# 226 Chapter 15: OSCILLATIONS

Size: px
Start display at page:

Transcription

1 Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion must be simple harmonic if: A. the amplitude is small B. the potential energy is equal to the kinetic energy C. the motion is along the arc of a circle D. the acceleration varies sinusoidally with time E. the derivative, du/dx, of the potential energy is negative 3. In simple harmonic motion, the magnitude of the acceleration is: A. constant B. proportional to the displacement C. inversely proportional to the displacement D. greatest when the velocity is greatest E. never greater than g 4. A particle is in simple harmonic motion with period T. At time t = 0 it is at the equilibrium point. Of the following times, at which time is it furthest from the equilibrium point? A. 0.5T B. 0.7T C. T D. 1.4T E. 1.5T 5. A particle moves back and forth along the x axis from x = x m to x =+x m, in simple harmonic motion with period T. At time t = 0 it is at x =+x m. When t =0.75T : A. it is at x = 0 and is traveling toward x =+x m B. it is at x = 0 and is traveling toward x = x m C. it at x =+x m and is at rest D. it is between x = 0 and x =+x m and is traveling toward x = x m E. it is between x = 0 and x = x m and is traveling toward x = x m 226 Chapter 15: OSCILLATIONS

2 6. A particle oscillating in simple harmonic motion is: A. never in equilibrium because it is in motion B. never in equilibrium because there is always a force C. in equilibrium at the ends of its path because its velocity is zero there D. in equilibrium at the center of its path because the acceleration is zero there E. in equilibrium at the ends of its path because the acceleration is zero there 7. An object is undergoing simple harmonic motion. Throughout a complete cycle it: A. has constant speed B. has varying amplitude C. has varying period D. has varying acceleration E. has varying mass 8. When a body executes simple harmonic motion, its acceleration at the ends of its path must be: A. zero B. less than g C. more than g D. suddenly changing in sign E. none of these 9. A particle is in simple harmonic motion with period T. At time t = 0 it is halfway between the equilibrium point and an end point of its motion, traveling toward the end point. The next time it is at the same place is: A. t = T B. t = T/2 C. t = T/4 D. t = T/8 E. none of the above 10. An object attached to one end of a spring makes 20 complete oscillations in 10 s. Its period is: A. 2 Hz B. 10 s C. 0.5Hz D. 2 s E s Chapter 15: OSCILLATIONS 227

3 11. An object attached to one end of a spring makes 20 vibrations in 10 s. Its frequency is: A. 2 Hz B. 10 s C Hz D. 2 s E s 12. An object attached to one end of a spring makes 20 vibrations in 10 s. Its angular frequency is: A rad/s B rad/s C. 2.0 rad/s D. 6.3 rad/s E rad/s 13. Frequency f and angular frequency ω are related by A. f = πω B. f =2πω C. f = ω/π D. f = ω/2π E. f =2ω/π 14. A block attached to a spring oscillates in simple harmonic motion along the x axis. The limits of its motion are x = 10 cm and x = 50 cm and it goes from one of these extremes to the other in 0.25 s. Its amplitude and frequency are: A. 40 cm, 2 Hz B. 20 cm, 4 Hz C. 40 cm, 2 Hz D. 25 cm, 4 Hz E. 20 cm, 2 Hz 15. A weight suspended from an ideal spring oscillates up and down with a period T. If the amplitude of the oscillation is doubled, the period will be: A. T D. 1.5T B. 2T C. T/2 E. 4T 228 Chapter 15: OSCILLATIONS

4 16. In simple harmonic motion, the magnitude of the acceleration is greatest when: A. the displacement is zero B. the displacement is maximum C. the speed is maximum D. the force is zero E. the speed is between zero and its maximum 17. In simple harmonic motion, the displacement is maximum when the: A. acceleration is zero B. velocity is maximum C. velocity is zero D. kinetic energy is maximum E. momentum is maximum 18. In simple harmonic motion: A. the acceleration is greatest at the maximum displacement B. the velocity is greatest at the maximum displacement C. the period depends on the amplitude D. the acceleration is constant E. the acceleration is greatest at zero displacement 19. The amplitude and phase constant of an oscillator are determined by: A. the frequency B. the angular frequency C. the initial displacement alone D. the initial velocity alone E. both the initial displacement and velocity 20. Two identical undamped oscillators have the same amplitude of oscillation only if: A. they are started with the same displacement x 0 B. they are started with the same velocity v 0 C. they are started with the same phase D. E. they are started so the combination ω 2 x v0 2 is the same they are started so the combination x ω2 v0 2 is the same 21. The amplitude of any oscillator can be doubled by: A. doubling only the initial displacement B. doubling only the initial speed C. doubling the initial displacement and halving the initial speed D. doubling the initial speed and halving the initial displacement E. doubling both the initial displacement and the initial speed Chapter 15: OSCILLATIONS 229

