Cellular Respiration: Obtaining Energy from Food

Size: px
Start display at page:

Download "Cellular Respiration: Obtaining Energy from Food"

Transcription

1 Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B. Reece Lectures by Edward J. Zalisko 2013 Pearson Education, Inc.

2 Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor sprinting or long-distance running Pearson Education, Inc.

3 Figure 6.0

4 Biology and Society: Marathoners versus Sprinters The muscles that move our legs contain two main types of muscle fibers: 1. slow-twitch and 2. fast-twitch Pearson Education, Inc.

5 Biology and Society: Marathoners versus Sprinters Slow-twitch fibers last longer, do not generate a lot of quick power, and generate ATP using oxygen (aerobically) Pearson Education, Inc.

6 Biology and Society: Marathoners versus Sprinters Fast-twitch fibers contract more quickly and powerfully, fatigue more quickly, and can generate ATP without using oxygen (anaerobically). All human muscles contain both types of fibers but in different ratios Pearson Education, Inc.

7 ENERGY FLOW AND CHEMICAL CYCLING IN THE BIOSPHERE Animals depend on plants to convert the energy of sunlight to chemical energy of sugars and other organic molecules we consume as food. Photosynthesis uses light energy from the sun to power a chemical process and make organic molecules Pearson Education, Inc.

8 Producers and Consumers Plants and other autotrophs (self-feeders) make their own organic matter from inorganic nutrients. Heterotrophs (other-feeders) include humans and other animals that cannot make organic molecules from inorganic ones Pearson Education, Inc.

9 Producers and Consumers Autotrophs are producers because ecosystems depend upon them for food. Heterotrophs are consumers because they eat plants or other animals Pearson Education, Inc.

10 Figure 6.1

11 Chemical Cycling between Photosynthesis and Cellular Respiration The ingredients for photosynthesis are carbon dioxide (CO 2 ) and water (H 2 O). CO 2 is obtained from the air by a plant s leaves. H 2 O is obtained from the damp soil by a plant s roots Pearson Education, Inc.

12 Chemical Cycling between Photosynthesis and Cellular Respiration Chloroplasts in the cells of leaves use light energy to rearrange the atoms of CO 2 and H 2 O, which produces sugars (such as glucose), other organic molecules, and oxygen gas Pearson Education, Inc.

13 Chemical Cycling between Photosynthesis and Cellular Respiration Plant and animal cells perform cellular respiration, a chemical process that primarily occurs in mitochondria, harvests energy stored in organic molecules, uses oxygen, and generates ATP Pearson Education, Inc.

14 Chemical Cycling between Photosynthesis and Cellular Respiration The waste products of cellular respiration are CO 2 and H 2 O, used in photosynthesis Pearson Education, Inc.

15 Chemical Cycling between Photosynthesis and Cellular Respiration Animals perform only cellular respiration. Plants perform photosynthesis and cellular respiration Pearson Education, Inc.

16 Chemical Cycling between Photosynthesis and Cellular Respiration Plants usually make more organic molecules than they need for fuel. This surplus provides material that can be used for the plant to grow or stored as starch in potatoes Pearson Education, Inc.

17 Figure 6.2 Sunlight energy enters ecosystem Photosynthesis C 6 H 12 O 6 CO 2 O 2 H 2 O Cellular respiration ATP drives cellular work Heat energy exits ecosystem

18 CELLULAR RESPIRATION: AEROBIC HARVEST OF FOOD ENERGY Cellular respiration is the main way that chemical energy is harvested from food and converted to ATP and an aerobic process it requires oxygen Pearson Education, Inc.

19 CELLULAR RESPIRATION: AEROBIC HARVEST OF FOOD ENERGY Cellular respiration and breathing are closely related. Cellular respiration requires a cell to exchange gases with its surroundings. Cells take in oxygen gas. Cells release waste carbon dioxide gas. Breathing exchanges these same gases between the blood and outside air Pearson Education, Inc.

20 Figure 6.3 O 2 CO 2 Breathing Lungs O 2 CO 2 Cellular respiration Muscle cells

21 Figure 6.3a O 2 CO 2 Breathing Lungs O 2 CO 2 Cellular respiration Muscle cells

22 Figure 6.3b

23 The Simplified Equation for Cellular Respiration A common fuel molecule for cellular respiration is glucose. Cellular respiration can produce up to 32 ATP molecules for each glucose molecule consumed. The overall equation for what happens to glucose during cellular respiration is glucose & oxygen CO 2, H 2 O, & a release of energy Pearson Education, Inc.

24 Figure 6.UN01 C 6 H 12 O CO 2 6 H 2 O ATP O 2 Glucose Oxygen Carbon dioxide Water Energy

25 The Role of Oxygen in Cellular Respiration During cellular respiration, hydrogen and its bonding electrons change partners from sugar to oxygen, forming water as a product Pearson Education, Inc.

26 Redox Reactions Chemical reactions that transfer electrons from one substance to another are called oxidation-reduction reactions or redox reactions for short Pearson Education, Inc.

27 Redox Reactions The loss of electrons during a redox reaction is oxidation. The acceptance of electrons during a redox reaction is reduction. During cellular respiration glucose is oxidized and oxygen is reduced Pearson Education, Inc.

28 Figure 6.UN02 Oxidation Glucose loses electrons (and hydrogens) C 6 H 12 O 6 6 O 2 6 CO 2 6 Glucose Oxygen Carbon dioxide H 2 O Water Reduction Oxygen gains electrons (and hydrogens)

29 Redox Reactions Why does electron transfer to oxygen release energy? When electrons move from glucose to oxygen, it is as though the electrons were falling. This fall of electrons releases energy during cellular respiration Pearson Education, Inc.

30 Figure H 2 O 2 Release of heat energy H 2 O

31 Redox Reactions Cellular respiration is a controlled fall of electrons and a stepwise cascade much like going down a staircase Pearson Education, Inc.

32 NADH and Electron Transport Chains The path that electrons take on their way down from glucose to oxygen involves many steps. The first step is an electron acceptor called NAD +. NAD is made by cells from niacin, a B vitamin. The transfer of electrons from organic fuel to NAD + reduces it to NADH Pearson Education, Inc.

33 NADH and Electron Transport Chains The rest of the path consists of an electron transport chain, which involves a series of redox reactions and ultimately leads to the production of large amounts of ATP Pearson Education, Inc.

34 Figure 6.5 e e Electrons from food NAD + e e NADH Stepwise release of energy used to make 2 2 e ATP 2 e O 2 Hydrogen, electrons, and oxygen combine to produce water H 2 O

35 Figure 6.5a 2 2 e ATP Stepwise release of energy used to make ATP Electron transport chain 2 e O 2 Hydrogen, electrons, and oxygen combine to produce water H 2 O

36 An Overview of Cellular Respiration Cellular respiration is an example of a metabolic pathway, which is a series of chemical reactions in cells. All of the reactions involved in cellular respiration can be grouped into three main stages: 1. glycolysis, 2. the citric acid cycle, and 3. electron transport Pearson Education, Inc.

37 2013 Pearson Education, Inc. BioFlix Animation: Cellular Respiration

38 Figure 6.6 Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm Mitochondrion High-energy electrons via carrier molecules Glycolysis 2 Glucose Pyruvic acid Citric Acid Cycle Electron Transport ATP ATP ATP

39 Figure 6.6a Cytoplasm Mitochondrion Glycolysis 2 Glucose Pyruvic acid Citric Acid Cycle High-energy electrons via carrier molecules Electron Transport ATP ATP ATP

40 The Three Stages of Cellular Respiration With the big-picture view of cellular respiration in mind, let s examine the process in more detail Pearson Education, Inc.

41 Stage 1: Glycolysis 1. A six-carbon glucose molecule is split in half to form two molecules of pyruvic acid. 2. These two molecules then donate high energy electrons to NAD +, forming NADH Pearson Education, Inc.

42 Figure 6.7 INPUT NADH OUTPUT P NAD + P 2 ADP 2 ATP 2 ATP 2 ADP P 2 P 3 2 Pyruvic acid 1 P P 2 P 3 Glucose NAD + NADH P 2 ADP 2 ATP Energy investment phase Key Carbon atom P Phosphate group High-energy electron Energy harvest phase

43 Figure 6.7a INPUT OUTPUT 2 Pyruvic acid Glucose

44 Figure 6.7b-1 P 2 ATP 2 ADP 1 P Energy investment phase

45 Figure 6.7b-2 NADH P NAD + P 2 ATP 2 ADP P 2 P 1 P P 2 P NAD + NADH P Energy investment phase Energy harvest phase

46 Figure 6.7b-3 NADH P NAD + P 2 ADP 2 ATP 2 ATP 2 ADP P 2 P 3 1 P P 2 P 3 NAD + NADH P 2 ADP 2 ATP Energy investment phase Energy harvest phase

47 Stage 1: Glycolysis 3. Glycolysis uses two ATP molecules per glucose to split the six-carbon glucose and makes four additional ATP directly when enzymes transfer phosphate groups from fuel molecules to ADP. Thus, glycolysis produces a net of two molecules of ATP per glucose molecule Pearson Education, Inc.

