# Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Save this PDF as:

Size: px
Start display at page:

Download "Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity"

## Transcription

1 Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University El Pso, TX 79968, USA Emils: Abstrct When computing squre root, computers still, in effect, use n itertive lgorithm developed by the Bbylonins millenni go. This is very unusul phenomenon, becuse for most other computtions, better lgorithms hve been invented even division is performed, in the computer, by n lgorithm which is much more efficient tht division methods tht we hve ll lerned in school. Wht is the explntion for the success of the Bbylonins method? One explntion is tht this is, in effect, Newton s method, bsed on the best ides from clculus. This explntions works well from the mthemticl viewpoint it explins why this method is so efficient, but since the Bbylonins were very fr from clculus, it does not explin why this method ws invented in the first plce. In this pper, we provide two possible explntions for this method s origin. We show tht this method nturlly emerges from fuzzy techniques, nd we lso show tht it cn be explined s in some resonble sense) the computtionlly simplest techniques. I. HOW TO COMPUTE THE SQUARE ROOT: AN ITERATIVE FORMULA GOING BACK TO THE ANCIENT BABYLONIANS How cn we compute the squre root x = of given number? Historiclly the first method for computing the squre root ws invented by the ncient Bbylonins; see, e.g., [] nd references therein. In this Bbylonin method, we strt with n rbitrry positive number x 0, nd then pply the following itertive process: +1 = 1 + ). 1) To be more precise, Bbylonins rrely described their mthemticl procedures in lgorithmic form: they usully described them by presenting severl exmples. Only in the Greek mthemtics these procedures were reformulted in the generl bstrct form. This is true for the squre root procedure s well: the first person to describe this procedure in generl bstrct terms ws Heron of Alexndri, mostly known s the inventor of the stem engine; see, e.g., [3]. Becuse of this, the bove lgorithm is lso known s Heron s method. II. PROPERTIES OF THE BABYLONIAN METHOD If we strt with the vlue x 0 which is lredy equl to the squre root of, x 0 =, then, s one cn esily check, the next itertion is the exct sme vlue: x 1 = 1 ) x 0 + x0 = 1 ) + = 1 + ) =. ) It hs been proven tht this method converges: for ll possible strting vlues x 0. It is intuitively cler tht we closer the originl pproximtion x 0 to the squre root, the fster the convergence. Convergence is not so strightforwrd to prove, but it is strightforwrd to prove tht if the sequence converges to some vlue x, then this limit vlue x is indeed the desired squre root. Indeed, by tending to limit x nd +1 x in the formul 1), we conclude tht x = 1 x + x Multiplying both sides of this equlity by, we get ). 3) x = x + x. 4) By subtrcting x from both sides, we conclude tht x = x. Multiplying both sides of this equlity by x, we get = x ; this is exctly the defining eqution of the squre root. III. BABYLONIAN METHOD: A NUMERICAL EXAMPLE The Bbylonin method for computing the squre root is very efficient. To illustrte how efficient it, let us illustrte it on the exmple of computing the squre root of, when =. Let us strt with the simplest possible rel number x 0 = 1. Then, ccording to the Bbylonin lgorithm, we compute the next pproximtion x 1 to s x 1 = 1 ) x 0 + x0 = ) = 1 3 = ) 1 The next pproximtion is x = 1 ) x 1 + x1 = ) = 1.5

2 ) = = ) So, fter two simple itertions, we lredy get 3 correct deciml digits of = IV. BABYLONIAN METHOD IS VERY EFFICIENT The bove exmple is typicl. In generl, the Bbylonin method for computing the squre root converges very fst. In fct, it is so efficient tht most modern computers use it for computing the squre roots. The computers lso tke dvntge of the fct tht inside the computer, ll the numbers re represented in the binry code. As result, division by simply mens shifting the binry point one digit to the left: just like in the stndrd deciml code, division by 10 simply mens shifting the deciml point one digit to the left, e.g., from 15. to 1.5. V. THE LONGEVITY OF THE BABYLONIAN METHOD IS VERY UNUSUAL The fct tht the Bbylonin method for computing the squre root hs been preserved intct nd is used in the modern computers is very unusul. Even for simple rithmetic opertions such s division, the trditionl numericl procedures tht people hs used for centuries turned out to be not s efficient s newly designed ones. For exmple, in most computers, subtrction nd opertions with negtive numbers re not done s we do it, but by using the s complement representtion; see, e.g., [1]. Similrly, division is not performed the wy we do it, but rther by using specil version of Newton s method, etc. In contrst, the Bbylonin method for computing the squre root remins widely used. Wht is the reson for this longevity? How could Bbylonins come up with method which is so efficient? VI. NEWTON S EXPLANATION OF THE EFFICIENCY OF THE BABYLONIAN METHOD Historiclly the first nturl explntion of the efficiency of the Bbylonin method ws proposed by Isc Newton. Newton showed tht this method is prticulr cse of generl method for solving non-liner eqution, method tht we now cll Newton s method. Specificlly, suppose tht we wnt to solve n eqution fx) = 0, 7) nd we know n pproximte solution. How cn we find the next itertion? We ssumed tht the known vlue is close to the desired solution x. So, we cn describe this solution s x = + x, where the correction x def = x is reltively smll. In terms of x, the eqution 7) tkes the form f + x) = 0. 8) Since x is smll, we cn use the derivtive f ). Specificlly, the derivtive f x) is defined s the limit f f + h) f ) ) = lim. 9) h 0 h The limit mens tht the smller h, the closer is the rtio f + h) f ) h to the derivtive f ). Since x is smll, the rtio f + x) f ) x is close to the derivtive f ): 10) 11) f ) f + x) f ). 1) x We know tht f + x) = fx) = 0; thus, 8) implies tht nd hence, f ) f) x. 13) x f) f ). 14) So, s the next pproximtion to the root, it is resonble to tke the vlue +1 = + x, i.e., the vlue +1 = f) f ). 15) Finding the squre root x = mens finding solution to the eqution x = 0. This eqution hs the form fx) = 0 for fx) = x. Substituting this function fx) into the generl formul 15), we get +1 =. 16) Explicitly dividing ech term in the right-hnd side expression by, we get xn +1 = ). 17) Opening prentheses, we get +1 = +. 18) Replcing with, nd moving the common divisor outside the sum, we get the Bbylonin formul +1 = 1 + ). 19) VII. THERE SHOULD BE A MORE ELEMENTARY EXPLANATION OF THE BABYLONIAN FORMULA Newton s explntion explins why the Bbylonin method is so efficient becuse it is prticulr cse of the efficient Newton s method for solving nonliner equtions. However, Newton s explntion does not explin how this method ws invented in the first plce, since the min ides of Newton s method re hevily bsed on clculus, while the Bbylonins were very fr wy from discovering clculus ides. We therefore need more elementry explntion of the Bbylonin formul. Two such explntions re provided in this pper.

