Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent"

Transcription

1 1 Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent % (v/v) = volume of solute x 100 volume of solution filled to a total volume of solution % (m/v or w/v) = mass of solute (g) x 100 volume of solution (ml) units are specified Parts-per-million ppm = mass or volume of solute x 10 6 mass or volume of solution

2 2 Sample calculation: How many ounces of wine (12 % v/v) are in one standard drink? 12 ml pure alcohol in 100 ml wine Density of pure alcohol = g/ml 1 ounce = ml g alcohol ml alcohol ml wine ounces wine 14 g alcohol x 1 ml x 100 ml wine x 1 oz. 1 standard drink g 12 ml alcohol ml = 5.0 oz of wine/standard drink

3 3 Molarity (M) = moles of solute L of solution Drill problem: What volume of 2.0 M CaCl 2 is needed to provide 1.94 g Ca 2+? g Ca 2+ mol Ca 2+ mol CaCl 2 volume soln 1.94 g Ca 2+ x 1 mol x 1 mol CaCl 2 x 1 L g 1 mol Ca mol CaCl 2 = L or 24 ml

4 4 Ch 8.6 Dilution C stock soln x V stock soln = C dilute soln x V dilute soln Practice problem: How much water must be added to 100 ml of M NaCl to prepare a M NaCl solution? C s x V s = C d x V d (you must know this equation) M x 100 ml = M x V d V d = 600 ml = final volume (V s + V water ) V water = V d V s = 600 ml 100 ml = 500 ml Q: How many-fold of a dilution has occurred?

5 5 Ch 8.7 Colloidal Dispersions and Suspensions Table 8.4 Property comparison for solutions, colloidal dispersions, and suspensions. Ch 8.8 Colligative Properties of Solutions reduction of vapor pressure elevation of boiling point depression of freezing point osmotic pressure directly proportional to the total concentration of all the species formed when solutes dissolve

6 6 Ch 8.9 Osmosis and Osmotic Pressure osmolarity = molarity x i i = number of particles from one formula unit of solute Example: What is the osmolarity of a solution that is 1 M in MgBr 2 and 2 M in glucose? Osmolarity = 1 M x M x 1 = 5 osmol MgBr 2 glucose The osmotic pressure of a solution is directly proportional to the number of solute particles present. Solution A 0.30 osmol = 7.6 atm Solution B 0.15 osmol = 3.8 atm Solution C 1.5 osmol =? Isotonic, Hypotonic, and Hypertonic solutions. Ch 8.10 Dialysis: a semipermeable membrane allows the passage of solvent, dissolved ions, and small molecules, but blocks the passage of larger particles. (separation technique)

7 7 Chapter 9 Chemical Reactions Ch covered in Review II (Chapter Medley) Ch 9.4 Collision Theory and Chemical Reactions Activation energy (E a ) is the minimum combined kinetic energy that colliding reactants must possess in order for their collision to result in a chemical reaction. Higher activation energy Slower reaction Lower activation energy Faster reaction Collision Orientation Reaction rates are sometimes very slow because reactant molecules must be oriented in a certain way.

8 8 Ch 9.5 Exothermic Chemical Reactions Figure 9.7 Energy diagram for an exothermic reaction. Sometimes an initial input of energy may be needed but once it has started, an exothermic reaction is selfsustaining. Ch 9.5 Endothermic Chemical Reactions Figure 9.7 Energy diagram for an endothermic reaction. A continuous input of energy is needed for endothermic reactions to occur.

9 Ch 9.6 Factors That Influence Chemical Reaction Rates Physical nature of the reactants Reactant concentrations (surface area for solids) Reaction temperature (rate doubles every 10 o C) Reaction pressure in the case of gases Presence of catalysts Catalyst is not consumed. It provides an alternative route for the reaction with a lower activation energy (E a ). Catalysts DO NOT influence the amount of product formed, they only speed up the process. 9

10 10 Drill Problem: Will each of the changes listed increase or decrease the rate of the following reaction? N H 2 2 NH 3 Adding some N 2 Raising T Removing a catalyst Removing some H 2 Drill Problem: Reaction A H = -20 kcal/mole E a = 25 kcal/mole Reaction B H = -15 kcal/mole E a = 20 kcal/mole Which reaction occurs faster at the same temperature? Which reaction releases more heat energy?

11 11 Ch 9.7 Chemical Equilibrium = Dynamic Equilibrium Ch 9.8 Equilibrium Constant wa + xb yc + zd [products] K eq = = [reactants] [ ] = molar concentrations (M = moles/l) [C] y [D] z [A] w [B] x When [products] >> [reactants], K eq = large, Equilibrium right When [reactants] >> [products], K eq = small, Equilibrium left At values of K eq > 1000, [products] >> [reactants] and the reaction is usually considered complete. Pure solids and pure liquids have constant concentrations, which are incorporated into the equilibrium constant itself. 2 KClO 3 (s) 2 KCl(s) + 3 O 2 (g) K eq = [O 2 ] 3