48 Figure 6.8 Enzyme P ADP ATP P P

49 Stage 2: The Citric Acid Cycle In the citric acid cycle, pyruvic acid from glycolysis is first groomed. Each pyruvic acid loses a carbon as CO 2. The remaining fuel molecule, with only two carbons left, is acetic acid. Oxidation of the fuel generates NADH Pearson Education, Inc.

50 Stage 2: The Citric Acid Cycle Finally, each acetic acid is attached to a molecule called coenzyme A to form acetyl CoA. The CoA escorts the acetic acid into the first reaction of the citric acid cycle. The CoA is then stripped and recycled Pearson Education, Inc.

51 Figure 6.9 INPUT (from glycolysis) 2 NAD + Oxidation of the fuel generates NADH NADH OUTPUT (to citric acid cycle) CoA Pyruvic acid 1 Pyruvic acid loses a carbon as CO 2 CO 2 Acetic acid Coenzyme A 3 Acetic acid attaches to coenzyme A Acetyl CoA

52 Figure 6.9a INPUT (from glycolysis) OUTPUT (to citric acid cycle) CoA Pyruvic acid Acetyl CoA

53 Figure 6.9b 2 NAD + Oxidation of the fuel generates NADH NADH OUTPUT 1 Pyruvic acid loses a carbon as CO 2 CO 2 Acetic acid Coenzyme A 3 Acetic acid attaches to coenzyme A

54 Stage 2: The Citric Acid Cycle The citric acid cycle extracts the energy of sugar by breaking the acetic acid molecules all the way down to CO 2, uses some of this energy to make ATP, and forms NADH and FADH Pearson Education, Inc.

55 Blast Animation: Harvesting Energy: Krebs Cycle Select Play 2013 Pearson Education, Inc.

56 Figure 6.10 INPUT Citric acid OUTPUT 1 Acetic acid 2 CO 2 2 ADP + P 3 NAD + Citric Acid Cycle ATP 3 NADH 3 4 FAD FADH Acceptor molecule

57 Figure 6.10a INPUT OUTPUT 1 Acetic acid 2 CO 2 2 ADP + P ATP 3 3 NAD + FAD 3 NADH FADH 2 4 5

58 Figure 6.10b INPUT Citric acid OUTPUT Citric Acid Cycle Acceptor molecule

59 Stage 3: Electron Transport Electron transport releases the energy your cells need to make the most of their ATP. The molecules of the electron transport chain are built into the inner membranes of mitochondria. The chain functions as a chemical machine, which uses energy released by the fall of electrons to pump hydrogen ions across the inner mitochondrial membrane, and uses these ions to store potential energy Pearson Education, Inc.

60 Stage 3: Electron Transport When the hydrogen ions flow back through the membrane, they release energy. The hydrogen ions flow through ATP synthase. ATP synthase takes the energy from this flow and synthesizes ATP Pearson Education, Inc.

61 Figure 6.11 Space between membranes Protein complex Electron carrier 3 5 Inner mitochondrial membrane Electron flow FADH 2 NADH NAD + 1 FAD 2 2 H 2 O 6 4 Matrix Electron transport chain ATP synthase 1 2 O 2 ADP P ATP

62 Figure 6.11a Space between membranes Electron carrier Protein complex 3 5 Inner mitochondrial membrane Electron flow FADH 2 NADH NAD + 1 FAD + H H+ H+ 2 Matrix Electron transport chain ATP synthase 1 2 O H 2 O ADP P 6 ATP

63 Figure 6.11b Space between membranes H Electron carrier Protein complex 3 Inner mitochondrial membrane Electron flow FADH 2 2 FAD 1 2 O 2 2 NADH NAD H+ Matrix Electron transport chain

64 Figure 6.11c O 2 2 H 2 O 6 4 ADP P ATP ATP synthase

65 Stage 3: Electron Transport Cyanide is a deadly poison that binds to one of the protein complexes in the electron transport chain, prevents the passage of electrons to oxygen, and stops the production of ATP Pearson Education, Inc.

66 The Results of Cellular Respiration Cellular respiration can generate up to 32 molecules of ATP per molecule of glucose Pearson Education, Inc.

67 Figure 6.12 Cytoplasm Mitochondrion 2 NADH 2 NADH 6 NADH 2 FADH 2 Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport Maximum per glucose: 2 ATP 2 ATP About 28 ATP About 32 ATP by direct synthesis by direct synthesis by ATP synthase

68 Figure 6.12a Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport 2 ATP 2 ATP About 28 ATP by direct synthesis by direct synthesis by ATP synthase

69 The Results of Cellular Respiration In addition to glucose, cellular respiration can burn diverse types of carbohydrates, fats, and proteins Pearson Education, Inc.

70 Figure 6.13 Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids Amino acids Glycolysis Acetyl CoA Citric Acid Cycle Electron Transport ATP

71 FERMENTATION: ANAEROBIC HARVEST OF FOOD ENERGY Some of your cells can actually work for short periods without oxygen. Fermentation is the anaerobic (without oxygen) harvest of food energy Pearson Education, Inc.

72 Fermentation in Human Muscle Cells After functioning anaerobically for about 15 seconds, muscle cells begin to generate ATP by the process of fermentation. Fermentation relies on glycolysis to produce ATP. Glycolysis does not require oxygen and produces two ATP molecules for each glucose broken down to pyruvic acid Pearson Education, Inc.

73 Fermentation in Human Muscle Cells Pyruvic acid, produced by glycolysis, is reduced by NADH, producing NAD +, which keeps glycolysis going. In human muscle cells, lactic acid is a by-product Pearson Education, Inc.

74 Animation: Fermentation Overview Right click slide / select Play 2013 Pearson Education, Inc.

75 Figure 6.14 INPUT 2 ADP 2 P 2 ATP OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid 2 2 Lactic acid

76 Figure 6.14a INPUT 2 ADP 2 P 2 ATP OUTPUT Glycolysis 2 NAD + 2 NADH 2 NADH 2 NAD + Glucose 2 Pyruvic acid 2 2 Lactic acid

77 Figure 6.14b

78 The Process of Science: What Causes Muscle Burn? Observation: Muscles produce lactic acid under anaerobic conditions. Question: Does the buildup of lactic acid cause muscle fatigue? 2013 Pearson Education, Inc.

79 The Process of Science: What Causes Muscle Burn? Hypothesis: The buildup of lactic acid would cause muscle activity to stop. Experiment: Tested frog muscles under conditions when lactic acid could and could not diffuse away Pearson Education, Inc.

80 Figure 6.15 Battery + Force measured Battery + Force measured Frog muscle stimulated by electric current Solution prevents diffusion of lactic acid Solution allows diffusion of lactic acid; muscle can work for twice as long

81 The Process of Science: What Causes Muscle Burn? Results: When lactic acid could diffuse away, performance improved greatly. Conclusion: Lactic acid accumulation is the primary cause of failure in muscle tissue. However, recent evidence suggests that the role of lactic acid in muscle function remains unclear Pearson Education, Inc.

82 Fermentation in Microorganisms Fermentation alone is able to sustain many types of microorganisms. The lactic acid produced by microbes using fermentation is used to produce cheese, sour cream, and yogurt, soy sauce, pickles, and olives, and sausage meat products Pearson Education, Inc.

83 Fermentation in Microorganisms Yeast is a microscopic fungus that uses a different type of fermentation and produces CO 2 and ethyl alcohol instead of lactic acid. This type of fermentation, called alcoholic fermentation, is used to produce beer, wine, and breads Pearson Education, Inc.

84 Figure 6.16 INPUT 2 ADP + 2 P 2 ATP 2 CO 2 released OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid Ethyl alcohol

85 Figure 6.16a INPUT 2 ADP + 2 P 2 ATP 2 CO 2 released OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid +2 2 Ethyl alcohol

86 Figure 6.16b

87 Evolution Connection: Life before and after Oxygen Glycolysis could be used by ancient bacteria to make ATP when little oxygen was available, and before organelles evolved. Today, glycolysis occurs in almost all organisms and is a metabolic heirloom of the first stage in the breakdown of organic molecules Pearson Education, Inc.

88 Figure Billions of years ago O 2 present in Earth s atmosphere First eukaryotic organisms Atmospheric oxygen reaches 10% of modern levels Atmospheric oxygen first appears Oldest prokaryotic fossils 4.5 Origin of Earth

89 Figure 6.17a 0 Billions of years ago O 2 present in Earth s atmosphere First eukaryotic organisms Atmospheric oxygen reaches 10% of modern levels Atmospheric oxygen first appears Oldest prokaryotic fossils 4.5 Origin of Earth

90 Figure 6.17b

91 Figure 6.UN03 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

92 Figure 6.UN04 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

93 Figure 6.UN05 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

94 Figure 6.UN06 C 6 H 12 O 6 Heat Sunlight O 2 ATP Photosynthesis Cellular respiration CO 2 H 2 O

95 Figure 6.UN07 C 6 H 12 O CO H 2 O + Approx. 32 ATP O 2

96 Figure 6.UN08 Oxidation Glucose loses electrons (and hydrogens) C 6 H 12 O 6 CO 2 Electrons (and hydrogens) ATP O 2 Reduction Oxygen gains electrons (and hydrogens) H 2 O

97 Figure 6.UN09 Mitochondrion O 2 6 NADH 2 NADH 2 NADH 2 FADH 2 Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport 2 CO 2 4 CO 2 H 2 O 2 ATP by direct synthesis by direct synthesis 2 ATP About 28 ATP by ATP synthase About 32 ATP

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org Chapter 4 Photosynthesis and Cellular Respiration Worksheets (Opening image copyright by Derek Ramsey, http://en.wikipedia.org/wiki/file:monarch_butterfly_ Danaus_plexippus_Feeding_Down_3008px.jpg, and

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular Respiration Text, Diagrams, Assessments, and Link to Standards Focus Questions 1) What is cellular respiration? 2) How is cellular respiration connected to breathing? 3) If

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8 How ells Harvest Energy hapter 7 & 8 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism - all in prokaryotic cells!: 1. ability to store chemical energy in ATP 2. evolution

More information

Biology I. Chapter 8/9

Biology I. Chapter 8/9 Biology I Chapter 8/9 NOTEBOOK #1 Interest Grabber Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend all of the money, but then you decide to open a bank

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

Metabolism Poster Questions

Metabolism Poster Questions Metabolism Poster Questions Answer the following questions concerning respiration. 1. Consider the mitochondrial electron transport chain. a. How many hydrogen ions can be pumped for every NADH? b. How

More information

The chemical energy used for most cell processes is carried by ATP.

The chemical energy used for most cell processes is carried by ATP. 4.1 CHEMICAL ENERGY AND ATP Study Guide KEY CONCEPT All cells need chemical energy. VOCABULARY ATP ADP chemosynthesis MAIN IDEA: The chemical energy used for most cell processes is carried by ATP. 1. What

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Bioenergetics Module A Anchor 3

Bioenergetics Module A Anchor 3 Bioenergetics Module A Anchor 3 Key Concepts: - ATP can easily release and store energy by breaking and re-forming the bonds between its phosphate groups. This characteristic of ATP makes it exceptionally

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food The food involved in respiration is usually Internal respiration is controlled by which allow energy to be released in The

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants. Name: ate: 1. Which molecule supplies the energy for cellular functions?. TP. oxygen. N. water 2. Photosynthesis The following equation represents the process of photosynthesis in green plants. What happens

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

Cell. (1) This is the most basic unit of life inside of our bodies.

Cell. (1) This is the most basic unit of life inside of our bodies. Cytology Overview Cell (1) This is the most basic unit of life inside of our bodies. ATP (2) Each of our cell s requires energy in order to carry out its day to day func>ons. This is the energy all cells

More information

b. What is/are the overall function(s) of photosystem II?

b. What is/are the overall function(s) of photosystem II? Use your model and the information in Chapter 10 of Biology, 7th edition, to answer the questions. 1. The various reactions in photosynthesis are spatially segregated from each other within the chloroplast.

More information

Is ATP worth the investment?

Is ATP worth the investment? Is ATP worth the investment? ATP (adenosine tri-phosphate) can be thought of as the currency of the cell. Most cellular metabolic processes cost a certain amount of ATP in order to happen. Furthermore,

More information

Work and Energy in Muscles

Work and Energy in Muscles Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Cellular Respiration. Chapter Outline. Before You Begin

Cellular Respiration. Chapter Outline. Before You Begin 8 Cellular Respiration Triathlete racing past photosynthesizing trees and vegetation. A triathlete racing a bike, a bacterium with undulating flagella, an ocelot climbing a tree, or a snail moving slowly

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action Chapter 5 Microbial Metabolism Metabolism is the sum of all chemical reactions within a living organism, including anabolic (biosynthetic) reactions and catabolic (degradative) reactions. Anabolism is

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

8-3 The Reactions of Photosynthesis Slide 1 of 51

8-3 The Reactions of Photosynthesis Slide 1 of 51 8-3 The of Photosynthesis 1 of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 2 of 51 Inside a Chloroplast Chloroplasts

More information

Biology for Science Majors

Biology for Science Majors Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by

More information

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Metabolism Dr.kareema Amine Al-Khafaji Assistant professor in microbiology, and dermatologist Babylon University, College of Medicine, Department of

Metabolism Dr.kareema Amine Al-Khafaji Assistant professor in microbiology, and dermatologist Babylon University, College of Medicine, Department of Metabolism Dr.kareema Amine Al-Khafaji Assistant professor in microbiology, and dermatologist Babylon University, College of Medicine, Department of Microbiology. Metabolism sum of all chemical processes

More information

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available?

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available? Cellular Respiration in Yeast Adapted from Alcoholic Fermentation in Yeast Investigation in the School District of Philadelphia Biology Core Curriculum 2009 by Dr. Jennifer Doherty and Dr. Ingrid Waldron,

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

Photosynthesis and Cellular Respiration. Stored Energy

Photosynthesis and Cellular Respiration. Stored Energy Photosynthesis and Cellular Respiration Stored Energy What is Photosynthesis? plants convert the energy of sunlight into the energy in the chemical bonds of carbohydrates sugars and starches. SUMMARY EQUATION:

More information

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

H.W. 1 Bio 101 Prof. Fournier

H.W. 1 Bio 101 Prof. Fournier H.W. 1 Bio 101 Prof. Fournier 1. What is a similarity between all bacteria and plants? A) They both have a nucleus B) They are both composed of cells C) They both have chloroplasts D) They both lack a

More information

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall Biology 1of 51 8-3 The Reactions of Photosynthesis 2of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 3of 51 Inside

More information

Cellular Respiration

Cellular Respiration CONCEPTUAL UFE SCIENCE Cellular Respiration Introduction Cellular respiration is the oxidative, chemical attack on energy-rich molecules to provide useful energy for the cell. Enzymes catalyze the oxidation

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary)

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary) Electron transport chain Final stage of aerobic oxidation! Also known as: -oxidative phosphorylation(when coupled to ATP synthase) -respiration (when coupled to ATP synthase) Purpose: -Recycle reduced

More information

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Name PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Cell Structure Identify animal, plant, fungal and bacterial cell ultrastructure and know the structures functions. Plant cell Animal cell

More information

Citric Acid Cycle Review Activity

Citric Acid Cycle Review Activity Citric Acid Cycle Review Activity Goals Students will be able to appreciate the details of steps within the Kreb s Cycle. Students will be able to understand the steps of the Kreb s Cycle at functional

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

Photosynthesis (Life from Light)

Photosynthesis (Life from Light) Photosynthesis Photosynthesis (Life from Light) Energy needs of life All life needs a constant input of energy o Heterotrophs (consumers) Animals, fungi, most bacteria Get their energy from other organisms

More information

Name Section Lab 5 Photosynthesis, Respiration and Fermentation

Name Section Lab 5 Photosynthesis, Respiration and Fermentation Name Section Lab 5 Photosynthesis, Respiration and Fermentation Plants are photosynthetic, which means that they produce their own food from atmospheric CO 2 using light energy from the sun. This process

More information

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date Chapter 8 Photosynthesis Section 8 1 Energy and Life (pages 201 203) This section explains where plants get the energy they need to produce food. It also describes the role of the chemical compound ATP

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name: KEY Period: Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical

More information