3 VIII. EXPLANATION BASED ON FUZZY TECHNIQUES: MAIN IDEA We re looking for squre root x =, i.e., for the vlue for which x = x. 0) Insted of the exct vlue x, we only know n pproximte vlue x. Since x, we conclude tht x. 1) Becuse of 0), we cn conclude tht x. ) Thus, the desired squre root x must stisfy two requirements: the first requirement is tht x ; the second requirement is tht x y n where we denoted def y n =. 3) Thus, we must find x from the following requirement: x ) & x y n ). 4) Fuzzy logic is method for formlizing sttements like this; see, e.g., [4], [6]. In fuzzy logic, to find the vlue x from the bove requirement, we must follow the following steps: First, we select the membership function µ z) for describing the pproximte reltion. After this selection, the degree of confidence in sttement x is equl to µ x ); nd the degree of confidence in sttement x y n is equl to µ x y n ). Next, we select t-norm f & d, d ) to describe the effect of the nd opertor on the corresponding degrees. After this selection, for ech possible rel number x, the degree µx) to which this number stisfies the bove requirement cn be computed s µx) = f & µ x ), µ x y n )). 5) Finlly, we need to select defuzzifiction procedure tht trnsforms the membership function µx) into single most pproprite vlue. For exmple, s this x, it is nturl to tke the vlue x for which the degree µx) is the lrgest possible. IX. EXPLANATION BASED ON FUZZY TECHNIQUES: ANALYSIS Let us consider different possible selections of membership function nd of the t-norm. As n exmple, let us tke Gussin membership function to describe pproximte ) µ z) = exp z σ 6) for some σ > 0, nd the product s t-norm: f & d, d ) = d d. 7) In this cse, we hve µx) = µ x ) µ x y n ) = exp x ) ) σ exp x y n) ) σ = exp x ) + x y n ) ) σ. 8) Due to monotonicity of the exponentil function, this vlue ttins the lrgest possible vlue when the expression x ) + x y n ) 9) is the smllest possible. Differentiting this expression with respect to x nd equting the derivtive to 0, we conclude tht x ) + x y n ) = 0, i.e., tht x = + y n. 30) If for the sme Gussin membership function for pproximte, we choose f & d, d ) = mind, d ) s the t-norm, we get different expression for µx): min µx) = minµ x ), µ x y n )) = x ) ), exp x y n) exp σ σ )). 31) Due to monotonicity of the exponentil function, this vlue is equl to µx) = exp mxx ), x y n ) ) ) σ, 3) nd this vlue is the lrgest when the expression mxx ), x y n ) ) 33) is the smllest possible. This expression, in its term, cn be rewritten s mx x, x y n ). Due to the fct tht the bsolute vlues re lwys non-negtive nd the squre function is monotonic on non-negtive vlues, this expression hs the form mx x, x y n )), nd its minimum is ttined when the simpler expression mx x, x y n ) is the smllest possible. Let us show tht this expression lso ttins its smllest possible vlue t the midpoint 3). Indeed, in geometric terms, the minimized expression mx x, x y n ) is simply the lrgest of the distnces x nd x y n between the desired point x nd the given points nd y n. Due to the tringle inequlity, we hve x + x y n y n. Thus, it is not possible tht both distnces x nd x y n re smller thn y n becuse then their sum would be smller thn y n. So, t lest one of these distnces hs to be lrger thn or equl to y n, nd therefore, the lrgest of these distnces mx x, x y n ) is lwys lrger thn or equl to y n. The only wy for this lrgest distnce is to be equl to y n is when both distnce x nd