12 12 N 2 (g) + 3 H 2 (g) catalyst 2 NH 3 (g) Sample calculation: K eq = 70 at 350 o C [N 2 ] = M [H 2 ] = M [NH 3 ] =? [NH 3 ] 2 [NH 3 ] 2 K eq = = = 70 [N 2 ][H 2 ] 3 [0.100][0.300] 3 [NH 3 ] 2 = 70 x x (0.300) 3 [NH 3 ] 2 = [NH 3 ] 2 = [NH 3 ] = M

13 13 Ch 9.9 Altering Equilibrium Conditions Concentration changes (K eq is unchanged) Pressure changes (K eq is unchanged) Temperature changes (K eq changes) Addition of catalyst has NO EFFECT on the equilibrium position, it merely allows the equilibrium to be reached more quickly. (K eq is unchanged) N 2 (g) + 3 H 2 (g) Stress imposed Add N 2 Remove N 2 Add H 2 Remove H 2 Add NH 3 Remove NH 3 2 NH 3 (g) Shift observed right left right left left right

14 14 Change in pressure (K eq is unchanged). Drill Problem: Rxn A: 2 NO 2 (g) + 7 H 2 (g) 2 NH 3 (g) + 4 H 2 O(g) Rxn B: H 2 (g) + I 2 (g) 2 HI(g) What will be the effects of increasing pressure? Rxn A: Rxn B: What will be the effects of decreasing pressure? Rxn A: Rxn B:

15 15 When the reaction temperature changes, K eq also changes! H 2 (g) + F 2 (g) 2 HF(g) + Heat For exothermic reactions heat = product Increase T, shift left - [HF] decreases, K eq decreases Decrease T, shift right - [HF] increases, K eq increases 2 CO 2 (g) + Heat 2 CO(g) + O 2 (g) For endothermic reactions heat = reactant Increase T, shift right - K eq increases Decrease T, shift left - K eq decreases

16 16 Supplemental material: Spontaneity and Chemical Reactions Enthaply ( H) and Entropy ( S) determine whether a reaction is spontaneous or nonspontaneous Most spontaneous chemical reactions are exothermic. Many endothermic reactions are nonspontaneous. Some endothermic reactions are spontaneous because Entropy increases: S = positive

17 17 Drill Problem: PCl 5 (g) PCl 3 (g) + Cl 2 (g) H = (+) 1. What changes would produce more PCl 5 (g)? [ ]? add Cl 2 or PCl 3 P? increase P to shift equilibrium left T? H = (+) for endothermic reaction and Heat is on left side, decrease T to favor left side, K eq changes Catalyst? No effect on equilibrium, just reaction rate. 2. What is the sign of S in the forward direction? 1 mole of gas 2 moles of gas = disorder increases, S = + 3. A 4.0 L flask at equilibrium contains 0.60 mole PCl mole PCl mole Cl 2 Calculate the K eq for the reaction. K eq = [PCl 3 ][Cl 2 ] = (0.20mol/4L)(1.0mol/4L) = [PCl 5 ] (0.60mol/4L)

18 Chapter 10 Acids, Bases, and Salts Ch 10.1 Arrhenius Acid-Base Theory (also in Chapter Medley) Arrhenius Acids produce H + in water Arrhenius Bases produce OH - in water HCl hydrochloric acid KOH HNO 3 nitric acid Ba(OH) 2 HClO 4 perchloric acid H 2 SO 4 sulfuric acid H 3 PO 4 phosphoric acid 18

19 19 Ch 10.2 Brønsted Lowry Acid-Base Theory Brønsted Lowry acid = proton (H + ion) donor Brønsted Lowry base = proton (H + ion) acceptor Hydronium Ion Base H + acceptor Acid H + donor H 2 O(l) + HCl(g) H 3 O + (aq) + Cl - (aq) Only acidic H atoms are donated: Acetic acid is monoprotic Acidic Substances that can either donate or accept a H + are called amphiprotic.

20 20 Conjugate Acid-Base pairs differ by a single H + Drill Problem. Write the chemical formula for: - 1. The conjugate base of H 2 PO 4-2. The conjugate acid of H 2 PO 4 3. The conjugate base of H 2 O 4. The conjugate acid of H 2 O

21 21 Ch 10.3 Mono-, Di-, and Triprotic Acids Monoprotic acids can transfer 1 H + to H 2 O or base Examples: HCl and HNO 3 Diprotic acids can transfer 2 H + Example: H 2 SO 4 + H 2 O H 3 O + + HSO 4 - HSO H 2 O H 3 O + + SO 4 2- Triprotic acids can transfer 3 H + Example: H 3 PO 4 + H 2 O H 2 PO 4 + H 2 O 2 HPO 4 + H 2 O H 3 O + + H 2 PO 4 H 3 O HPO 4 H 3 O PO 4 A polyprotic acid supplies 2 or more H +

22 Ch 10.4 Strengths of Acids and Bases A strong acid donates all or nearly 100% of its H + to H 2 O 22 Table 10.1 Learn the names and formulas of these commonly encountered strong acids, and then assume that all other acids you encounter are weak, unless you are told otherwise. These acids are strong even in dilute solution because in water they are all or mostly ionized. A weak acid does not ionize completely. CH 3 CO 2 H(l) + H 2 O(l) CH 3 CO 2 - (aq) + H 3 O + (aq)

23 23 Strong bases are limited to the hydroxides of Group IA and IIA listed in Table Ammonia gas (NH 3 ) is the most common weak base. NH 3 (g) + H 2 O(l) NH 4 + (aq) + OH - (aq)

24 24 Ch 10.5 Ionization Constants for Acids and Bases HA(aq) + H 2 O(l) H 3 O + (aq) + A - (aq) acid ionization constant K a = [H 3 O + ][A - ] [HA] Acid strength increases with increasing K a values. B(aq) + H 2 O(l) BH + (aq) + OH - (aq) base ionization constant K b = [BH + ][OH - ] [B] Base strength increases with increasing K b values.

