Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA

Size: px
Start display at page:

Download "Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA"

Transcription

1 CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the physicists. In mny engineering opertions, we need to invoke the concept of mtrix, nd sometimes, it is more of routine work wherein the physicl quntities re expressed by liner opertors on vector spce. Very often, there is quite close correspondence between experimentl vlues with those clculted by the use of this forml or rther bstrct method, which nturlly gives lot of credibility to mtrix formlism. Hence, cler concept of mtrix lgebr should be given in the first chpter of this book. In quntum mechnics nd in mny other modern brnches of physics, we hve to operte through mtrix, nd the mtrix representtion is more often necessry, i.e., how Heisenberg Mtrix formlism cme into existence. 1.1 MATRIX ALGEBRA The study of mtrices is mostly motivted by the necessity to solve system of liner simultneous equtions of the form: 11 x x n x n = b 1 21 x x n x n = b 2 n1 x 1 + n2 x nn x n = b n (1.1) where, x 1, x 2,.... x n re the unknowns. The eqution (1.1) cn be esily expressed in the mtrix form s: Ax = b (1.2) where, A is squre mtrix of dimension (n n). Here, x nd b re vectors of dimension (n 1). All these quntities re given by the following reltions: é n éx1 éb1 A= n, x = x 2, b = b ën1 n2... nn ëx n ëb n From the bove mtrices, we notice tht mtrix is simply n rry of elements, clled mtrix elements in the usul prlnce in the field of physics nd engineering. The bove

2 2 Mthemticl Physics for Engineers mtrix A cn lso be denoted s [A]. There re different elements in different positions of the rows nd columns, e.g., n element locted t the i th row nd j th column of the mtrix A is simply denoted by ij. If ij = 0 for ll i nd j, then A is clled null mtrix. The mtrix is lso denoted by [ ij ]. The question of multipliction of two mtrices A nd x is implicit in the bove equtions. The dot product of the i th row of A with the vector x is equl to b i giving rise to i th eqution in (1.1), s lso shown little lter in this section Row nd Column Vectors A mtrix of dimension (1 n) is clled row vector, wheres mtrix of dimension (m 1) is clled column vector. Let us tke some exmples s: 1. c = [1 1 3] is (1 3) row vector, nd é d = is (4 1) column vector. 4 ë MATRIX OPERATIONS After properly defining the bsics of mtrix lgebr, it is useful to describe importnt opertions for mtrices s below: Addition nd Subtrction Let us consider two mtrices A nd B with the dimensions of both (m n). Then, the sum C = A + B is defined s: c ij = ij + b ij (1.3) It mens tht the (ij) th component of C cn be obtined by dding the (ij) th component of A to the (ij) th component of B. é 3 2 é1 2 + ë 2 4 ë4 0 = é 4 0 (1.4) ë2 4 Similrly, the subtrction of the mtrices cn be defined nd explined. The following lws re lso vlid for ddition of the mtrices of the sme order in two different cses s: () For Commuttive Cse: A + B = B + A (b) For Associtive Cse: (A + B) + C = A + (B + C) Multipliction by Sclr The multipliction of mtrix A by sclr c cn be defined s: ca = [c ij ] (1.5) As n exmple, let us write the following mtrix s: é ë = 3 é ë 5 7 (1.6)

