AP Physics B Free Response Solutions

Save this PDF as:

Size: px
Start display at page:

Transcription

1 AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible mass and volume. The mass of the anchor is 50 kg, and its volume is 6.5 x 0-3 m 3. The density of water is 000 kg/m 3. (a) On the dot below that represents the anchor, draw and label the forces (not components) that act on the anchor. (3 pts) T F b (b) Calculate the magnitude of the buoyant force acting on the anchor. If you need to draw anything other than what you have shown in part (a) to assist in your solution, use the space below. DO NOT add anything to the figure in part (a). ( pts) 3 Fb ρ flvob g N (c) Calculate the tension in the rope. If you need to draw anything other than what you have shown in part (a) to assist in your solution, use the space below. DO NOT add anything to the figure in part (a). ( pts) y F 0 T + Fb W T W F N b (d) The bottom of the boat is at a depth d below the surface of the water. Suppose the anchor is lifted back into the boat so that the bottom of the boat is at a new depth d below the surface of the water. How does d compare to d? ( pt) d < d d d _X d > d Justify your answer. ( pts) W There is no longer a buoyant force acting on the anchor, so its apparent weight increases. This increased weight in the boat causes it to sink a little further. Alternatively, the total weight of the boat and anchor is fixed, so the total amount of water displaced must stay constant. When the anchor is pulled out of the water, the boat must displace more water to compensate.

2 . (5 points) A 0 kg box on a horizontal frictionless surface is moving to the right at a speed of 4.0 m/s. The box hits and remains attached to one end of a spring of negligible mass whose other end is attached to a wall. As a result, the spring compresses a maximum distance of 0.50 m, and the box then oscillates back and forth. (a) i. The spring does work on the box from the moment the box first hits the spring to the moment the spring first reaches its maximum compression. Indicate whether the work done by the spring is positive, negative, or zero. ( pt) Positive _X Negative Zero Justify your answer. ( pt) The box s displacement is to the right, but the spring force is to the left. When the force and displacement are in opposite directions, the work is negative. Alternatively, the kinetic energy is decreasing, and work equals K f K i. ii. Calculate the magnitude of the work described in part i. ( pts) W K mv J (b) Calculate the spring constant of the spring. ( pts) W 60 k N/m x 0.50 W kx 80 (c) Calculate the magnitude of the maximum acceleration of the box. ( pts) F 640 F kx N a 3 m/s m 0 (d) Calculate the frequency of the oscillation of the box. ( pts) f k π m π 0 π Hz Correct units on parts (a)-ii, (b), (c), and (d): ( pt)

3 (e) Let x 0 be the point where the box makes contact with the spring, with positive x directed toward the right. i. On the axes below, sketch the kinetic energy K of the oscillating box as a function of position x for the range x 0.50 m to x m. ( pts) ii. On the axes below, sketch the acceleration a of the oscillating box as a function of position x for the range x 0.50 m to x m. ( pts) F kx a Acceleration is negative when x is positive and vice versa. m m

4 3. (0 points) A student is asked to experimentally determine the index of refraction of the semicircular block of transparent plastic shown in the figure above. The student aims a red laser beam of wavelength λ 63 nm at the center of the flat side of the block, as shown. The ray is refracted from air into the plastic and strikes the semicircular side of the block perpendicularly. The student uses a protractor to aim the laser at several different angles of incidence θ i between 0 and 90 and to measure the angles of refraction θ r. The student s data are given in the table below. θ i θ r sin θ i sin θ r (a) On the grid below, plot data that will allow the index of refraction of the plastic to be calculated from a straight line that represents the data. Clearly label the axes, including the scales. ( pts) sin θ i sin θ r

5 (b) On your graph, draw a straight line that best represents the data. Use the slope of the line to determine the index of refraction of the plastic. (4 pts) n θ θ sin i n sin r where n for air sinθi n sinθ r y mx + b So m (slope) n Calculate slope using points (0,0) and (0.7,.0): m The index of refraction of the plastic is.43. (c) The student now wants to confirm the result obtained in part (b) by using the critical angle for the plastic. Describe one experimental method the student can use to measure the critical angle. Indicate how the index of refraction can be determined from this measurement. (4 pts) The laser should be directed from the other side (plastic to air) at various angles until it no longer refracts, which is the critical angle. sin sin n θ c where n for air n θ c n n sinθ c

6 4. (0 points) A 0.30 kg ball is in a cup of negligible mass attached to a block of mass M that is on a table. A string passing over a light pulley connects the block to a.5 kg object, as shown above. The system is released from rest, the block accelerates to the right, and after moving 0.95 m the block collides with a bumper near the end of the table. The ball continues to move and lands on the floor at a position.4 m below and.8 m horizontally from where it leaves the cup. Assume all friction is negligible. (a) Calculate the speed of the ball just after the block hits the bumper and the ball leaves the cup. (3 pts) a v o v t x.8 0?? y y v t 0 t + y a at s x.8 v.6 m/s t 0.69 (b) Calculate the magnitude of the acceleration of the block as it moves across the table. ( pts) v v + a x 0 v.6 a 3. 6 m/s x 0.95 (c) Calculate the mass M of the block. (3 pts) F ( M + mball + mob )a mob g ( M + mball + mob )a mob g.5 0 M mball mob kg a 3.6 (d) If the mass of the ball is increased, the horizontal distance it travels before hitting the floor will decrease. Explain why this will happen. ( pts) The projectile motion part is independent of the mass of the ball. However, increasing the mass of the ball would slow the acceleration of the system after it is released from rest, resulting in the block hitting the bumper at a lower speed, causing the ball to leave the cup at a lower speed.

7 5. (0 points) In a certain process, 300 J of energy is added to an ideal gas by heating. During the same process, 00 J of work is done on the gas. (a) Determine the change in the internal energy of the gas. ( pt) From the first law of thermodynamics, U Q + W J (b) Indicate whether each of the following properties of the gas increases, decreases, or remains the same during the process. i. Volume ( pt) Increases _X Decreases Remains the same Justify your answer. ( pt) Since the work is positive and does work on the gas, it must compress it. ii. Temperature ( pt) _X Increases Decreases Remains the same Justify your answer. ( pt) W P V Since U is positive, T must also be positive since U is proportional to T. iii. Pressure ( pt) _X Increases Decreases Remains the same Justify your answer. ( pt) From the ideal gas law, both a decrease in volume and in increase in temperature cause an increase in pressure. PV nrt Suppose that in a different process 800 J of work is done on the ideal gas at a constant temperature. (c) Determine the change in internal energy of the gas during the process. ( pt) U 0 since it is an isothermal process ( T 0) (d) Which of the following correctly describes the energy transfer by heating, if any, between the gas and its surroundings? ( pt) Energy is transferred into the gas. There is no energy transfer by heating. Justify your answer. ( pt) _X Energy is transferred out of the gas. Since U 0, the first law of thermodynamics becomes Q W. Since work is done on the gas, W is positive, so Q must be negative, meaning that energy is transferred out of the gas.

8 6. (5 points) Two long, straight horizontal wires are near each other and parallel, with one directly above the other as shown in the figure. Wire X is fixed in place and connected to a battery (not shown) so that it carries a current of 65 A. Wire Y, which is part of a second circuit, is free to move vertically and is suspended at rest by the magnetic force between the wires. The mass per length of wire Y is 5.6 x 0-3 kg/m. Neglect effects from the parts of the circuits that are not shown. (a) Calculate the magnitude of the magnetic field produced by wire X at the position of wire Y. ( pts) B µ 0 I π r T (b) i. Calculate the magnitude of the current in wire Y. ( pts) y 3 mg F 0 ILB mg I A 4 LB 5. 0 ii. Indicate the direction of the current in wire Y. ( pt) To the left _X To the right Neither left nor right, since there is no current Two parallel currents attract when they are in the same direction. (c) Now wire Y is moved to a new position that is closer to wire X, but wire Y is still below wire X and is still carrying the same current as determined in part (b). Wire Y is released from rest. Describe the initial motion of wire Y. Justify your answer. (3 pts) Wire Y will accelerate upward. The downward gravitational force on it does not change, but the upward magnetic force due to the magnetic field of the current in Wire X is stronger, so the net force, and thus the acceleration, is upward. (d) Suppose wire Y is moved to a position 0.05 m above wire X. What changes in current, if any, must occur to maintain equilibrium? ( pt) The magnitude of the current must remain the same since it is the same distance from Wire X, but the direction of the current must be reversed, since two parallel currents repel when they are in opposite directions.

9 (e) With wire Y still above wire X, the circuit connected to wire Y is removed. Wire Y, which is. m long, is then moved vertically up and away from wire X at a constant speed of 3.0 m/s. i. Calculate the magnitude of the induced emf in wire Y when the wires are m apart. ( pts) B µ 0 I π r T BLv 4 4 ε V ii. Indicate which end of wire Y is at a higher electric potential. (3 pts) The left end _X The right end Neither end, since they are at the same electric potential Justify your answer. Since the wire is disconnected from its circuit, it now simply acts as a conductor. Above Wire X, the magnetic field is directed out of the page, as determined by the first right-hand rule. Since Wire Y is moving upward in this magnetic field, the right side accumulates a net positive charge and the left side accumulates a net negative charge, as determined by the second right-hand rule. This means that the right end of the wire is at higher electric potential than the left end. Correct units on parts (a), (b)-i, and (e)-i: ( pt)

10 7. (0 points) The energy-level diagram for an isolated hypothetical atom is shown above. (a) A collection of such atoms with electrons in the n 3 state undergo transitions in which the atoms only emit photons, and the electrons eventually end in the n state. On the diagram above, draw arrows to indicate all possible transitions, given the starting and ending states for the electrons. ( pts) (b) Calculate the longest wavelength of photons that the atom can emit during the transitions identified in part (a). (3 pts) The longest wavelength corresponds to the transition with the lowest energy change, which is.5 ev as it goes from n 3 to n. hc hc 40 ev nm E λ 55 nm λ E.5 ev (c) What is the ionization energy of an atom in the ground state? ( pt) The ionization energy required to go from n to n is ev. (d) Photons of energy.0 ev are incident on the atom. What effect can this have on an electron in the n state? Justify your answer. ( pts) This will have no effect because there is no energy level that is exactly.0 ev above the ground state. (e) Photons of energy 4.0 ev are incident on the atom. What effect can this have on an electron in the n state? Justify your answer. ( pts) Since this is ev more than the ionization energy, an electron will be ejected with ev of kinetic energy.

Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

College Physics 140 Chapter 4: Force and Newton s Laws of Motion

College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces

Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

Forces & Newton s Laws. Teacher Packet

AP * PHYSICS B Forces & Newton s Laws eacher Packet AP* is a trademark of the College Entrance Examination Board. he College Entrance Examination Board was not involved in the production of this material.

Glossary of Physics Formulas

Glossary of Physics Formulas 1. Kinematic relations in 1-D at constant velocity Mechanics, velocity, position x - x o = v (t -t o ) or x - x o = v t x o is the position at time = t o (this is the beginning

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 1. A force accelerates a body of mass M. The same force applied to a second body produces three times the acceleration. What is the mass of the

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

P113 University of Rochester NAME S. Manly Fall 2013

Final Exam (December 19, 2013) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:

Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion.

Practice Test: 29 marks (37 minutes) Additional Problem: 31 marks (45 minutes) 1. A transverse wave travels from left to right. The diagram on the right shows how, at a particular instant of time, the

7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

PHYS101 The Laws of Motion Spring 2014

The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

Calculate the centripetal acceleration of the boot just before impact

(ii) alculate the centripetal acceleration of the boot just before impact....... (iii) iscuss briefly the radial force on the knee joint before impact and during the impact................. (4) (Total

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

PH202-5D Final Comprehensive Exam (August 10, 2007)

NAME SCORE PH202-5D Final Comprehensive Exam (August 0, 2007) You may not open the textbook nor notebook. A letter size information may be used. A calculator may be used. However, mathematics or physics

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

AP Physics Scoring Guidelines

AP Physics 1 2015 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

SAT Subject Physics Formula Reference

This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are not given on the test.) Each formula row contains

Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements)

Test - A2 Physics Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

3) a 1 = a 2. 5) a 1 = 2 a 2

ConcepTest Pulley Two masses are connected by a light rope as shown below. What is the 1) a 1 = 1/3 a 2 2) a 1 = ½ a 2 relationship between the magnitude of 3) a 1 = a 2 the acceleration of m 1 to that