25 25 Acid-Base Neutralization Reactions (Ch 10.1, 10.6 & 10.7 covered in Chapter Medley) Acid + Base Salt + Water HX + BOH BX + HOH Net ionic equation: H + + OH - H 2 O Ch 10.8 Self-Ionization of Water H 2 O(l) + H 2 O(l) H 3 O + (aq) + OH - (aq) K w = [H 3 O + ][OH - ] = 1.00 x memorize this # K w = Ion product constant for pure H 2 O at 25 o C Pure H 2 O at 25 o C, [H 3 O + ] = [OH - ] = 1.00 x 10-7 M Neutral

26 26 HCl is added to produce a M solution: M HCl M H 3 O + acidic solution [H 3 O + ] = 1.0 x 10-2 acidic solution [H 3 O + ] > 10-7 and [H 3 O + ] > [OH - ] K w = [H 3 O + ][OH - ] = 1.00 x [OH - ] = K w /[H 3 O + ] = 1.00 x /1.0 x 10-2 [OH - ] = 1.0 x NaOH is added to produce a M solution: M NaOH M OH - basic solution [OH - ] = 1.0 x 10-3 basic solution [OH - ] > 10-7 and [OH - ] > [H 3 O + ] K w = [H 3 O + ][OH - ] = 1.00 x [H 3 O + ] = K w /[OH - ] = 1.00 x /1.0 x 10-3 [H 3 O + ] = 1.0 x 10-11

27 27 Ch 10.9 The ph concept ph is the negative logarithm of the molarity of the hydronium ion: ph = -log[h 3 O + ] [H O + ] = 6.3 x ph = sig fig 2 digits enter 6.3 x 10-5 in your calculator, press the log key, then switch the sign ph = 7 = neutral ph < 7 = acidic ph > 7 = basic

28 28 Ch The pk a Method for Expressing Acid Strength pk a = -logk a Acid strength increases with increasing K a increases with decreasing pk a Drill question: Which is the stronger acid? acetic acid K a = 1.8 x 10-5 pk a = 4.74 HF K a = 6.8 x 10-4 pk a = 3.17 Ch The ph of Aqueous Salt Solutions Table 10.6 Examples of neutral, acidic, and basic salts.

29 29 Ch Buffers a weak acid and its conjugate base CH 3 CO 2 H/CH 3 CO 2 - H 2 PO 4 - /HPO 4 2- H 2 CO 3 /HCO 3 - (buffer in human blood) Added base is absorbed by the acid OH - + H 2 CO 3 HCO H 2 O Added acid is absorbed by the conjugate base H 3 O + + HCO 3 - H 2 CO 3 + H 2 O

30 Ch Electrolytes Strong Electrolyte = soluble ionic compounds and covalent molecules that ionize completely, such as strong acids Weak electrolytes = molecules that ionize incompletely, such as weak acids and bases Nonelectrolyte = covalent molecules that do not ionize Drill Problem. Classify each of the following compounds as a strong electrolyte, weak electrolyte, or nonelectrolyte: H 3 PO 4 HCl Cl 2 HF KBr CH 3 CH 2 -OH CH 3 COOH 30

31 31 Ch Equivalents and Milliequivalents of Electrolytes One equivalent (Eq) supplies one mole of charge 1 mole Na + = 1 equivalent 1 mole Ca 2+ = 2 equivalents 3-1 mole PO 4 = 3 equivalents Sample Calculation. Human blood plasma contains 2.4 mg Mg 2+ per dl. How many Eq or meq are in 1.0 L of plasma? Strategy: dl L mg g mol Eq meq 1.0 L x 2.4 mg Mg 2+ x 10 dl x. 1 g. x 1 mol x 2 Eq Mg 2+ 1 dl 1 L 10 3 mg 24.3 g mol Mg 2+ = 2.0 x 10-3 Eq Mg 2+ or 2.0 meq Mg 2+

32 32 Ch Acid-Base Titrations endpoint detected with acid-base indicator: HInd + H 2 O H 3 O + + Ind - Sample calculation. In an acid-base titration, ml of M H 3 PO 4 is needed to neutralize 25.0 ml of KOH of unknown concentration. Calculate the molarity of the KOH. H 3 PO 4 (aq) + 3 KOH(aq) K 3 PO 4 (aq) + 3 H 2 O(l) ml x mol H 3 PO 4 x 3 mole KOH = mole KOH 1000 ml 1 mol H 3 PO 4 M = mol/l = mole KOH/0.025 L = M KOH

