.1 g/mol 3) BeCl 2 80 g/mol 4) FeCl 3 162.3 g/mol 5) BF 3 67.8 g/mol 6) CCl 2 F 2 121 g/mol

### Chapter 7: Chemical Reactions

Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that

### Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:

### Santa Monica College Chemistry 11

Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical

### NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide

NAMING QUIZ 3 - Part A Name: Write the formulas for the following compounds: 1. Zinc (II) Nitrate 2. Manganese (IV) sulfide 3. Barium permanganate 4. Sulfuric acid 5. Silver (I) carbonate 6. Aluminum acetate

### Answers and Solutions to Text Problems

Chapter 7 Answers and Solutions 7 Answers and Solutions to Text Problems 7.1 A mole is the amount of a substance that contains 6.02 x 10 23 items. For example, one mole of water contains 6.02 10 23 molecules

### Moles, Molecules, and Grams Worksheet Answer Key

Moles, Molecules, and Grams Worksheet Answer Key 1) How many are there in 24 grams of FeF 3? 1.28 x 10 23 2) How many are there in 450 grams of Na 2 SO 4? 1.91 x 10 24 3) How many grams are there in 2.3

### Description of the Mole Concept:

Description of the Mole Concept: Suppose you were sent into the store to buy 36 eggs. When you picked them up you would get 3 boxes, each containing 12 eggs. You just used a mathematical device, called

### Types of Reactions. CHM 130LL: Chemical Reactions. Introduction. General Information

Introduction CHM 130LL: Chemical Reactions We often study chemistry to understand how and why chemicals (reactants) can be transformed into different chemicals (products) via a chemical reaction: Reactants

### General Chemistry II Chapter 20

1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water

### Calculating Atoms, Ions, or Molecules Using Moles

TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

### Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

### Stoichiometry. Unit Outline

3 Stoichiometry Unit Outline 3.1 The Mole and Molar Mass 3.2 Stoichiometry and Compound Formulas 3.3 Stoichiometry and Chemical Reactions 3.4 Stoichiometry and Limiting Reactants 3.5 Chemical Analysis

### Practical Lesson No 4 TITRATIONS

Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution

### 4.3 Reaction Stoichiometry

196 Chapter 4 Stoichiometry of Chemical Reactions 4.3 Reaction Stoichiometry By the end of this section, you will be able to: Explain the concept of stoichiometry as it pertains to chemical reactions Use

### Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

### CP Chemistry Review for Stoichiometry Test

CP Chemistry Review for Stoichiometry Test Stoichiometry Problems (one given reactant): 1. Make sure you have a balanced chemical equation 2. Convert to moles of the known substance. (Use the periodic

### CHEMISTRY COMPUTING FORMULA MASS WORKSHEET

CHEMISTRY COMPUTING FORMULA MASS WORKSHEET Directions: Find the formula mass of the following compounds. Round atomic masses to the tenth of a decimal place. Place your final answer in the FORMULA MASS

### neutrons are present?

AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

### Mole Notes.notebook. October 29, 2014

1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

### Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

### Balancing Chemical Equations Worksheet Intermediate Level

Balancing Chemical Equations Worksheet Intermediate Level Neutralization Reactions Salts are produced by the action of acids. Salts are written metal first, then non-metal. Eg. NaCl not ClNa Acid + Base

### Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

### Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

### Solubility of Salts - Ksp. Ksp Solubility

Solubility of Salts - Ksp We now focus on another aqueous equilibrium system, slightly soluble salts. These salts have a Solubility Product Constant, K sp. (We saw this in 1B with the sodium tetraborate

### Solutions: Molarity. A. Introduction

Solutions: Molarity. A. Introduction... 1 B. Molarity... 1 C. Making molar solutions... 2 D. Using molar solutions... 4 E. Other mole-based concentration units [optional]... 6 F. Answers... 7 A. Introduction