5 22. It is impossible for two particles, each executing simple harmonic motion, to remain in phase with each other if they have different: A. masses B. periods C. amplitudes D. spring constants E. kinetic energies 23. The acceleration of a body executing simple harmonic motion leads the velocity by what phase? A. 0 B. π/8 rad C. π/4 rad D. π/2 rad E. π rad 24. The displacement of an object oscillating on a spring is given by x(t) =x m cos(ωt + φ). If the initial displacement is zero and the initial velocity is in the negative x direction, then the phase constant φ is: A. 0 B. π/2 rad C. π rad D. 3π/2 rad E. 2π rad 25. The displacement of an object oscillating on a spring is given by x(t) =x m cos(ωt + φ). If the object is initially displaced in the negative x direction and given a negative initial velocity, then the phase constant φ is between: A. 0 and π/2 rad B. π/2 and π rad C. π and 3π/2 rad D. 3π/2 and 2π rad E. none of the above (φ is exactly 0, π/2, π, or3π/2 rad) 26. A certain spring elongates 9.0 mm when it is suspended vertically and a block of mass M is hung on it. The natural angular frequency of this block-spring system: A. is rad/s B. is 33 rad/s C. is 200 rad/s D. is 1140 rad/s E. cannot be computed unless the value of M is given 230 Chapter 15: OSCILLATIONS

6 An object of mass m, oscillating on the end of a spring with spring constant k, has amplitude A. Its maximum speed is: A. A k/m B. A 2 k/m C. A m/k D. Am/k E. A 2 m/k 28. A 0.20-kg object attached to a spring whose spring constant is 500 N/m executes simple harmonic motion. If its maximum speed is 5.0m/s, the amplitude of its oscillation is: A m B m C m D. 25 m E. 250 m 29. A simple harmonic oscillator consists of an particle of mass m and an ideal spring with spring constant k. Particle oscillates as shown in (i) with period T. If the spring is cut in half and used with the same particle, as shown in (ii), the period will be: (i)..... (ii) m. m A. 2T B. 2T C. T/ 2 D. T E. T/2 30. A particle moves in simple harmonic motion according to x = 2 cos(50t), where x is in meters and t is in seconds. Its maximum velocity in m/s is: A. 100 sin(50t) B. 100 cos(50t) C. 100 D. 200 E. none of these Chapter 15: OSCILLATIONS 231

7 31. A 3-kg block, attached to a spring, executes simple harmonic motion according to x = 2 cos(50t) where x is in meters and t is in seconds. The spring constant of the spring is: A. 1 N/m B. 100 N/m C. 150 N/m D N/m E. none of these 32. Let U be the potential energy (with the zero at zero displacement) and K be the kinetic energy of a simple harmonic oscillator. U avg and K avg are the average values over a cycle. Then: A. K avg >U avg B. K avg <U avg C. K avg = U avg D. K = 0 when U =0 E. K + U =0 33. A particle is in simple harmonic motion along the x axis. The amplitude of the motion is x m. At one point in its motion its kinetic energy is K = 5 J and its potential energy (measured with U =0atx =0)isU = 3 J. When it is at x = x m, the kinetic and potential energies are: A. K = 5 J and U =3J B. K = 5 J and U = 3J C. K = 8 J and U =0 D. K = 0 and U =8J E. K = 0 and U = 8J 34. A particle is in simple harmonic motion along the x axis. The amplitude of the motion is x m. When it is at x = x 1, its kinetic energy is K = 5 J and its potential energy (measured with U =0atx =0)isU = 3 J. When it is at x = 1 2 x 1, the kinetic and potential energies are: A. K = 5 J and U =3J B. K = 5 J and U = 3J C. K = 8 J and U =0 D. K = 0 and U =8J E. K = 0 and U = 8J 35. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200 N/m. If the system has an energy of 6.0 J, then the amplitude of the oscillation is: A m B m C m D. 4.9m E. 6.9m 232 Chapter 15: OSCILLATIONS

8 36. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200 N/m. If the system has an energy of 6.0 J, then the maximum speed of the block is: A m/s B m/s C m/s D. 4.9m/s E. 6.9m/s 37. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200 N/m. If the oscillation is started by elongating the spring 0.15 m and giving the block a speed of 3.0m/s, then the maximum speed of the block is: A m/s B m/s C. 3.7m/s D. 5.2m/s E. 13 m/s 38. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200 N/m. If the oscillation is started by elongating the spring 0.15 m and giving the block a speed of 3.0m/s, then the amplitude of the oscillation is: A m B m C. 3.7m D. 5.2m E. 13 m 39. An object on the end of a spring is set into oscillation by giving it an initial velocity while it is at its equilibrium position. In the first trial the initial velocity is v 0 and in the second it is 4v 0. In the second trial: A. the amplitude is half as great and the maximum acceleration is twice as great B. the amplitude is twice as great and the maximum acceleration is half as great C. both the amplitude and the maximum acceleration are twice as great D. both the amplitude and the maximum acceleration are four times as great E. the amplitude is four times as great and the maximum acceleration is twice as great 40. A block attached to a spring undergoes simple harmonic motion on a horizontal frictionless surface. Its total energy is 50 J. When the displacement is half the amplitude, the kinetic energy is: A. zero B. 12.5J C. 25 J D. 37.5J E. 50 J Chapter 15: OSCILLATIONS 233

9 41. A mass-spring system is oscillating with amplitude A. The kinetic energy will equal the potential energy only when the displacement is: A. zero B. ±A/4 C. ±A/ 2 D. ±A/2 E. anywhere between A and +A 42. If the length of a simple pendulum is doubled, its period will: A. halve B. be greater by a factor of 2 C. be less by a factor of 2 D. double E. remain the same 43. The period of a simple pendulum is 1 s on Earth. When brought to a planet where g is one-tenth that on Earth, its period becomes: A. 1 s B. 1/ 10 s C. 1/10 s D. 10 s E. 10 s 44. The amplitude of oscillation of a simple pendulum is increased from 1 to 4. Its maximum acceleration changes by a factor of: A. 1/4 B. 1/2 C. 2 D. 4 E A simple pendulum of length L and mass M has frequency f. To increase its frequency to 2f: A. increase its length to 4L B. increase its length to 2L C. decrease its length to L/2 D. decrease its length to L/4 E. decrease its mass to <M/4 234 Chapter 15: OSCILLATIONS

10 46. A simple pendulum consists of a small ball tied to a string and set in oscillation. As the pendulum swings the tension force of the string is: A. constant B. a sinusoidal function of time C. the square of a sinusoidal function of time D. the reciprocal of a sinusoidal function of time E. none of the above 47. A simple pendulum has length L and period T. As it passes through its equilibrium position, the string is suddenly clamped at its midpoint. The period then becomes: A. 2T B. T C. T/2 D. T/4 E. none of these 48. A simple pendulum is suspended from the ceiling of an elevator. The elevator is accelerating upwards with acceleration a. The period of this pendulum, in terms of its length L, g, and a is: A. 2π L/g B. 2π L/(g + a) C. 2π L/(g a) D. 2π L/a E. (1/2π) g/l 49. Three physical pendulums, with masses m 1, m 2 =2m 1, and m 3 =3m 1, have the same shape and size and are suspended at the same point. Rank them according to their periods, from shortest to longest. A. 1, 2, 3 B. 3, 2, 1 C. 2, 3, 1 D. 2, 1, 3 E. All the same Chapter 15: OSCILLATIONS 235

11 50. Five hoops are each pivoted at a point on the rim and allowed to swing as physical pendulums. The masses and radii are hoop 1: M = 150 g and R =50cm hoop 2: M = 200 g and R =40cm hoop 3: M = 250 g and R =30cm hoop 4: M = 300 g and R =20cm hoop 5: M = 350 g and R =10cm Order the hoops according to the periods of their motions, smallest to largest. A. 1, 2, 3, 4, 5 B. 5, 4, 3, 2, 1 C. 1, 2, 3, 5, 4 D. 1, 2, 5, 4, 3 E. 5, 4, 1, 2, A meter stick is pivoted at a point a distance a from its center and swings as a physical pendulum. Of the following values for a, which results in the shortest period of oscillation? A. a =0.1m B. a =0.2m C. a =0.3m D. a =0.4m E. a =0.5m 52. The rotational inertia of a uniform thin rod about its end is ML 2 /3, where M is the mass and L is the length. Such a rod is hung vertically from one end and set into small amplitude oscillation. If L =1.0 m this rod will have the same period as a simple pendulum of length: A. 33 cm B. 50 cm C. 67 cm D. 100 cm E. 150 cm 53. Two uniform spheres are pivoted on horizontal axes that are tangent to their surfaces. The one with the longer period of oscillation is the one with: A. the larger mass B. the smaller mass C. the larger rotational inertia D. the smaller rotational inertia E. the larger radius 236 Chapter 15: OSCILLATIONS