4 x y n re equl to y n, i.e., when the desired point x is exctly t midpoint 3) between the two given points nd y n. One cn show tht we get the exct sme nswer 3) if we use tringulr membership functions, symmetric piece-wise qudrtic membership functions, different t-norms, etc. X. EXPLANATION BASED ON FUZZY TECHNIQUES: RESULT Our nlysis shows tht for mny specific selections of the membership function for pproximte nd of the t-norm, we get the sme nswer: x = + y n. In other words, for mny specific selections, s the next pproximtion +1 to the squre root x, we tke exctly the vlue +1 from the Bbylonin procedure. Thus, fuzzy techniques indeed explin the selection of the Bbylonin method. XI. THE IMPORTANT ROLE OF SYMMETRY The fct tht different choices led to the sme result x cn be explined by the symmetry of the problem. Indeed, the problem is symmetric with respect to reflection x + y n ) x 34) tht swps the vlues nd y n. Thus, if we get the unique solution x, this solution must be invrint with respect to this symmetry otherwise, the symmetric point would be nother solution [5]. This invrince mens tht x = + y n ) x nd thus, tht x = + y n. XII. THIS APPLICATION OF FUZZY TECHNIQUES IS RATHER UNUSUAL The fct tht fuzzy techniques cn be useful is well known [4], [6]. However, usully, fuzzy techniques led to good pproximtion: to n idel control, to n idel clustering, etc. Wht is unusul bout the Bbylonin lgorithm is tht here, fuzzy techniques led to exctly the correct lgorithm. XIII. EXPLANATION BASED ON COMPUTATIONAL COMPLEXITY: MAIN CLAIM In ny itertive procedure for computing the squre root, once we hve the previous pproximtion, we cn use: this pproximtion, the vlue, nd if needed) constnts to compute the next pproximtion +1 = f, ) for n pproprite expression f. For the itertive method to be successful in computing the squre root, the expression f, ) should stisfy the following nturl properties: first, if we strt with the vlue which is lredy the squre root =, then this procedure should not chnge this vlue, i.e., we should hve f, ) = ; second, this itertive method should converge. In the Bbylonin method, the computtion of the corresponding expression f, ) involves three rithmetic opertions: division ; 35) n ddition nd multipliction + ; 36) ). 37) Our clim is tht this is the simplest possible opertion. In other words, our clim is tht it is not possible to find n expression f, ) which would be computble in 0, 1, or rithmetic opertions. Let us prove this clim. XIV. IT IS NOT POSSIBLE TO HAVE 0 ARITHMETIC OPERATIONS If we re not llowing ny rithmetic opertions t ll, then s +1 = f, ), we should return either the vlue, or the vlue, or some constnt c. In ll three cses, we do not get ny convergence to the squre root: in the first cse, the vlues remin the sme nd never converge to : x 0 = x 1 = x =... = =... ; 38) in the second cse, we strt with some initil vlue x 0 nd then repetedly return the vlues equl to : x 1 = x =... = =... = ; 39) in the second cse, we strt with vlue x 0 nd then repetedly return the vlues equl to the constnt c: x 1 = x =... = =... = c. 40) XV. IT IS NOT POSSIBLE TO HAVE 1 ARITHMETIC OPERATION The rithmetic opertion is either ddition, or subtrction, or multipliction, or division. Let us consider these four cses one by one. All opertions involve the vlues nd nd possible constnts) c nd c. For ddition, depending on wht we dd, we get +, +, + c, +, + c, nd c + c. In ll these cses, for =, the result is different from. So, the expression

