M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term
|
|
- Bartholomew Gardner
- 4 years ago
- Views:
Transcription
1 M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term Clculte the men, vrince nd chrcteristic function of the following probbility density functions. ) The exponentil distribution with density with λ >. fx) b) The uniform distribution with density with < b. fx) { λe λx x >, x <, { 1 b < x < b, x /, b), c) The Gmm distribution with density { λ fx) Γα) λx)α 1 e λx x >, x <, with λ >, α > nd Γα) is the Gmm function SOLUTION ) EX) Γα) 1 λ. + ξ α 1 e ξ dξ, α >. xfx) dx λ + xe λx dx EX 2 ) + 2 λ 2. x 2 fx) dx λ + x 2 e λx dx 1
2 b) Consequently, The chrcteristic function is vrx) EX 2 ) EX) 2 1 λ 2. φt) Ee itx ) λ EX) + + b 2. e itx e λx dt xfx) dx b λ λ it. x b dx c) Consequently, EX 2 ) The chrcteristic function is + x 2 fx) dx λ b2 + b vrx) EX 2 ) EX) 2 φt) Ee itx ) λ b EX) λα Γα) λ b x 2 x2 b )2. 12 b dx e itx 1 b dt eitb e it itb ). + Γα + 1) λγα) α λ. x α e λx dx Consequently, The chrcteristic function is EX 2 ) λ + Γα + 2) λ 2 Γα) x 1+α e λx dx αα + 1) λ 2. vrx) EX 2 ) EX) 2 α λ 2. φt) Ee itx ) λα Γα) λα 1 Γα) λ it) α λ α λ it) α. e itx x α 1 dt e y y α 1 dy 2
3 2. ) Let X be continuous rndom vrible with chrcteristic function φt). Show tht EX k 1 i k φk) ), where φ k) t) denotes the k-th derivtive of φ evluted t t. b) Let X be nonnegtive rndom vrible with distribution function F x). Show tht EX) + 1 F x)) dx. c) Let X be continuous rndom vrible with probbility density function fx) nd chrcteristic function φt). Find the probbility density nd chrcteristic function of the rndom vrible Y X + b with, b R. d) Let X be rndom vrible with uniform distribution on [, 2π]. Find the probbility density of the rndom vrible Y sinx). SOLUTION ) We hve Consequently Thus: φt) Ee itx ) R R e itx fx) dx. φ k) t) ix) k e itx fx) dx. φ k) ) ix) k fx) dx i k EX k, R nd EX k 1 i k φ k) ). b) Let R > nd consider Thus, PX < R) R R xfx) dx x df dx dx xf x) R R R F x) dx F R) F x)) dx. EX lim 3 R PX < R) 1 F x)) dx,
4 where the fct lim x F x) 1 ws used. Alterntively: 1 F x)) dx x y fy) dydx fy) dxdy yfy) dx EX. c) We hve: PY y) PX + b y) PX y b ) y b fx) dx. Consequently, Similrly, f Y y) y PY y) 1 ) y b f. d) The density of the rndom vrible X is φ Y t) Ee ity Ee itx+b) e itb Ee itx e itb φt). f X x) { 1 2π, x [, 2π],, x / [, 2π]. The distribution function is F X x) { x <, x 2π, x [, 2π], 1, x > 2π. The rndom vrible Y tkes vlues on [ 1, 1]. Hence, PY PY y) 1 for y 1. Let now y 1, 1). We hve y) for y 1 nd F Y y) PY y) PsinX) y). The eqution sinx) y hs two solutions in the intervl [, 2π]: x rcsiny), π rcsiny) for y > nd x π rcsiny), 2π + rcsiny) for y <. Hence, F Y y) π + 2 rcsiny), y 1, 1). 2π 4
5 The distribution function of Y is F Y y) { y, π+2 rcsiny) 2π, y 1, 1), 1, y 1. We differentite the bove expression to obtin the probbility density: f Y y) { 1 π 1, 1 y 2 y 1, 1),, y / 1, 1). 3. Let X be discrete rndom vrible tking vles on the set of nonnegtive integers with probbility mss function p k PX k) with p k, + k p k 1. The generting function is defined s ) Show tht gs) Es X ) where the prime denotes differentition. k p k s k. EX g 1) nd EX 2 g 1) + g 1), b) Clculte the generting function of the Poisson rndom vrible with p k PX k) e λ λ k, k, 1, 2,... nd λ >. k! c) Prove tht the generting function of sum of independent nonnegtive integer vlued rndom vribles is the product of their generting functions. ) We hve Hence nd from which it follows b) We clculte g s) k g 1) kp k s k 1 nd g s) k g 1) k 2 p k k k k kp k EX EX 2 g 1) + g 1). gs) 5 k kk 1)p k s k 2. kp k EX 2 g 1) e λ λ k k! e λs 1). s k