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

AP Chemistry- Acids and Bases General Properties of Acids and Bases. Bases- originally defined as any substance that neutralized an acid

AP Chemistry- Acids and Bases General Properties of Acids and Bases. Bases- originally defined as any substance that neutralized an acid AP Chemistry Acids and Bases General Properties of Acids and Bases Acids Electrolyte Taste Litmus Phenolphthalein React with metals to give off H 2 gas H 2 SO 4 (aq) + Mg (s) MgSO 4 (aq) + H 2 (g) Ionize

More information

CHAPTER 9. ANS: a. ANS: d. ANS: c. ANS: a. ANS: c

CHAPTER 9. ANS: a. ANS: d. ANS: c. ANS: a. ANS: c CHAPTER 9 1. Which one of the following is the acid in vinegar? a. acetic acid b. citric acid c. muriatic acid d. ascorbic acid 2. Which is a basic or alkaline substance? a. gastric fluid b. black coffee

More information

Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases

Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases Acids Identifying Acids and Bases Acid (anhydrides) contains H+ ions as the cation, with and other element as the anion Non-metal oxide H2SO4 HI P2O5 Bases Base (anhydrides) Contains OH- as the anion Combined

More information

If we write these equations in ionic form, in each case the net ionic equation is the same; H 3 O + (aq) + OH - (aq) H 2H 2 O(l)

If we write these equations in ionic form, in each case the net ionic equation is the same; H 3 O + (aq) + OH - (aq) H 2H 2 O(l) CHEM 1105 ACIDS AND BASES 1. Early Definitions Taste: Effect on Indicators: Neutralization: acids - sour; bases - bitter acids turn blue litmus red; bases turn red litmus blue phenolphthalein is colourless

More information

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base? You might need to know the following K values: CHAPTERS 15 FAKE TEST QUESTIONS CH 3 COOH K a = 1.8 x 10 5 Benzoic Acid K a = 6.5 x 10 5 HNO 2 K a = 4.5 x 10 4 NH 3 K b = 1.8 x 10 5 HF K a = 7.2 x 10 4

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 51 ANSWER KEY REVIEW QUESTIONS Chapter 8 1. Identify each of the diagrams below as strong electrolyte, weak electrolyte or non-electrolyte: (a) Non-electrolyte (no ions present) (b) Weak electrolyte

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

Lecture 6. Classes of Chemical Reactions

Lecture 6. Classes of Chemical Reactions Lecture 6 Classes of Chemical Reactions Lecture 6 Outline 6.1 The Role of Water as a Solvent 6.2 Precipitation Reactions 6.3 Acid-Base Reactions 1 Electron distribution in molecules of H 2 and H 2 O The

More information

Name period Unit 9: acid/base equilibrium

Name period Unit 9: acid/base equilibrium Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

UNIT (6) ACIDS AND BASES

UNIT (6) ACIDS AND BASES UNIT (6) ACIDS AND BASES 6.1 Arrhenius Definition of Acids and Bases Definitions for acids and bases were proposed by the Swedish chemist Savante Arrhenius in 1884. Acids were defined as compounds that

More information

Answer the following questions on notebook paper, to be collected and graded for correctness.

Answer the following questions on notebook paper, to be collected and graded for correctness. nswer the following questions on notebook paper, to be collected and graded for correctness. 1. Name the following binary acids: a. HCl hydrochloric acid b. HF hydrofluoric acid c. H 2 S hydrosulfuric

More information

Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2-

Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2- AcidBase Chemistry Arrhenius acid: Substance that dissolves in water and provides H + ions Arrhenius base: Substance that dissolves in water and provides OH ions Examples: HCl H + and Cl Acid NaOH Na +

More information

Notes: Acids and Bases

Notes: Acids and Bases Name Chemistry Pre-AP Notes: Acids and Bases Period I. Describing Acids and Bases A. Properties of Acids taste ph 7 Acids change color of an (e.g. blue litmus paper turns in the presence of an acid) React

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

CHAPTER 16: ACIDS AND BASES

CHAPTER 16: ACIDS AND BASES CHAPTER 16: ACIDS AND BASES Active Learning: 4, 6, 14; End-of-Chapter Problems: 2-25, 27-58, 66-68, 70, 75-77, 83, 90-91, 93-104 Chapter 15 End-of-Chapter Problems: 69-74, 125, 129, 133 16.1 ACIDS AND

More information

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical? MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must

More information

Chapter 13 & 14 Practice Exam

Chapter 13 & 14 Practice Exam Name: Class: Date: Chapter 13 & 14 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acids generally release H 2 gas when they react with a.