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics 1. 1974-6 (KT & TD) One-tenth of a mole of an ideal monatomic gas undergoes a process described by the straight-line path AB shown in the p-v

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

F mg (10.1 kg)(9.80 m/s ) m

Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

Forces: Equilibrium Examples

Physics 101: Lecture 02 Forces: Equilibrium Examples oday s lecture will cover extbook Sections 2.1-2.7 Phys 101 URL: http://courses.physics.illinois.edu/phys101/ Read the course web page! Physics 101:

2015 Pearson Education, Inc. Section 24.5 Magnetic Fields Exert Forces on Moving Charges

Section 24.5 Magnetic Fields Exert Forces on Moving Charges Magnetic Fields Sources of Magnetic Fields You already know that a moving charge is the creator of a magnetic field. Effects of Magnetic Fields

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

PHYS 100 Introductory Physics Sample Exam 2

PHYS 00 Introductory Physics Sample Exam Formulas: Acceleration due to Gravity = 0 m/s Weight = Mass x Acceleration due to Gravity Work = Force x Distance Gravitational Potential Energy = Weight x Height

physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

Properties of waves, including light & sound

3 Properties of waves, including light & sound 3.1 general wave properties 3.1 2 3.1 General Wave Properties 3.1.1 Describing wave motion 3.1.2 Wave terms 3.1.3 Longitudinal and transverse waves Learning

Work. Work = Force distance (the force must be parallel to movement) OR Work = (Force)(cos θ)(distance)

Work Work = Force distance (the force must be parallel to movement) OR Work = (Force)(cos θ)(distance) When you are determining the force parallel to the movement you can do this manually and keep track

Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

Mid-Year Review (2) (3) (4) (1) 1 m/s (3) 0.5 m/s (2) 2 m/s (4) 0 m/s

1. A blinking light of constant period is situated on a lab cart. Which diagram best represents a photograph of the light as the cart moves with constant velocity? (1) 6. The graph below represents the

Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

S15--AP Phys Q3 SHO-Sound PRACTICE

Name: Class: Date: ID: A S5--AP Phys Q3 SHO-Sound PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question.. If you are on a train, how will the pitch of the

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

SOLUTIONS TO PROBLEM SET 4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.

Physics 200A FINALS Shankar 180mins December 13, 2005 Formulas and figures at the end. Do problems in 4 books as indicated

1 Physics 200A FINALS Shankar 180mins December 13, 2005 Formulas and figures at the end. Do problems in 4 books as indicated I. Book I A camper is trying to boil water. The 55 g aluminum pan has specific

Nicholas J. Giordano. Chapter 12 Waves

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 12 Waves Wave Motion A wave is a moving disturbance that transports energy from one place to another without transporting matter Questions

General Physics I Can Statements

General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

Lesson 04: Newton s laws of motion

www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.

Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E.

Chapter 6: Energy and Oscillations 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. kwh 2. Work is not being done on an object unless the A. net force on the object

PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

MECHANICS PROJECTILE MOTION

1 MECHANICS PROJECTILE MOTION When an object is in free fall, the object is at an acceleration of 10m/s down Displacement is the straight line from start to finish in that direction Projectile: An object

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

AP Physics B 2009 Scoring Guidelines

AP Physics B 009 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900,

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

Physics Exam 1 Review - Chapter 1,2

Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

Magnetism Conceptual Questions. Name: Class: Date:

Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must

PHYSICS 111 HOMEWORK#6 SOLUTION. February 22, 2013

PHYSICS 111 HOMEWORK#6 SOLUTION February 22, 2013 0.1 A block of mass m = 3.20 kg is pushed a distance d = 4.60 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

Chapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

PHYS-2020: General Physics II Course Lecture Notes Section VII

PHYS-2020: General Physics II Course Lecture Notes Section VII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

Simple Harmonic Motion

Simple Harmonic Motion Restating Hooke s law The equation of motion Phase, frequency, amplitude Simple Pendulum Damped and Forced oscillations Resonance Harmonic Motion A lot of motion in the real world

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A container explodes and breaks into three fragments that fly off 120 apart from each

Newton s Second Law. First of only two important equations in this chapter: r =

Newton s First Law Unless they are acted upon by an external force, objects at rest will stay at rest, and object in motion will stay in motion with a constant velocity. Only applies in inertial reference