12 54. The x and y coordinates of a point each execute simple harmonic motion. The result might be a circular orbit if: A. the amplitudes are the same but the frequencies are different B. the amplitudes and frequencies are both the same C. the amplitudes and frequencies are both different D. the phase constants are the same but the amplitudes are different E. the amplitudes and the phase constants are both different 55. The x and y coordinates of a point each execute simple harmonic motion. The frequencies are the same but the amplitudes are different. The resulting orbit might be: A. an ellipse B. a circle C. a parabola D. a hyperbola E. a square 56. For an oscillator subjected to a damping force proportional to its velocity: A. the displacement is a sinusoidal function of time. B. the velocity is a sinusoidal function of time. C. the frequency is a decreasing function of time. D. the mechanical energy is constant. E. none of the above is true. 57. Five particles undergo damped harmonic motion. Values for the spring constant k, the damping constant b, and the mass m are given below. Which leads to the smallest rate of loss of mechanical energy? A. k = 100 N/m, m =50g,b =8g/s B. k = 150 N/m, m =50g,b =5g/s C. k = 150 N/m, m =10g,b =8g/s D. k = 200 N/m, m =8g,b =6g/s E. k = 100 N/m, m =2g,b =4g/s 58. A sinusoidal force with a given amplitude is applied to an oscillator. To maintain the largest amplitude oscillation the frequency of the applied force should be: A. half the natural frequency of the oscillator B. the same as the natural frequency of the oscillator C. twice the natural frequency of the oscillator D. unrelated to the natural frequency of the oscillator E. determined from the maximum speed desired Chapter 15: OSCILLATIONS 237

13 59. A sinusoidal force with a given amplitude is applied to an oscillator. At resonance the amplitude of the oscillation is limited by: A. the damping force B. the initial amplitude C. the initial velocity D. the force of gravity E. none of the above 60. An oscillator is subjected to a damping force that is proportional to its velocity. A sinusoidal force is applied to it. After a long time: A. its amplitude is an increasing function of time B. its amplitude is a decreasing function of time C. its amplitude is constant D. its amplitude is a decreasing function of time only if the damping constant is large E. its amplitude increases over some portions of a cycle and decreases over other portions 61. A block on a spring is subjected to a damping force that is proportional to its velocity and to an applied sinusoidal force. The energy dissipated by damping is supplied by: A. the potential energy of the spring B. the kinetic energy of the mass C. gravity D. friction E. the applied force 62. The table below gives the values of the spring constant k, damping constant b, and mass m for a particle in damped harmonic motion. Which of these takes the longest time for its mechanical energy to decrease to one-fourth of its initial value? k b m A k 0 b 0 m 0 B 3k 0 2b 0 m 0 C k 0 /2 6b 0 2m 0 D 4k 0 b 0 2m 0 E k 0 b 0 10m Chapter 15: OSCILLATIONS

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Physics 231 Lecture 15

Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Candidate Number. General Certificate of Education Advanced Level Examination June 2012

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

### Candidate Number. General Certificate of Education Advanced Level Examination June 2014

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

### Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### Oscillations. Vern Lindberg. June 10, 2010

Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

### Candidate Number. General Certificate of Education Advanced Level Examination June 2010

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### 3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

### FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

### Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

### Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

### Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

### EXPERIMENT 2 Measurement of g: Use of a simple pendulum

EXPERIMENT 2 Measurement of g: Use of a simple pendulum OBJECTIVE: To measure the acceleration due to gravity using a simple pendulum. Textbook reference: pp10-15 INTRODUCTION: Many things in nature wiggle

### STUDY PACKAGE. Available Online : www.mathsbysuhag.com

fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth

### Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m.

PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m., only The answers to all questions in this examination

### PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

### Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

### Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Chapter 15, example problems:

Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### Fundamental Mechanics: Supplementary Exercises

Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### Copyright 2011 Casa Software Ltd. www.casaxps.com

Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

### Problem Set #13 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device