5 f, ) involving only one ddition does not stisfy the condition f, ) =. For subtrction, depending on wht we subtrct, we get the expressions,, c with c 0, c, c, c, nd c c we dismiss the trivil expressions of the type = 0). In ll these cses, for =, the result is different from. So, the expression f, ) involving only one subtrction does not stisfy the condition f, ) =. For multipliction, depending on wht we multiply, we get,, c,, c, nd c c. In ll these cses, for =, the result is different from. So, the expression f, ) involving only one multipliction does not stisfy the condition f, ) =. For division, depending on wht we divide, we get the expressions, c, with c 1,, c c, c, nd c c we dismiss the trivil expressions of the type = 1). In ll these cses, except for the cse, for =, the result is different from. So, the expression f, ) corresponding to ll these cses does not stisfy the condition f, ) =. In the remining cse f, ) =, 41) we do hve f, ) = =, 4) but we do not stisfy the second condition: of convergence. Indeed, in this cse, x 1 = x 0, 43) then nd then gin, etc. So, here, we hve nd no convergence. x = x 1 = /x 0 = x 0, 44) x 3 = x = x 0 = x 1, 45) 0 = =... = n =..., 46) 1 = 3 =... = n+1 =... 47) XVI. IT IS NOT POSSIBLE TO HAVE ARITHMETIC OPERATIONS Similrly, one cn prove tht it is not possible to hve two rithmetic opertions. This cn be proven by enumerting ll possible sequences of rithmetic opertions nd then checking tht for ll possible inputs,, or c) the resulting expression f, ): either does not stisfy the requirement f, ) = ; or does not led to the convergence to the squre root. For exmple, if we first dd, nd then multiply, then we get the expression e + e ) e. Replcing ech of the possible inputs e, e, nd e with one of the possible vlues,, or c, we get ll possible expressions f, ) corresponding to this cse. For exmple, if we tke e = nd e = e =, we get the expression f, ) = +). This expression clerly does not stisfy the requirement f, ) =. If we tke e =, e =, nd e = c, then we get the expression f, ) = + ) which lso does not stisfy the sme requirement. By considering ll possible cses, we cn thus prove tht no expression with rithmetic opertions is indeed possible. XVII. POSSIBLE PEDAGOGICAL USE OF THIS PROOF In our opinion, this proof provides good pedgogicl exmple of simple esy-to-hndle rithmetic problem tht is ctully not toy problem t ll: it is relted to n efficient lgorithm for computing the squre root. For ech combintion of opertions nd inputs, it is reltively esy to come up with n explntion of why this prticulr combintion will not work. With sufficiently lrge number of students in clss, nd sufficient time llocted for this exercise, students cn ctully check ll the possibilities nd thus get sense of chievement. Indeed, we hve 4 possible opertions coming first, 4 possible opertions coming second, so we hve 4 = 16 possible sequences of opertions. So, if we hve 16 students in the clss, ech student cn hndle one of these combintions. If we hve 3 students, then we cn divide students into pirs so tht ech pir of students hndles one combintion of opertions. For ech of the these combintions of opertions, we hve 3 options for ech of the inputs, so totlly, we hve mngeble number of 3 3 = 7 possible combintions. XVIII. IS BABYLONIAN FORMULA THE ONLY POSSIBLE OPERATION THAT REQUIRES THREE ARITHMETIC OPERATIONS? We hve shown tht every itertive procedure for computing the squre root requires t lest three different rithmetic opertions on ech itertion. Since the Bbylonin procedure requires exctly three opertions, it is thus indeed the fstest possible. The next nturl question is: re there other itertive procedures tht require three rithmetic opertions on every itertion? The nswer is No but this proof requires considering very lrge number of possible combintions. XIX. A MORE MANAGEABLE PROOF: THE BABYLONIAN PROCEDURE IS THE FASTEST In the bove discussions, to estimte how fst ech computtion is, we simply counted the number of rithmetic opertions. This counting mkes sense s good pproximtion to the ctul computtion time, but it implicitly ssumes tht ll rithmetic opertions require the exct sme computtion time. In relity, in the computer, different rithmetic opertions