More information

ionic substances (separate) based on! Liquid Mixtures miscible two liquids that and form a immiscible two liquids that form a e.g.

ionic substances (separate) based on! Liquid Mixtures miscible two liquids that and form a immiscible two liquids that form a e.g. Unit 7 Solutions, Acids & Bases Solution mixture + solvent - substance present in the amount solute - in the solvent solvent molecules solute particles ionic substances (separate) based on! Liquid Mixtures

More information

Chem101: General Chemistry Lecture 9 Acids and Bases

Chem101: General Chemistry Lecture 9 Acids and Bases : General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water

More information

Aqueous Ions and Reactions

Aqueous Ions and Reactions Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for

More information

Solutions & Colloids

Solutions & Colloids Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 6 Solutions & Colloids Solutions Components of a Solution Solvent: The substance

More information

Types of Reactions. What are Acids &Bases? Chapter 15. Acids & Bases. Definition? a) Arrhenius. b) Bronsted-Lowry. c) Lewis

Types of Reactions. What are Acids &Bases? Chapter 15. Acids & Bases. Definition? a) Arrhenius. b) Bronsted-Lowry. c) Lewis Chapter 15. Acids & Bases Acid/Base Definitions Types of Acids/bases Polyprotic Acids The Ion Product for Water The ph and Other p Scales Aqueous Solutions of Acids and Bases Hydrolysis The Common Ion

More information

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration Acid-Base Indicators and Titration Curves Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical

More information

SECTION 14 CHEMICAL EQUILIBRIUM

SECTION 14 CHEMICAL EQUILIBRIUM 1-1 SECTION 1 CHEMICAL EQUILIBRIUM Many chemical reactions do not go to completion. That is to say when the reactants are mixed and the chemical reaction proceeds it only goes to a certain extent, and

More information

Chapter 7, Reactions and Solutions

Chapter 7, Reactions and Solutions 1. Classify the following reaction as precipitation, acid-base or oxidation-reduction: Ce4+(aq) + Fe2+(aq) Ce3+(aq) + Fe3+(aq) Ans. oxidation-reduction 2. Classify the following reaction as precipitation,

More information

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50 Chapter 19: Acids and Bases Homework Packet (50 pts) Topic pg Section 19.1 1-3 Section 19.2 3-6 Section 19.3 6-7 Section 19.4 8 Naming Acids 9 Properties of Acids/Bases 10-11 Conjugate Acid/Base Pairs

More information

1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a weak acid), the equilibrium constant expression is:

1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a weak acid), the equilibrium constant expression is: 1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a weak acid), the equilibrium constant expression is: a) K = [H+ ][NO 2 ] [HNO 2 ] b) K = [H+ ][N][O] 2 [HNO 2 ] c) K =

More information

Acids and Bases: A Brief Review

Acids and Bases: A Brief Review Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution. Chapter 8 Acids and Bases Definitions Arrhenius definitions: An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

More information

Solute and Solvent 7.1. Solutions. Examples of Solutions. Nature of Solutes in Solutions. Learning Check. Solution. Solutions

Solute and Solvent 7.1. Solutions. Examples of Solutions. Nature of Solutes in Solutions. Learning Check. Solution. Solutions Chapter 7 s 7.1 s Solute and Solvent s are homogeneous mixtures of two or more substances. consist of a solvent and one or more solutes. 1 2 Nature of Solutes in s Examples of s Solutes spread evenly throughout

More information

TOPIC 11: Acids and Bases

TOPIC 11: Acids and Bases TOPIC 11: Acids and Bases ELECTROLYTES are substances that when dissolves in water conduct electricity. They conduct electricity because they will break apart into Ex. NaCl(s)! Na + (aq) + Cl - (aq), and

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water. Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the

More information

Ch Acids and Bases. Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water.

Ch Acids and Bases. Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Ch 15-16 Acids and Bases Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base.

More information

Topic 8 Acids and bases 6 hours

Topic 8 Acids and bases 6 hours Topic 8 Acids and bases 6 hours Hydronium ion (H3O + ) = more stable form of hydrogen ion (H + ) H + + H2O H3O + 8.1 Theories of acids and bases 2 hours 1. Arrhenius H-X / M-OH ACID a substance that dissociates

More information

Review of Basic Concepts, Molarity, Solutions, Dilutions and Beer s Law

Review of Basic Concepts, Molarity, Solutions, Dilutions and Beer s Law Review of Basic Concepts, Molarity, Solutions, Dilutions and Beer s Law Aqueous Solutions In Chemistry, many reactions take place in water. This is also true for Biological processes. Reactions that take

More information

Factors that Affect the Rate of Dissolving and Solubility

Factors that Affect the Rate of Dissolving and Solubility Dissolving Factors that Affect the Rate of Dissolving and Solubility One very important property of a solution is the rate of, or how quickly a solute dissolves in a solvent. When dissolving occurs, there

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects

13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,

More information

CHM1 Review for Exam 12

CHM1 Review for Exam 12 Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

14-Jul-12 Chemsheets A

14-Jul-12 Chemsheets A www.chemsheets.co.uk 14-Jul-12 Chemsheets A2 009 1 BRONSTED-LOWRY ACIDS & BASES Bronsted-Lowry acid = proton donor (H + = proton) Bronsted-Lowry base = proton acceptor (H + = proton) Bronsted-Lowry acid-base

More information

CHEM 102: Sample Test 5

CHEM 102: Sample Test 5 CHEM 102: Sample Test 5 CHAPTER 17 1. When H 2 SO 4 is dissolved in water, which species would be found in the water at equilibrium in measurable amounts? a. H 2 SO 4 b. H 3 SO + 4 c. HSO 4 d. SO 2 4 e.

More information

Chem 1B Dr. White 1. Chapter 14 Acids and Bases. 14.1 Nature of Acids and Bases. A. Acids. B. Bases

Chem 1B Dr. White 1. Chapter 14 Acids and Bases. 14.1 Nature of Acids and Bases. A. Acids. B. Bases Chem 1B Dr. White 1 Chapter 14 Acids and Bases 14.1 Nature of Acids and Bases A. Acids B. Bases Chem 1B Dr. White 2 C. Arrhenius Definition 1. acid 2. base 3. Acid-base reaction involving Arrhenius acids

More information

ph of strong acid and base

ph of strong acid and base ph of strong acid and base What does strong mean in terms of acids and bases? Solubility. Basically, if you say an acid or base is strong, then it dissociates 100% in water. These types of situations are

More information

Acids and Bases. Ch a pt e r Aqueous Equilibria: Chemistry 4th Edition McMurry/Fay. MOH(aq) M + (aq) + OH (aq)

Acids and Bases. Ch a pt e r Aqueous Equilibria: Chemistry 4th Edition McMurry/Fay. MOH(aq) M + (aq) + OH (aq) 15 Ch a pt e r Aqueous Equilibria: Acids and Bases Chemistry th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University AcidBase Concepts 01 Arrhenius Acid: A substance which dissociates

More information

4. Acid Base Chemistry

4. Acid Base Chemistry 4. Acid Base Chemistry 4.1. Terminology: 4.1.1. Bronsted / Lowry Acid: "An acid is a substance which can donate a hydrogen ion (H+) or a proton, while a base is a substance that accepts a proton. B + HA

More information

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11 SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water

Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water Problems: 16.2-16.86 16.1 ACIDS AND BASES: THE BRØNSTED-LOWRY MODEL PROPERTIES OF ACIDS & BASES Acids produce hydrogen ions,

More information

Chemical reactions. Classifications Reactions in solution Ionic equations

Chemical reactions. Classifications Reactions in solution Ionic equations Chemical reactions Classifications Reactions in solution Ionic equations Learning objectives Distinguish between chemical and physical change Write and balance chemical equations Describe concepts of oxidation

More information

Chemistry: The Central Science. Chapter 13: Properties of Solutions

Chemistry: The Central Science. Chapter 13: Properties of Solutions Chemistry: The Central Science Chapter 13: Properties of Solutions Homogeneous mixture is called a solution o Can be solid, liquid, or gas Each of the substances in a solution is called a component of

More information

Acids and Bases: A Brief Review, see also pp and pp Brønsted-Lowry Acids and Bases 143. The H + Ion in Water

Acids and Bases: A Brief Review, see also pp and pp Brønsted-Lowry Acids and Bases 143. The H + Ion in Water Quiz number 5 will be given in recitation next week, Feb 26Mar 2 on the first part of Chapter 16, to be covered in lectures this week. 16.1 Acids and Bases: A Brief Review 16.2 BronstedLowry Acids and

More information

1. In which reaction is water acting only as a proton acceptor? 1) H 2 SO 4 (aq) + H 2 O ( ) HSO 4 (aq) + H 3 O + (aq)

1. In which reaction is water acting only as a proton acceptor? 1) H 2 SO 4 (aq) + H 2 O ( ) HSO 4 (aq) + H 3 O + (aq) 1. In which reaction is water acting only as a proton acceptor? 1) H 2 SO 4 (aq) H 2 O ( ) HSO 4 (aq) H 3 O (aq) NH 3 (g) H 2 O ( ) NH 4 (aq) OH (aq) CH 3 COO (aq) H 2 O ( ) CH 3 COOH(aq) OH (aq) H 2 O

More information

CHEM 101/105 Aqueous Solutions (continued) Lect-07

CHEM 101/105 Aqueous Solutions (continued) Lect-07 CHEM 101/105 Aqueous Solutions (continued) Lect-07 aqueous acid/base reactions a. a little bit more about water Water is a polar substance. This means water is able to "solvate" ions rather well. Another

More information

From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116)

From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116) Chem 112 Solutions From the book (10, 12, 16, 18, 22, 24 52, 54, 56, 58, 62, 64, 66, 68, 74, 76, 78, 80, 82, 86, 88, 90, 92, 106 and 116) 1. Which of the following compounds are nonelectrolytes? A. NaF

More information

Topic 5. Acid and Bases

Topic 5. Acid and Bases Topic 5 5-1 Acid and Bases Acid and Bases 5-2 There are a number definitions for aicd and bases, depending on what is convenient to use in a particular situation: Arrhenius and Ostwald: Theory of electrolyte

More information

CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHEM 1212 Test II MULTIPLE CHOICE. Choose the one alternative that est completes the statement or answers the question. 1) At 1000 K, the equilirium constant for the reaction is K p = 0.013. 2NO (g) +

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Ch 14 Page 1 Chapter 14: Acids and Bases Properties of Acids Sour taste React with some metals Turns blue litmus paper red React with bases Some Common Acids HCl, hydrochloric acid H 2 SO 4, sulfuric acid

More information

Chemistry B11 Chapter 6 Solutions and Colloids

Chemistry B11 Chapter 6 Solutions and Colloids Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition

More information

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!! Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very

More information

Strong Acids (Know These) Announcements & Agenda (02/23/07) Strengths of Acids/Bases - Ionization. Last Time: Last Time: nsted-lowry Acids & Bases

Strong Acids (Know These) Announcements & Agenda (02/23/07) Strengths of Acids/Bases - Ionization. Last Time: Last Time: nsted-lowry Acids & Bases Announcements & Agenda (0//07) You should be reading Ch 0 this weekend! Quiz Today! Open Review Sessions @ pm on Wed. Low attendance this week Last Time: Bronsted nsted-lowry Acids & Bases acids donate

More information

Chemistry 212 EXAM 2 February 17, 2004 KEY

Chemistry 212 EXAM 2 February 17, 2004 KEY 1 Chemistry 212 EXAM 2 February 17, 2004 100_ (of 100) KEY Name Part 1: Multiple Choice. (1 point 4. The equilibrium constant for the each, circle only one answer, reaction 1. For the equilibrium that

More information

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19) Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H

More information

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens.

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens. Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens 2. Binary acids 3. Oxyacids 4. Carboxylic acid 5. Amines Name the following

More information

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present. Chapter 16 Acids and Bases Concept Check 16.1 Chemists in the seventeenth century discovered that the substance that gives red ants their irritating bite is an acid with the formula HCHO 2. They called

More information

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution:

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: 1. What are the different types of Intermolecular forces? Define the following terms:

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see

More information

Chapter 15: Acids, Bases, and Salts. 15.1: Acids and Bases

Chapter 15: Acids, Bases, and Salts. 15.1: Acids and Bases Chapter 15: Acids, Bases, and Salts Name: 15.1: Acids and Bases Define an Acid: Define a Base: Ex of an acid in aqueous solution: Ex of a base in aqueous solution: List some of the properties of acids

More information

CHEM 12 Acids and Bases 3/22/2016

CHEM 12 Acids and Bases 3/22/2016 Acids and Bases Name: Expected background knowledge from acids and bases introductory reading: Definitions (Arrhenius, BL) of an acid and base Definitions of conjugate acid and base pairs Properties of

More information

V. POLYPROTIC ACID IONIZATION. NOTICE: K a1 > K a2 > K a3 EQUILIBRIUM PART 2. A. Polyprotic acids are acids with two or more acidic hydrogens.

V. POLYPROTIC ACID IONIZATION. NOTICE: K a1 > K a2 > K a3 EQUILIBRIUM PART 2. A. Polyprotic acids are acids with two or more acidic hydrogens. EQUILIBRIUM PART 2 V. POLYPROTIC ACID IONIZATION A. Polyprotic acids are acids with two or more acidic hydrogens. monoprotic: HC 2 H 3 O 2, HCN, HNO 2, HNO 3 diprotic: H 2 SO 4, H 2 SO 3, H 2 S triprotic:

More information

Chapter 4: Solution Stoichiometry Cont. Aqueous Solutions

Chapter 4: Solution Stoichiometry Cont. Aqueous Solutions Chapter 4: Solution Stoichiometry Cont. 1 Aqueous Solutions Molarity (dilution calculations, solution stoichiometry); Solubility and Solubility Rules Molecular, Ionic and Net Ionic Equations Precipitation

More information

Chapter 9 Acids, Bases and Buffers in the Body Outline 9.1 Acids and Bases Definitions Acids

Chapter 9 Acids, Bases and Buffers in the Body Outline 9.1 Acids and Bases Definitions Acids Lecture Presentation Chapter 9 Acids, Bases and Buffers in the Body Julie Klare Fortis College Smyrna, GA Outline 9.1 Acids and Bases Definitions 9.2 Strong Acids and Bases 9.3 Chemical Equilibrium 9.4

More information

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression. 1/2 3/ 2

2. Write a balanced chemical equation which corresponds to the following equilibrium constant expression. 1/2 3/ 2 Practice Problems for Chem. 1B Exam 1 F2011 These represent the concepts covered for exam 1. There may be some additional net ionic equations from chem. 1A. This is not the exact exam! Sections 16.1-16.3

More information

NH 3 + H 2 O + OH - NH 4. Acid-Base Concepts -- Chapter 15 + H + Conjugate Acid-Base Pairs: - H + base. acid

NH 3 + H 2 O + OH - NH 4. Acid-Base Concepts -- Chapter 15 + H + Conjugate Acid-Base Pairs: - H + base. acid Acid-Base Concepts -- Chapter 15 1. Arrhenius Acid-Base Concept (last semester) Acid: H+ supplier Base: OH- supplier 2. Brønsted-Lowry Acid-Base Concept (more general) (a) Definition (H+ transfer) Acid:

More information

Acids and Bases HW PSI Chemistry

Acids and Bases HW PSI Chemistry Acids and Bases HW PSI Chemistry Name 1) According to the Arrhenius concept, an acid is a substance that. A) is capable of donating one or more H + B) causes an increase in the concentration of H + in

More information

Acids and Bases: Definitions. Brønsted-Lowry Acids and Bases. Brønsted-Lowry Acids and Bases CHEMISTRY THE CENTRAL SCIENCE

Acids and Bases: Definitions. Brønsted-Lowry Acids and Bases. Brønsted-Lowry Acids and Bases CHEMISTRY THE CENTRAL SCIENCE CHEMISTRY THE CENTRAL SCIENCE Professor Angelo R. Rossi Department of Chemistry Spring Semester Acids and Bases: Definitions Arrhenius Definition of Acids and Bases Acids are substances which increase

More information

Acid-Base Equilibrium

Acid-Base Equilibrium AcidBaseEquil 1 Acid-Base Equilibrium See AqueousIons in Chemistry 1110 online notes for review of acid-base fundamentals! Acid- Base Reaction in Aqueous Salt Solutions Recall that use [ ] to mean concentration

More information

16. What is the H 3 O + concentration of a solution that has an OH concentration of 1 10 3 M? 1) 1 10 4 M 3) 1 10 11 M

16. What is the H 3 O + concentration of a solution that has an OH concentration of 1 10 3 M? 1) 1 10 4 M 3) 1 10 11 M 1. If the [OH ] = 1 10 4 at 298 K for a given solution, the [H + ] of the solution is equal to 1) 1 10 14 3) 1 10 6 2) 1 10 10 4) 1 10 4 2. Based on Reference Table V, which is the strongest base? 1) NO

More information

Lecture 6: Lec4a Chemical Reactions in solutions

Lecture 6: Lec4a Chemical Reactions in solutions Lecture 6: Lec4a Chemical Reactions in solutions Zumdahl 6 th Ed, Chapter 4 Sections 1-6. 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Talk in. Arrhenius Acid- Base Definition and ph

Talk in. Arrhenius Acid- Base Definition and ph Talk in. Arrhenius Acid Base Definition and ph When we think of acids, we typically think of the Arrhenius definition. Svante Arrhenius (18591927) Arrhenius Acid = Any compound that increases the hydronium

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l)

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l) Acids, Bases & Redox 1 Practice Problems for Assignment 8 1. A substance which produces OH ions in solution is a definition for which of the following? (a) an Arrhenius acid (b) an Arrhenius base (c) a

More information

Equilibrium, Acids and Bases Unit Summary:

Equilibrium, Acids and Bases Unit Summary: Equilibrium, Acids and Bases Unit Summary: Prerequisite Skills and Knowledge Understand concepts of concentration, solubility, saturation point, pressure, density, viscosity, flow rate, and temperature

More information

Auto-ionization of Water

Auto-ionization of Water 2H 2 O H 3 O + + OH Hydronium ion hydroxide ion Q: But how often does this happen? This is the fundamental concept of all acid-base chemistry In pure water, how much of it is water and how much is ions?

More information

Chapter 15 Acids and Bases. Fu-Yin Hsu

Chapter 15 Acids and Bases. Fu-Yin Hsu Chapter 15 Acids and Bases Fu-Yin Hsu Stomach Acid and Heartburn The cells that line your stomach produce hydrochloric acid. To kill unwanted bacteria To help break down food To activate enzymes that break

More information

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory. Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF

More information

Acids and Bases. Basic Definitions & Concepts

Acids and Bases. Basic Definitions & Concepts Acids and Bases CHEM 102! T. Hughbanks! Basic Definitions & Concepts Most basic concepts are given clearly in your text - these notes will only list these as topics discussed, so there will be less detail.!

More information

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN - QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions

More information

Arrhenius Theory of Acids

Arrhenius Theory of Acids Acids and Bases Chapter 17: 5, 6, 7, 9, 11, 13, 17, 18, 43, 67a-d, 71 Chapter 18: 5-9, 26, 27a-e, 32 Arrhenius Theory of Acids an acid-base reaction involves the reaction of hydrogen ions and hydroxide

More information

Chapter 12: Solutions

Chapter 12: Solutions Chapter 12: Solutions Problems: 3, 5, 8, 12, 14, 16, 22, 29, 32, 41-58, 61-68, 71-74 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component present in smaller amount

More information

Chemistry 106 Fall 2006 Exam 3 Form A

Chemistry 106 Fall 2006 Exam 3 Form A 1. In some towns where steel mills and paper pulp mills are close together a brown deposit of FeS(s) forms from the reaction of H 2 S and particulate iron from the steel mill. The overall reaction is shown

More information

3 The Preparation of Buffers at Desired ph

3 The Preparation of Buffers at Desired ph 3 The Preparation of Buffers at Desired ph Objectives: To become familiar with operating a ph meter, and to learn how to use the Henderson-Hasselbalch equation to make buffer solutions at a desired ph

More information

Chapter 14. Mixtures

Chapter 14. Mixtures Chapter 14 Mixtures Warm Up What is the difference between a heterogeneous and homogeneous mixture? Give 1 example of a heterogeneous mixture and 1 example of a homogeneous mixture. Today s Agenda QOTD:

More information

Electrolytes, Acids and Bases

Electrolytes, Acids and Bases Chapter 15 Acid(Latin acidus-sour): sour taste; turns plant dye litmusred; dissolves metals producing H 2 gas. Substances that are neither acids nor bases were called neutral substances. Electrolytes,

More information