3 1.2.3 Mtrix Multipliction Mtrix Algebr 3 Let us tke (m n) mtrix A nd nother mtrix B of dimension (n p). The product of these two mtrices results in mtrix C of dimension (m p), s shown below: A B = C (1.7) (m n)(n p) (m p) The (ij) th component of C is obtined by tking the dot product s: c ij = (i th row of A). ( j th column of B) (1.8) As n exmple, let us show tht: é1 4 é ë = é (1.9) ë 0 3 ë 10 7 It hs to be noted tht AB ¹ BA. Actully, BA my not even be defined, since the number of columns of B my not equl the number of rows of A. The commuttive lw of multipliction is not vlid (in generl) for mtrix product, i.e., AB ¹ BA. But, the ssocitive lw of multipliction is vlid for the mtrix product, i.e., A(BC) = (AB)C Differentition nd Integrtion It is known tht the components of mtrix do not hve to be sclrs. They my lso be functions. As n exmple, let us tke: A= é 2 x + y x 2xy (1.10) ë4 + x y In such sitution, the mtrix cn be differentited nd integrted. The derivtive or the integrl of given mtrix is simply the derivtive or the integrl of ech component of the mtrix. Therefore, we cn write these mtrices s: d édij () x A( x) = (1.11) dx ë dx ò Adxdy = é ëò ij dxdy (1.12) If A be the mtrix of constnts hving dimension (n n) nd x = [x 1, x 2,.... x n ] be column vector of n vribles, then we cn cite n interesting cse by using eqution (1.12), whereby the derivtive of Ax with respect to the vrible x p is given s: d dx p (A x) = p (1.13) Here, p is the p th column of the mtrix A, which cn be esily verified by writing down the whole eqution Ax in the mtrix form. 1.3 PROPERTIES For n rbitrry mtrix A, it is quite importnt to know some bsics of their properties like trnsposition, complex conjugtion, etc. Now, some of these importnt properties of the rbitrry mtrices will be discussed here.

4 4 Mthemticl Physics for Engineers Trnsposition If the mtrix A = [ ij ], then the trnspose of n rbitrry mtrix A, usully denoted by A T, is defined by A T = [ ji ]. Therefore, the rows of A becomes the columns of A T. Let us tke n exmple s: é A = then, A T é = 0 5 ë ë 3 2 Generlly speking, if A is of dimension (m n), then A T hs to be of dimension (n m), i.e., the trnsposition is chieved by interchnging corresponding rows nd columns of A. The trnspose of product is defined s the product of the trnsposes in reverse order s: (ABC) T = C T B T A T (1.14) Complex Conjugte Mtrix The complex conjugte of n rbitrry mtrix A is formulted by tking the complex conjugte of ech element. Let us tke n exmple s: A* = ij * for ll i nd j. é3 + 2i 4 6i * é3 2i 4 + 6i A=,A = ë 4 3i ë 4 3i If A* = A, then A is rel mtrix, which is importnt in physicl situtions. In this ctegory, there is nother importnt mtrix clled Hermitin conjugte, denoted by Ay, which is obtined by tking the complex conjugte of the mtrix, nd then the trnspose of this complex conjugte mtrix, which is useful in certin pplictions. 1.4 SQUARE MATRICES The squre mtrix is so simple tht it is not discussed here with ny detils, since we mostly come cross such mtrices in the engineering problems. Any mtrix whose number of columns equls the number of rows is clled squre mtrix, e.g., simple (2 2) mtrix or (4 4) mtrix commonly occurring routinely in our problems. Certin importnt squre mtrices re described below Digonl Mtrix After understnding simple squre mtrix, it is esy to grsp digonl mtrix, which is ctully squre mtrix with nonzero mtrix elements only long the principl digonl. This type of mtrix is commonly encountered in mny problems of solid stte physics. The typicl exmple of digonl mtrix is shown s: é3 0 0 A= (1.15) ë0 0 6 Here, it is clerly seen tht the nondigonl mtrix elements re ll zero, wheres the digonl elements re ll finite numbers. It hs to be noted tht if the vlue of the determinnt of the mtrix A, i.e., det A = 0, then this mtrix is sid to be singulr mtrix.

5 1.4.2 Identity Mtrix Mtrix Algebr 5 This is lso clled unit mtrix. This identity or unit mtrix is digonl mtrix with 1 s long the principl digonl, s shown below: é I= (1.16) ë If I is of dimension (n n) nd x is vector of dimension (n 1), then we cn write: Ix = x (1.17) This unit mtrix cn be generlly described by Kronecker delt (d ij ) Symmetric Mtrix A symmetric mtrix is gin squre mtrix, whose mtrix elements stisfy the following: ij = ji (1.18) or, on n equivlent bsis, for A to be symmetric mtrix, we cn write it s: A= A T (1.19) It mens tht ll the mtrix elements, which re locted symmetriclly with respect to both sides of the principl digonl, re equl, s evident below: é A= (1.20) ë If A T = A, then A is clled n ntisymmetric or skew mtrix. These mtrices hve importnt pplictions s Puli mtrices to describe the spin properties of n electron. Typiclly, this cn be shown s: é0 i T é 0 i x 2 =, x2 = ëi 0 i 0 = x 2 ë Upper Tringulr Mtrix This is simple mtrix, but it is quite uncommon in engineering problems. In this cse, it is mtrix whose mtrix elements below the principl digonl re ll zero, s show below: UT = é ë (1.21) Determinnt of Mtrix Here, gin we del with squre mtrix. The determinnt of squre mtrix A is sclr quntity, which is denoted by det A. There is method of cofctors, which re used here to show the determinnts of (2 2) nd (3 3) mtrix s:

6 6 Mthemticl Physics for Engineers é det ë é det ë = (1.22) = ( ) ( ) + ( )(1.23) Mtrix Inversion This is perhps one of the most importnt of ll mtrices discussed so fr due to its sheer importnce in the pplictions of mtrix lgebr in the field of engineering nd mthemticl physics. Here, gin we del with squre mtrix A. Now, if det A ¹ 0 (to void infinity ), then the mtrix A hs n inverse, which is simply denoted by A 1. The inverse mtrix stisfies the following reltion s: A 1 A = A A 1 = I (1.24) If the det A ¹ 0, then the question of nonsingulrity comes, nd we cn sy tht the mtrix A is nonsingulr. But, if det A = 0, then we get singulr mtrix A, nd in this cse the inverse cnnot be defined for obvious resons. By eliminting the ith row nd the jth column of squre mtrix A, we get the minor M ij, which is the determinnt of (n 1 n 1) mtrix. Here, the cofctors C ij of mtrix A cn be written s: C ij = ( 1) i+j M ij (1.25) Adjoint of Mtrix The mtrix elements C ij mkes the mtrix C, which is clled cofctor mtrix, which hs reltion with the djoint of mtrix. The djoint of this mtrix A cn be defined s: Adj A = C T (1.26) But, this djoint mtrix A hs lso reltion with the inverse of squre mtrix A, which cn be described s: A 1 = Adj A / det A (1.27) As n exmple, we cn write the inverse of (2 2) mtrix A s: é ë = 1 é det A ë (1.28) This mtrix long with selfdjoint mtrix is very importnt in quntum mechnics nd in other fields of mthemticl physics. If Adj A = A, then A is sid to be selfdjoint. Here, it is importnt to mention bout nother importnt mtrix in physics, i.e., Hermitin mtrix, i.e., Ay = A, then A is sid to be Hermitin mtrix, which is lwys rel, which is necessry nd lso useful in quntum mechnics to find the vlue of different mesurble vlues of the observbles. The other importnt squre mtrices like Orthogonl mtrix re not discussed here, since the entire gmut of squre mtrices described bove lredy give enough insight into different types of useful mtrices in mthemticl physics.

7 Mtrix Algebr EIGENVALUES AND EIGENVECTORS This is the most importnt topic in the mtrix lgebr. It is very useful in quntum mechnics nd host of other subjects in physics nd engineering. First of ll, we hve to pose problem s n eigenvlue problem. Let us consider the eigenvlue problem s: Ay = ly (1.29) where, A is the usul squre mtrix (n n) signifying liner opertor, s described bove, y is n eigenvector or eigenfunction nd l is the chrcteristic or eigenvlue. Here, if we desire nontrivil solution, i.e. we wnt nonzero eigenvector y nd the consequent eigenvlue l, which must stisfy the bove eqution (1.29). We cn lso write the mtrix form of n eigenvlue problem by using eqution (1.29) s: (A li)y = 0 (1.30) It is very esily noted tht nonzero solution for y will be obtined when (A li) is singulr mtrix, or it cn be rticulted s: det (A li) = 0 (1.31) This eqution (1.31) is normlly clled the seculr or chrcteristic eqution of A. This eqution cn be solved for the n roots or rther different eigenvlues l 1, l 2,....l n. For ech of these eigenvlues (l i ) obtined by expnding the determinnt in eqution (1.31), the corresponding eigenvectors (y i ) cn then be obtined s: (A l i I)y i = 0 (1.32) It hs to be noted tht the bove eigenvectors (y i ) cn be determined only to within multiplictive constnt, since (A l i I) is singulr mtrix. It is better to tke n exmple to explin the eigenvlue problem s: Exmple 1 A= é 3 4 ë4 3 In order to mke n eigenvlue problem, the bove mtrix cn be written in the usul determinnt form s: 3 l l = 0 or, 9 + l 2 16 = 0 l = ± 5, l 1 = 5, l 2 = + 5 So, we get the eigenvlues (l 1 nd l 2 ). Now, we hve to find the corresponding eigenvectors s: é1 x 1 = ë 2 nd, x 2 = é 2 ë1 Let us tke é1 2 P= ë 2 1 Then, we cn write the inverse of this mtrix s:

8 8 Mthemticl Physics for Engineers P 1 1 é 1 2 = 5 ë 2 1 Therefore, finlly, we cn write it s: P 1 1 é 1 2é3 4é AP = ë 2 1ë4 3ë 2 1 = 1 é 1 2 é ë 2 1 ë é25 0 é5 0 = = 5 ë 0 25 ë 0 5 = é l1 0 ë 0 l2 The bove sums up the eigenvlue problem, which hs myrids of useful exmples (s described briefly in the Premble), in different brnches of physics nd engineering.

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm

Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm Bibhudendr chry, Girij Snkr Rth, Srt Kumr Ptr, nd Sroj Kumr Pnigrhy Novel Methods of Generting Self-Invertible Mtrix for Hill Cipher lgorithm Bibhudendr chry Deprtment of Electronics & Communiction Engineering

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES Solution to exm in: FYS30, Quntum mechnics Dy of exm: Nov. 30. 05 Permitted mteril: Approved clcultor, D.J. Griffiths: Introduction to Quntum

More information

1B METHODS LECTURE NOTES. PART I: Fourier series, Self adjoint ODEs

1B METHODS LECTURE NOTES. PART I: Fourier series, Self adjoint ODEs 1B Methods 1. 1B METHODS ECTURE NOTES Richrd Jozs, DAMTP Cmbridge rj31@cm.c.uk October 213 PART I: Fourier series, Self djoint ODEs 1B Methods 2 PREFACE These notes (in four prts cover the essentil content

More information

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by

2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by Teoretisk Fysik KTH Advnced QM SI2380), Exercise 8 12 1. 3 Consider prticle in one dimensions whose Hmiltonin is given by Ĥ = ˆP 2 2m + V ˆX) 1) with [ ˆP, ˆX] = i. By clculting [ ˆX, [ ˆX, Ĥ]] prove tht

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2.

Physics 6010, Fall 2010 Symmetries and Conservation Laws: Energy, Momentum and Angular Momentum Relevant Sections in Text: 2.6, 2. Physics 6010, Fll 2010 Symmetries nd Conservtion Lws: Energy, Momentum nd Angulr Momentum Relevnt Sections in Text: 2.6, 2.7 Symmetries nd Conservtion Lws By conservtion lw we men quntity constructed from

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson

AA1H Calculus Notes Math1115, Honours 1 1998. John Hutchinson AA1H Clculus Notes Mth1115, Honours 1 1998 John Hutchinson Author ddress: Deprtment of Mthemtics, School of Mthemticl Sciences, Austrlin Ntionl University E-mil ddress: John.Hutchinson@nu.edu.u Contents

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Chapter 2 The Number System (Integers and Rational Numbers)

Chapter 2 The Number System (Integers and Rational Numbers) Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 2010-2011

M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 2010-2011 M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 21-211 1. Clculte the men, vrince nd chrcteristic function of the following probbility density functions. ) The exponentil distribution

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

ITS HISTORY AND APPLICATIONS

ITS HISTORY AND APPLICATIONS NEČAS CENTER FOR MATHEMATICAL MODELING, Volume 1 HISTORY OF MATHEMATICS, Volume 29 PRODUCT INTEGRATION, ITS HISTORY AND APPLICATIONS Antonín Slvík (I+ A(x)dx)=I+ b A(x)dx+ b x2 A(x 2 )A(x 1 )dx 1 dx 2

More information

DIFFERENTIAL FORMS AND INTEGRATION

DIFFERENTIAL FORMS AND INTEGRATION DIFFERENTIAL FORMS AND INTEGRATION TERENCE TAO The concept of integrtion is of course fundmentl in single-vrible clculus. Actully, there re three concepts of integrtion which pper in the subject: the indefinite

More information

4 Approximations. 4.1 Background. D. Levy

4 Approximations. 4.1 Background. D. Levy D. Levy 4 Approximtions 4.1 Bckground In this chpter we re interested in pproximtion problems. Generlly speking, strting from function f(x) we would like to find different function g(x) tht belongs to

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

PHY 140A: Solid State Physics. Solution to Homework #2

PHY 140A: Solid State Physics. Solution to Homework #2 PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.

More information

Karlstad University. Division for Engineering Science, Physics and Mathematics. Yury V. Shestopalov and Yury G. Smirnov. Integral Equations

Karlstad University. Division for Engineering Science, Physics and Mathematics. Yury V. Shestopalov and Yury G. Smirnov. Integral Equations Krlstd University Division for Engineering Science, Physics nd Mthemtics Yury V. Shestoplov nd Yury G. Smirnov Integrl Equtions A compendium Krlstd Contents 1 Prefce 4 Notion nd exmples of integrl equtions

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES SERRET-FRENET VE BISHOP ÇATILARI Sy 9, Arlk 0 GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES Erhn ATA*, Ysemin KEMER, Ali ATASOY Dumlupnr Uniersity, Fculty of Science nd Arts, Deprtment of Mthemtics, KÜTAHYA, et@dpu.edu.tr ABSTRACT

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

More information

BUSINESS MATHEMATICS

BUSINESS MATHEMATICS BUSINESS MATHEMATICS HIGHER SECONDARY - SECOND YEAR olume- Untouchbility is sin Untouchbility is crime Untouchbility is inhumn TAMILNADU TEXTBOOK CORORATION College Rod, Chenni - 6 6. Government of Tmilndu

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .01 Hydrodynics Reding #.01 Hydrodynics Prof. A.H. Techet Added Mss For the cse of unstedy otion of bodies underwter or unstedy flow round objects, we ust consider the dditionl effect (force) resulting

More information

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović

INTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović THE TEACHING OF MATHEMATICS 2005, Vol. VIII, 1, pp. 15 29 INTERCHANGING TWO LIMITS Zorn Kdelburg nd Milosv M. Mrjnović This pper is dedicted to the memory of our illustrious professor of nlysis Slobodn

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

Differentiation Under the Integral Sign with Weak Derivatives

Differentiation Under the Integral Sign with Weak Derivatives Differentition Under the Integrl Sign with Wek Derivtives Steve Cheng September 6, 21 Contents 1 Introduction 2 2 Abstrct theory 3 2.1 Wek differentition.............................. 4 3 Appliction to

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

MULTIPLYING OUT & FACTORING

MULTIPLYING OUT & FACTORING igitl ircuit Engineering MULTIPLYING OUT & FTORING I IGITL SIGN Except for #$&@ fctoring st istributive X + X = X( + ) 2nd istributive (X + )(X + ) = X + (X + )(X + )(X + ) = X + Swp (X + )(X + ) = X +

More information

On the degrees of freedom in GR

On the degrees of freedom in GR On the degrees of freedom in GR István Rácz Wigner RCP Budpest rcz.istvn@wigner.mt.hu University of the Bsque Country Bilbo, 27 My, 2015 István Rácz (Wigner RCP, Budpest) degrees of freedom 27 My, 2015

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010

Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010 /28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems - Architecture Lecture 4 - Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

The Riemann Integral. Chapter 1

The Riemann Integral. Chapter 1 Chpter The Riemnn Integrl now of some universities in Englnd where the Lebesgue integrl is tught in the first yer of mthemtics degree insted of the Riemnn integrl, but now of no universities in Englnd

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Object Semantics. 6.170 Lecture 2

Object Semantics. 6.170 Lecture 2 Object Semntics 6.170 Lecture 2 The objectives of this lecture re to: to help you become fmilir with the bsic runtime mechnism common to ll object-oriented lnguges (but with prticulr focus on Jv): vribles,

More information