6 ctully require different computtion times. Specificlly, in the computer just like in humn computtions), ddition nd subtrction re the simplest hence fstest) opertions; multipliction, in effect, consists of severl dditions of the results of multiplying the first number by different digits of the second one; thus, multipliction tkes longer thn ddition or subtrction; finlly, division, in effect, consists of severl multiplictions nd thus requires n even longer time thn multipliction. Ech itertion of the Bbylonin lgorithm consists of one division, one multipliction, nd one ddition. Since division is the most time-consuming of the rithmetic opertions, to prove tht the Bbylonin lgorithm is the fstest, we must first prove tht no lgorithm without division is possible. Indeed, if we only use ddition, subtrction, or multipliction, then the resulting expression is polynomil. Once we hve polynomil f, ), the requirement f, ) = cn only be stisfied for liner function f, ) = for which there is no convergence. Thus, ech expression must hve t lest one division, i.e., t lest s mny s the Bbylonin expression. It cn still be fster thn the Bbylonin formul if we hve exctly 1 division nd no multiplictions, just divisions, ddition, nd subtrction. By enumerting ll possibilities, one cn conclude tht such n expression is impossible. Thus, every expression must hve t lest one division, nd t lest one multipliction. So, it is not possible to hve n expression which is fster thn the Bbylonin one, but it my be potentilly possible to hve n expression which is exctly s fst s the Bbylonin one, i.e., tht consists of: one division, one multipliction, nd one ddition or subtrction. Agin, one cn enumerte ll possible combintions of these three opertions nd see tht the Bbylonin expression is the only one tht leds to convergence to the squre root. ACKNOWLEDGMENTS The uthor is thnkful to the nonymous referees for vluble suggestions. REFERENCES [1] R. E. Brynt nd D. R. O Hllron, Computer Systems: A Progrmmer s Perspective, Prentice Hll, Upper Sddle River, New Jersey, 003. [] D. Flnnery, The Squre Root of Two, Springer Verlg, 005. [3] T. Heth, A History of Greek Mthemtics, Clrendon Press, Oxford, 191, Vol.. [4] G. Klir nd B. Yun, Fuzzy sets nd fuzzy logic: theory nd pplictions. Prentice Hll, Upper Sddle River, New Jersey, [5] H. T. Nguyen nd V. Kreinovich, Applictions of continuous mthemtics to computer science, Kluwer, Dordrecht, [6] H. T. Nguyen nd E. A. Wlker, A first course in fuzzy logic, CRC Press, Boc Rton, Florid, 005.

### Solutions to Section 1

Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

### 1 Numerical Solution to Quadratic Equations

cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### 4.0 5-Minute Review: Rational Functions

mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

### Sequences and Series

Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

### Quadratic Equations. Math 99 N1 Chapter 8

Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

### Chapter 6 Solving equations

Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### Written Homework 6 Solutions

Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### The Quadratic Formula and the Discriminant

9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

### Generalized Inverses: How to Invert a Non-Invertible Matrix

Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

### CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

### Uniform convergence and its consequences

Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### 4.11 Inner Product Spaces

314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

### Introduction to Mathematical Reasoning, Saylor 111

Frction versus rtionl number. Wht s the difference? It s not n esy question. In fct, the difference is somewht like the difference between set of words on one hnd nd sentence on the other. A symbol is

### A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method

Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN - Vol. - A Note on Complement of Trpezoidl Fuzzy Numers Using the α-cut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment

### 11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

### MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

### Arc Length. P i 1 P i (1) L = lim. i=1

Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x

### Curve Sketching. 96 Chapter 5 Curve Sketching

96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

### 4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS

4: RIEMA SUMS, RIEMA ITEGRALS, FUDAMETAL THEOREM OF CALCULUS STEVE HEILMA Contents 1. Review 1 2. Riemnn Sums 2 3. Riemnn Integrl 3 4. Fundmentl Theorem of Clculus 7 5. Appendix: ottion 10 1. Review Theorem

### Reasoning to Solve Equations and Inequalities

Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

### A new algorithm for generating Pythagorean triples

A new lgorithm for generting Pythgoren triples RH Dye 1 nd RWD Nicklls 2 The Mthemticl Gzette (1998); 82 (Mrch, No. 493), p. 86 91 (JSTOR rchive) http://www.nicklls.org/dick/ppers/mths/pythgtriples1998.pdf

### Matrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA

CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the

Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

### Net Change and Displacement

mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

### not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions

POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the x-coordintes of the points where the grph of y = p(x) intersects the x-xis.

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### Graphs on Logarithmic and Semilogarithmic Paper

0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

### Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

### Section 5-4 Trigonometric Functions

5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

### Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

### Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

### Mathematics Higher Level

Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

### On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding

Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl

### Regular Sets and Expressions

Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

### Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

### Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

### 2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

### Algorithms Chapter 4 Recurrences

Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering

### Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

### MATLAB: M-files; Numerical Integration Last revised : March, 2003

MATLAB: M-files; Numericl Integrtion Lst revised : Mrch, 00 Introduction to M-files In this tutoril we lern the bsics of working with M-files in MATLAB, so clled becuse they must use.m for their filenme

### 4 Approximations. 4.1 Background. D. Levy

D. Levy 4 Approximtions 4.1 Bckground In this chpter we re interested in pproximtion problems. Generlly speking, strting from function f(x) we would like to find different function g(x) tht belongs to

### Chapter 4: Dynamic Programming

Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

### MODULE 3. 0, y = 0 for all y

Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

### Section A-4 Rational Expressions: Basic Operations

A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

### Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

### Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

### A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

### Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:

### Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh

Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

### 1. Inverse of a tridiagonal matrix

Pré-Publicções do Deprtmento de Mtemátic Universidde de Coimbr Preprint Number 05 16 ON THE EIGENVALUES OF SOME TRIDIAGONAL MATRICES CM DA FONSECA Abstrct: A solution is given for problem on eigenvlues

### THE RATIONAL NUMBERS CHAPTER

CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted

### Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

### Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

### Chapter 2 The Number System (Integers and Rational Numbers)

Chpter 2 The Number System (Integers nd Rtionl Numbers) In this second chpter, students extend nd formlize their understnding of the number system, including negtive rtionl numbers. Students first develop

### Lesson 10. Parametric Curves

Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find

### FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

### EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

### 6.2 Volumes of Revolution: The Disk Method

mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

### Homework 3 Solutions

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

### Integration by Substitution

Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

### Novel Methods of Generating Self-Invertible Matrix for Hill Cipher Algorithm

Bibhudendr chry, Girij Snkr Rth, Srt Kumr Ptr, nd Sroj Kumr Pnigrhy Novel Methods of Generting Self-Invertible Mtrix for Hill Cipher lgorithm Bibhudendr chry Deprtment of Electronics & Communiction Engineering

### 1. The leves re either lbeled with sentences in ;, or with sentences of the form All X re X. 2. The interior leves hve two children drwn bove them) if

Q520 Notes on Nturl Logic Lrry Moss We hve seen exmples of wht re trditionlly clled syllogisms lredy: All men re mortl. Socrtes is mn. Socrtes is mortl. The ide gin is tht the sentences bove the line should

### Lecture 2: Matrix Algebra. General

Lecture 2: Mtrix Algebr Generl Definitions Algebric Opertions Vector Spces, Liner Independence nd Rnk of Mtrix Inverse Mtrix Liner Eqution Systems, the Inverse Mtrix nd Crmer s Rule Chrcteristic Roots

### Homework #6: Answers. a. If both goods are produced, what must be their prices?

Text questions, hpter 7, problems 1-2. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lbor-hours nd one

### Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### CHAPTER 5 Spline Approximation of Functions and Data

CHAPTER 5 Spline Approximtion of Functions nd Dt This chpter introduces number of methods for obtining spline pproximtions to given functions, or more precisely, to dt obtined by smpling function. In Section

### Lecture 3 Basic Probability and Statistics

Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The

### Notes for Thurs 8 Sept Calculus II Fall 2005 New York University Instructor: Tyler Neylon Scribe: Kelsey Williams

Notes for Thurs 8 Sept Clculus II Fll 00 New York University Instructor: Tyler Neylon Scribe: Kelsey Willims 8. Integrtion by Prts This section is primrily bout the formul u dv = uv v ( ) which is essentilly

### g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

### Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

### 1.2 The Integers and Rational Numbers

.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

### The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

### Solving BAMO Problems

Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only

### Integration. 148 Chapter 7 Integration

48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

### Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

### Exponents base exponent power exponentiation

Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

### All pay auctions with certain and uncertain prizes a comment

CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

### Suffix Trees CMSC 423

Suffix Trees CMSC 423 Preprocessing Strings Over the next few lectures, we ll see severl methods for preprocessing string dt into dt structures tht mke mny questions (like serching) esy to nswer: Suffix

### Vectors 2. 1. Recap of vectors

Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

### Section 7-4 Translation of Axes

62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

### 9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

### . At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

### 9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete