# MATH 90 CHAPTER 5 Name:.

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 MATH 90 CHAPTER 5 Nme:. 5.1 Multiplictio of Expoets Need To Kow Recll expoets The ide of expoet properties Apply expoet properties Expoets Expoets me repeted multiplictio ( ) Expoet Properties - Multiply Use the ptter to discover the property. Simplify: Expoet Properties 1) x 3 x 7 Scott Eckert pg. 1

2 Expoet Divisio of Sme Bse Use the ptter to discover the property. Simplify: Expoet Properties 1) m = m+ ) x x 11 5 Expoet Zero Power Look t the ptter d drw coclusio Expoet Properties 1) m = m+ m m ) 3) Expoet - Power o Power Use the ptter to discover the property. Simplify: (3 ) 4 (x 3 ) 5 Expoet Properties 1) m = m+ m m ) 3) 0 = 1, for ll except 0. 4) Scott Eckert pg.

3 Expoet Power o Product Use the ptter to discover the property. Simplify: (b) 3 (xy) 5 Expoet Properties 1) r s = r+s ) r s rs 3) 0 = 1, for ll except 0. 4) ( m ) = m 5) Expoet Power o Frctios Use the ptter to discover the property. Expoet Properties Simplify: 1) m = m+ 3 z 4 r rs ) s 3) 0 = 1, for ll except 0. 4) ( m ) = m 5) (b) = b 6) Scott Eckert pg. 3

4 Expoet Prctice Simplify ech b b (t) 8 (t) (-3x) 3 3. ( 3 b)(b) 4 7. ( 4 b 6 )( b) 5 4. x 7 x 8. xy yz 5 5. Negtive Expoets Need To Kow Review Expoets Properties Ide of Negtive Expoets Negtive Expoet Properties d Clcultio Wht is Scietific Nottio? How to write umbers i Scietific Nottio How to do clcultios i Scietific Nottio Scott Eckert pg. 4

5 Review Expoet Properties Recll: The Product Rule m = m+ The Quotiet Rule m m The Power Rule ( m ) = m Risig Product to power Risig quotiet to power (b) = b b b Ide of Negtive Expoets Look the ptter d drw coclusio Defiitios: for ll rel umbers ( 0), Defiitio: for 0 d is positive, Prctice Simplify Ech 5-3 (-) - 5x -4 5 y x z Scott Eckert pg. 5

6 Expoet Properties Expoet of 1 1 = The Product Rule m = m+ Expoet of 0 Negtive Expoets 0 = 1 1 The Quotiet Rule The Power Rule m ( m ) = m m Thik RECIPROCAL Risig Product to power (b) = b Thik RECIPROCAL Risig quotiet to power b b Prctice - Simplify x -6 x (x 4 ) - Prctice - Simplify 5. ( x ) 4 x 3 7. y y x ( x ) ( ) 3 ( ) 5 4 Scott Eckert pg. 6

7 Scietific Nottio Scietific Nottio is wy to write big or smll umbers i compct d simple wy. where N is deciml t lest oe d less th 10 (1 < N < 10) d m is iteger expoet. Exmples of scietific ottio 1) The tiol debt: \$ 16,749,09,149, ) The mss of hydroge tom: grms = Scietific Nottio Covertig: Scietific ottio ito expded form x 10 1 = x x 10 = x x 10 5 = x x 10-1 = x x 10-3 = x x x 10 7 Scietific Nottio Covertig: Expded form ito scietific ottio. 35,900, We use the expoet properties to multiply d divide umber i scietific ottio. Exmples: 8 x x 10-3 (7.8 x 10 7 )(8.4 x 10 3 ) Scott Eckert pg. 7

8 5.3 Polyomils Need To Kow Recll like terms Some ew vocbulry Like Terms d polyomils Evlute polyomils Vocbulry RECALL - Defiitios A term is mde of umbers & vribles ofte combied with pretheses, multiplictio or divisio. Like terms re terms with the. A polyomil is fiite sum of terms. Exmples: Moomils Biomils Triomils Other New Vocbulry The degree of term is fctors i the term. (If there is oly oe vrible, the the degree is the expoet.) The degree of polyomil equls where the ledig term is the term i the expressio with the highest degree. The umericl coefficiet is the fctor which multiplies the term. Scott Eckert pg. 8

9 Complete the tble for the polyomil 1w 9 4w w w Terms Coefficiets Degree of Term Ledig Term Degree of Polyomil Polyomils Prctice Whe x = -3 fid the vlue of x x + 3 Recll 3x+ 6x Combie like terms: 7x + x + x 5x 9b 5 + 3b b 5 3b 8x 5 x 4 + x 5 + 7x 4 4x 4 x 6 Scott Eckert pg. 9

10 5.4 Add d Subtrct Polyomils Need To Kow Addig polyomils Opposites of polyomil Subtrctig polyomils Polyomils problems solvig Addig Polyomils (x + 4x 9) + (7x 3) x x 3x 7 x x x Add: x 4 + 3x 3 + 4x 5x 3 6x 3 The Opposite of Polyomil Write the opposite of (x + 3x - 4) i two wys Simplify: ( 5x 6x + 3) 7x 11x x Scott Eckert pg. 10

11 Subtrctig Polyomils Subtrct: (9x + 7) (5x 3) (x + 3x + 4) ( 5x 6x + 3) Subtrct: x + 5x 3 4x 4x 5 Prctice Simplify: (y 7y 8) (6y + 6y 8) + (4y y + 3) Polyomil Problem Solvig Fid the perimeter Fid shded re Scott Eckert pg. 11

12 5.5 Multiplictio of Polyomils Need To Kow Multiply moomil times moomil Multiply moomil times polyomil Multiply polyomil times polyomil Moomil times Moomil Recll Multiplictio: (-x 3 )(x 4 ) Expoet Properties 1) ) (-4y 4 )(6y )(-3y ) 3) Moomil times Polyomil Recll: (b + c) = Expoet Properties 1) m = m+ ) ( m ) = m Multiply: x(4x + 5x - 3) = 3) (b) m = m b m Scott Eckert pg. 1

13 Polyomil times Polyomil Multiply: (x + )(x 3x + 4) Recll Colum Multiply 34 x 13 Polyomil times Polyomil Multiply: colums (z 4)(z + 5) Multiply: (x + x + 1)(x 4x + 3) 5.6 Biomil Multiplictio & Short Cuts Need To Kow Biomils times Biomils Short Cut Product of Sum d Differece Biomil Squres of Biomils Scott Eckert pg. 13

14 Biomil times Biomil Multiply: x + 7 x 5 Multiply: (x + 7)(x 5) Short Cut: FOIL Multiply: F O I L Biomil times Biomil Multiply by distributive lw: (y + 6)(y 3) (3x + 5)(x ) Short Cut: FOIL Multiply: F first terms O outer terms I ier terms L lst terms (x + y)( + 7b) Biomil times Biomil Multiply (x 3)(x 6) Fid the re: (1 + t )(1 3t 3 ) Scott Eckert pg. 14

15 Scott Eckert pg. 15

16 5.7 Multivrible Polyomils Need To Kow Evlutig Polyomil Like Terms d Degree Additio d Subtrctio of Polyomils Multiplictio of Polyomils Evlutig Polyomils A mout of moey P ivested t yerly rte r for t yers will grow to mout of A give by A = P(1 + r) t. Wht will you hve from ivestig \$1000 t 6% for 3 yers? New Vocbulry The degree of term is the umber of vrible fctors i the term. The degree of polyomil is the degree of the ledig term, d the ledig term is the term with the highest degree xy 3x y x yz y Terms Coefficiets Degree of Term Ledig Term Degree of Polyomil Scott Eckert pg. 16

17 Simplify: Add d Subtrct Polyomils (x 3xy + y ) + (-4x 6xy y ) + (4x + xy y ) ( 3 + b 3 ) ( b b + 3b 3 ) Multiplyig Polyomils Multiply: (5cd + c d +6)(cd d ) FOILig Polyomils Multiply: (m 3 + 3)(m 3 11) (4r + 3t) (p 3 5q) (p 3 + 5q) ed Scott Eckert pg. 17

18 5.8 Dividig Polyomil Need To Kow Two wys to work divisio Recll the distributive property Divide polyomil by moomil Recll log divisio Divide polyomil by polyomil The Distributive Property Recll: (b + c) = b + c Also: (b + c) = With ew twist: b c (b + c) = Polyomil A B C moo D Divide Polyomil by Moo (5x 10) 5 8x 1x 4x 3 Scott Eckert pg. 18

19 Divide Polyomil by Moo 3 3 (9x y 1 x y ) ( 9 xy) z 14 z 7 z 7z Recll Log Divisio Steps for Divisio Polyomil Divisio x x x 5 6 Steps for Divisio 1. Guess. Multiply 3. Subtrct 4. Brig Dow 5. Repet 8x 6x 5 x 3 Scott Eckert pg. 19

20 Polyomil Divisio 3 t 9t 11t 3 t 3 3 w 10 w Decidig o which wy to DIVIDE Next to ech problem circle the correct wy to divide it. 1. (5x 16 x) (5x 1). 3 (0t 5t 15 t) (5 t) ( ) ( 9 ) x 3x 4x 3 x 5 4x y 8x y 1x y 4 4xy ) Frctio b) Log Divisio ) Frctio b) Log Divisio ) Frctio b) Log Divisio ) Frctio b) Log Divisio ) Frctio b) Log Divisio Scott Eckert pg. 0

### Secondary Math 2 Honors. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers

Secodr Mth Hoors Uit Polomils, Epoets, Rdicls & Comple Numbers. Addig, Subtrctig, d Multiplig Polomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together. Moomils ol

### CHAPTER 7 EXPONENTS and RADICALS

Mth 40 Bittiger 8 th Chpter 7 Pge 1 of 0 CHAPTER 7 EXPONENTS d RADICALS 7.1 RADICAL EXPRESSIONS d FUNCTIONS b mes b Exmple: Simplify. (1) 8 sice () 8 () 16 () 4 56 (4) 5 4 16 (5) 4 81 (6) 0.064 (7) 6 (8)

### Repeated multiplication is represented using exponential notation, for example:

Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

### To multiply exponential expressions with the same base, keep the base, add the exponents.

RULES FOR EXPONENTS Epoets re used to write repeted multiplictio of the sme fctor. I the epoetil epressio, the epoet tells us how m times the bse is used s fctor:. Similrl, i the epressio, the epoet tells

### EXPONENTS AND RADICALS

Expoets d Rdicls MODULE - EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied

### Chapter 3 Section 3 Lesson Additional Rules for Exponents

Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters

### STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the

### Arithmetic Sequences

Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

### Gaussian Elimination Autar Kaw

Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

### A black- line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.

Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the

### One-step equations. Vocabulary

Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

### 8.2 Simplifying Radicals

. Simplifig Rdicls I the lst sectio we sw tht sice. However, otice tht (-). So hs two differet squre roots. Becuse of this we eed to defie wht we cll the pricipl squre root so tht we c distiguish which

### Section 6.1 Radicals and Rational Exponents

Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

### A function f whose domain is the set of positive integers is called a sequence. The values

EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

### Chapter 04.05 System of Equations

hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

### Algebra Work Sheets. Contents

The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

### Unit 8 Rational Functions

Uit 8 Ratioal Fuctios Algebraic Fractios: Simplifyig Algebraic Fractios: To simplify a algebraic fractio meas to reduce it to lowest terms. This is doe by dividig out the commo factors i the umerator ad

### Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals:

70 Sect 11. - Simplifyig Rdicl Epressios Cocept #1 Multiplictio d Divisio Properties of Rdicls We c use our properties of epoets to estlish two properties of rdicls: () 1/ 1/ 1/ & ( ) 1/ 1/ 1/ Multiplictio

### Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

### Radicals and Fractional Exponents

Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

### Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

### Roots, Radicals, and Complex Numbers

Chpter 8 Roots, Rils, Comple Numbers Agel, Itermeite Algebr, 7e Lerig Objetives Workig with squre roots Higher-orer roots; ris tht oti vribles Simplifig ril epressios Agel, Itermeite Algebr, 7e Squre Roots

### Operations with Polynomials

38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

### Basic Arithmetic TERMINOLOGY

Bsic Arithmetic TERMINOLOGY Absolute vlue: The distce of umber from zero o the umber lie. Hece it is the mgitude or vlue of umber without the sig Directed umbers: The set of itegers or whole umbers f,,,

### m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

### The Quadratic Formula and the Discriminant

9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

### For the Final Exam, you will need to be able to:

Mth B Elementry Algebr Spring 0 Finl Em Study Guide The em is on Wednesdy, My 0 th from 7:00pm 9:0pm. You re lloed scientific clcultor nd " by 6" inde crd for notes. On your inde crd be sure to rite ny

### NUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results

CHAPTER NUMBER SYSTEMS Min Concepts nd Results Rtionl numbers Irrtionl numbers Locting irrtionl numbers on the number line Rel numbers nd their deciml expnsions Representing rel numbers on the number line

### Addition and subtraction of rational expressions

Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The

### Introduction to Algorithms Chapter 3 Growth of Functions. How fast will your program run?

Itroductio to Algorithms Chpter 3 Growth of Fuctios 3 -- How fst will your progrm ru? The ruig time of your progrm will deped upo: The lgorithm The iput Your implemettio of the lgorithm i progrmmig lguge

### Math Bowl 2009 Written Test Solutions. 2 8i

Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### notation, simplifying expressions

I I. Algebr: exponents, scientific nottion, simplifying expressions --------------------------------------------------------------------- For more prctice problems nd detiled written explntions, see the

### 2 If a branch is prime, no other factors

Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Section 3.3: Geometric Sequences and Series

ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some

### Sect 8.3 Triangles and Hexagons

13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

### BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

### s = 1 2 at2 + v 0 t + s 0

Mth A UCB, Sprig A. Ogus Solutios for Problem Set 4.9 # 5 The grph of the velocity fuctio of prticle is show i the figure. Sketch the grph of the positio fuctio. Assume s) =. A sketch is give below. Note

### MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

### UNIT FIVE DETERMINANTS

UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit

### 8.3 POLAR FORM AND DEMOIVRE S THEOREM

SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### Essential Question How can you use properties of exponents to simplify products and quotients of radicals?

. Properties of Ratioal Expoets ad Radicals Essetial Questio How ca you use properties of expoets to simplify products ad quotiets of radicals? Reviewig Properties of Expoets Work with a parter. Let a

### SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)

SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig

### A Resource for Free-standing Mathematics Qualifications

A pie chrt shows how somethig is divided ito prts - it is good wy of showig the proportio (or frctio) of the dt tht is i ech ctegory. To drw pie chrt:. Fid the totl umer of items.. Fid how my degrees represet

### + 1= x + 1. These 4 elements form a field.

Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

### 7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### The Fundamental Theorems of Calculus

The Fudmetl Theorems of Clculus The Fudmetl Theorem of Clculus, Prt II Recll the Tke-home Messge we metioed erlier Exmple poits out tht eve though the defiite itegrl solves the re problem, we must still

### Algebra 1B Assignments Chapter 8: Properties of Exponents

Nae Score Algebra B Assigets Chapter 8: Properties of Expoets 8- Pages -: #-66 eve, 78, 9, 98 8- Pages 8-0: #-0 eve, -9 8- Pages -6: #-8 eve, - eve, 67, 68, 70, 79, 8, 90, 9 8- Pages 9-: #-0 eve, 7, 76,

### Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

### Sequences and Series

Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

### Laws of Exponents Learning Strategies

Laws of Epoets Learig Strategies What should studets be able to do withi this iteractive? Studets should be able to uderstad ad use of the laws of epoets. Studets should be able to simplify epressios that

### 17.3 ALGEBRA. Find Unknown Side Lengths. Are You Ready? Lesson Opener Making Connections. Resources. Essential Question

7. ALGEBRA Fid Ukow Side Leths? Essetil Questio How c you fid the ukow leth of side i polyo whe you kow its perimeter? Tes Essetil Kowlede d Skills Geometry d Mesuremet.7.B Determie the perimeter of polyo

### RADICALS COMMON MISTAKES

RADICALS COMMON MISTAKES 1 10/0/009 Radicals-Notatio, Defiitio, ad Simplifyig How to Uderstad the Defiitio ad Notatio Notatio: a root, radical, a radicad. Square root,, but the two is NOT writte (i.e.

### Sample Problems. Practice Problems

Lecture Notes Comple Frctions pge Smple Problems Simplify ech of the following epressions.. +. +. + 8. b b... 7. + + 9. y + y 0. y Prctice Problems Simplify ech of the following epressions...... 8 + +

### Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Parents Guide to helping your child with Higher Maths

Prets Guide to helpig your child with Higher Mths The essece of mthemtics is ot to mke simple thigs complicted, but to mke complicted thigs simple. S. Gudder Arithmetic is beig ble to cout up to twety

### Let us recall some facts you have learnt in previous grades under the topic Area.

6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

### Chapter 6 Solving equations

Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### Solving equations. Pre-test. Warm-up

Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

### A proof of Goldbach's hypothesis that all even numbers greater than four are the sum of two primes.

A roof of Goldbch's hyothesis tht ll eve umbers greter th four re the sum of two rimes By Ket G Sliker Abstrct I this er I itroduce model which llows oe to rove Goldbchs hyothesis The model is roduced

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

### THE GEOMETRIC SERIES

Mthemtics Revisio Guides The Geometic eies Pge of M.K. HOME TUITION Mthemtics Revisio Guides Level: A / A Level AQA : C Edexcel: C OCR: C OCR MEI: C THE GEOMETRIC ERIE Vesio :. Dte: 8-06-0 Exmples 7 d

### = 2, 3, 4, etc. = { FLC Ch 7. Math 120 Intermediate Algebra Sec 7.1: Radical Expressions and Functions

Math 120 Itermediate Algebra Sec 7.1: Radical Expressios ad Fuctios idex radicad = 2,,, etc. Ex 1 For each umber, fid all of its square roots. 121 2 6 Ex 2 1 Simplify. 1 22 9 81 62 8 27 16 16 0 1 180 22

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### Exponents base exponent power exponentiation

Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

### Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x

MATH 11011 EXPONENTIAL FUNCTIONS KSU AND THEIR APPLICATIONS Defiitios: Expoetial fuctio: For a > 0, the expoetial fuctio with base a is defied by fx) = a x Horizotal asymptote: The lie y = c is a horizotal

### Square & Square Roots

Squre & Squre Roots Squre : If nuber is ultiplied by itself then the product is the squre of the nuber. Thus the squre of is x = eg. x x Squre root: The squre root of nuber is one of two equl fctors which

### THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

### 5.6 Substitution Method

5.6 Substitution Method Recll the Chin Rule: (f(g(x))) = f (g(x))g (x) Wht hppens if we wnt to find f (g(x))g (x) dx? The Substitution Method: If F (x) = f(x), then f(u(x))u (x) dx = F (u(x)) + C. Steps:

### 8th Grade Unit of Study Exponents

DRAFT 8th Grde Unit of Study Exponents Grde: 8 Topic: Exponent opertions nd rules Length of Unit: 6 dys Focus of Lerning Common Core Stte Stndrds: Expressions nd Equtions 8.EE Work with rdicls nd integer

### Pythagoras theorem and trigonometry (2)

HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

### Education Spending (in billions of dollars) Use the distributive property.

0 CHAPTER Review of the Rel Number System 96. An pproximtion of federl spending on eduction in billions of dollrs from 200 through 2005 cn be obtined using the e xpression y = 9.0499x - 8,07.87, where

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

### 5.6 POSITIVE INTEGRAL EXPONENTS

54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

### The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.

The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion

### FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### Rational Expressions

C H A P T E R Rtionl Epressions nformtion is everywhere in the newsppers nd mgzines we red, the televisions we wtch, nd the computers we use. And I now people re tlking bout the Informtion Superhighwy,

### FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

### Searching Algorithm Efficiencies

Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

### Laws of Exponents. net effect is to multiply with 2 a total of 3 + 5 = 8 times

The Mathematis 11 Competey Test Laws of Expoets (i) multipliatio of two powers: multiply by five times 3 x = ( x x ) x ( x x x x ) = 8 multiply by three times et effet is to multiply with a total of 3