6 c) Consider the independent nonnegtive integer vlued rndom vribles X i, i 1,... d. Since the X i s re independent, so re the rndom vribles e X i, i 1,.... Consequently, g P d i1 X s) d EeP i1 X i ) Π d i i1ee X i ) Π d i1g Xi s). 4. Let b R n nd Σ R n n symmetric nd positive definite mtrix. Let X be the multivrite Gussin rndom vrible with probbility density function 1 1 γx) 2π) n/2 exp 1 ) detσ) 2 Σ 1 x b), x b. ) Show tht R d γx) dx 1. b) Clculte the men nd the covrince mtrix of X. c) Clculte the chrcteristic function of X. ) From the spectrl theorem for symmetric positive definite mtrices we hve tht there exists digonl mtrix Λ with positive entries nd n orthogonl mtrix B such tht Let z x b nd y Bz. We hve Σ 1 B T ΛB. Σ 1 z, z B T ΛBz, z ΛBz, Bz Λy, y d λ i yi 2. Furthermore, we hve tht detσ 1 ) Π d i1 λ i, tht detσ) Π d i1 λ 1 i of n orthogonl trnsformtion is J detb) 1. Hence, R d exp 1 ) 2 Σ 1 x b), x b i1 dx exp R d exp 1 R d 2 Π n i1 exp R 1 ) 2 Σ 1 z, z dz nd tht the Jcobin ) d λ i yi 2 J dy i1 1 2 λ iy 2 i 2π) n/2 Π n i1λ 1/2 i ) dy i 2π) n/2 detσ), from which we get tht R d γx) dx 1. 6
7 b) From the bove clcultion we hve tht Consequently γx) dx γb T y + b) dy 1 2π) n/2 detσ) Πn i1 exp 1 ) 2 λ iyi 2 dy i. EX xγx) dx R d B T y + b)γb T y + b) dy R d b γb T y + b) dy b. R d We note tht, since Σ 1 B T ΛB, we hve tht Σ B T Λ 1 B. Furthermore, z B T y. We clculte EX i b i )X j b j )) z i z j γz + b) dz R d ) 1 2π) n/2 B ki y k B mi y m exp 1 λ l yl 2 dy detσ) R d 2 k m l ) 1 2π) n/2 B ki B mj y k y m exp detσ) R 1 λ l yl 2 dy d 2 k,m B ki B mj λ 1 k δ km k,m Σ ij. c) Let y be multivrite Gussin rndom vrible with men nd covrince I. Let lso C B Λ. We hve tht Σ CC T C T C. We hve tht X CY + b. To see this, we first note tht X is Gussin since it is given through liner trnsformtion of Gussin rndom vrible. Furthermore, EX b nd EX i b i )X j b j )) Σ ij. l Now we hve: φt) Ee i X,t e i b,t Ee i CY,t e i b,t Ee i Y,CT t e i b,t Ee i P j P k C jkt k )y j e i b,t e 1 2 Pj P k C jkt k 2 e i b,t e 1 2 Ct,Ct e i b,t e 1 2 t,ct Ct e i b,t e 1 2 t,σt. 7
8 Consequently, φt) e i b,t 1 2 t,σt. 8
MODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
and thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
Section 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve
Continuous Distributions Rndom Vribles of the Continuous Tye Density Curve Perent Density funtion f () f() A smooth urve tht fit the distribution 6 7 9 Test sores Density Curve Perent Probbility Density
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES
UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES Solution to exm in: FYS30, Quntum mechnics Dy of exm: Nov. 30. 05 Permitted mteril: Approved clcultor, D.J. Griffiths: Introduction to Quntum
Distributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution
QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
Stirling s formula, n-spheres and the Gamma Function
Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.
ECE302 Spring 2006 HW5 Solutions February 21, 2006 1
ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
Section 6.1 Joint Distribution Functions
Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function
Exponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
Lecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
Statistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half
Statistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)
Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
INSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.
Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte
2.6. Probability. In general the probability density of a random variable satisfies two conditions:
2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a real-valued function defined on some set of possible outcomes of a random experiment; e.g. the number of points
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued
STAT 830 Convergence in Distribution
STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31
Physics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x
1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...
MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
Modeling and Analysis of Information Technology Systems
Modeling and Analysis of Information Technology Systems Dr. János Sztrik University of Debrecen, Faculty of Informatics Reviewers: Dr. József Bíró Doctor of the Hungarian Academy of Sciences, Full Professor
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
e.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
Lectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
CHAPTER IV - BROWNIAN MOTION
CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
Manual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
Neural Networks and Learning Systems
Neural Networks and Learning Systems Exercise Collection, Class 9 March 2010 x 1 x 2 x N w 11 3 W 11 h 3 2 3 h N w NN h 1 W NN y Neural Networks and Learning Systems Exercise Collection c Medical Informatics,
Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems
Introductory lecture notes on Prtil ifferentil Equtions - y Anthony Peirce UBC 1 Lecture 5: More Rectngulr omins: Neumnn Prolems, mixed BC, nd semi-infinite strip prolems Compiled 6 Novemer 13 In this
All pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
ISyE 6761 Fall 2012 Homework #2 Solutions
1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
Asymptotics of discounted aggregate claims for renewal risk model with risky investment
Appl. Math. J. Chinese Univ. 21, 25(2: 29-216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially
Notes on the Negative Binomial Distribution
Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany
Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required
Karlstad University. Division for Engineering Science, Physics and Mathematics. Yury V. Shestopalov and Yury G. Smirnov. Integral Equations
Krlstd University Division for Engineering Science, Physics nd Mthemtics Yury V. Shestoplov nd Yury G. Smirnov Integrl Equtions A compendium Krlstd Contents 1 Prefce 4 Notion nd exmples of integrl equtions
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS
UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0
Reasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
MATH2740: Environmental Statistics
MATH2740: Environmental Statistics Lecture 6: Distance Methods I February 10, 2016 Table of contents 1 Introduction Problem with quadrat data Distance methods 2 Point-object distances Poisson process case
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
Applications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Asymptotics for a discrete-time risk model with Gamma-like insurance risks. Pokfulam Road, Hong Kong
Asymptotics for a discrete-time risk model with Gamma-like insurance risks Yang Yang 1,2 and Kam C. Yuen 3 1 Department of Statistics, Nanjing Audit University, Nanjing, 211815, China 2 School of Economics
Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
Generating Random Variables and Stochastic Processes
Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
Tables of Common Transform Pairs
ble of Common rnform Pir 0 by Mrc Ph. Stoecklin mrc toecklin.net http://www.toecklin.net/ 0--0 verion v.5.3 Engineer nd tudent in communiction nd mthemtic re confronted with tion uch the -rnform, the ourier,
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
Derivatives and Rates of Change
Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te
M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung
M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS
Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible