n Using the formula we get a confidence interval of 80±1.64


 Iris Conley
 1 years ago
 Views:
Transcription
1 9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge 77% with stdrd devitio of 10%. Wht is the probbility tht the e rk of four rdoly selected studets fro orig clss is greter th the verge of four rdoly selected studets fro fteroo clss? X = rks ~ N(µ, X ~ N(73,12 X ~ N(77,10 = =4 Sice the popultio stdrd devitio is kow for both orig d fteroo clss X X ( µ µ P( X X > 0 = P( Z > 2 2 Forul: + Usig this forul we get P(Z>0.51 d redig the vlue i the Ztble =0.31 Aswer: The probbility tht the sple e i the orig clss is lrger th the oe i the fteroo clss is A rdo sple of 25 ws drw fro orl distributio whose stdrd devitio is 5. The sple e ws 80.. Deterie the 90% cofidece itervl estite of the popultio e. 90% cofidece itervl for the popultio e α = 10.9=0.1 Forul: X ± Z α / 2 Usig the forul we get cofidece itervl of 80±1.64 b. Repet prt. with sple size of 100. Aswer: 80±0.82 c. Repet prt. with sple size of 400. Aswer: 80±0.41 d. Describe wht hppes to the cofidece itervl estite whe the sple size icreses. As the sple size icrese we hve ore ifortio bout the popultio. 1(5
2 10.53 The opertios ger of lrge productio plt would like to estite the verge out of tie workers tke to sseble ew electroic copoet. After observig uber of workers sseblig siilr devices, she guesses tht the stdrd devitio is 6 iutes. How lrge sple of workers should she tke if she wishes to estite the e ssebly tie to withi 10 secods? Assue tht the cofidece level is to be 90%. =6 iutes = 360 secods Usig the cofidece itervl forul we c rerrge the forul d get the followig forul to clculte : 2 Zα / 2 = W Where W= 10 secods (W equls the prt fter the ± i clcultio of CI Aswer: Usig the forul we get tht the sple size ust be of 3486 or ore. 4. Itroductio to test sttistic d pvlue Fid the pvlue of the followig test give tht x = 500, =50 d = 20 H : µ = H A : µ > 505 Test Sttistic X µ Z = ~ N(0,1 / Usig the forul bove we get observed Z obs of Use the Ztble to kow the pvlue for the observed vlue = Aswer: The probbility to observe sple e of 500 or less give tht the ull hypothesis is true = Repet prt with = 30, wht hppes? Z obs = Ad the pvlue is =0.12 Aswer: As the popultio stdrd devitio icreses the pvlue icreses. b. Repet prt with = 100, wht hppes? Z obs = 2.5 Ad the pvlue is = Aswer: As the sple size icreses the pvlue decreses (becuse we hve ore ifortio bout the popultio c. Repet prt with x = 504, wht hppes? Z obs = Ad the pvlue is =0.36 Aswer: As the observed sple e is closer to the ull hypothesis popultio e the pvlue icreses. 2(5
3 11.29 A busiess studet clis tht o verge MBA studet is required to prepre ore th five cses per week. To exie the cli, sttistic professor sks rdo sple of te MBA studets to report the uber of cses they prepre weekly. The results re exhibited here. C the professor coclude t the 5% sigificce level tht the cli is true, ssuig tht the uber of cses is orlly distributed with stdrd devitio is 2? X~N(µ,2 =10 α=sigificce level = 0.05 Hypothesis H 0 : µ =5 H A : µ > Clculte the sple e with forul give i erlier exercises Sple e=6.7 Forulte the test sttistic (se exercise 4 bove. Rejectio regio Z obs >Z α =Z 0.05 =1.645 The we reject the ull hypothesis Observed vlue Z obs = = / 10 Aswer: 2.68>1.645 therefore c the professor, o 5% sigificce level, coclude tht the cli is true A office ger believes tht the verge out of tie spet by office workers redig d deletig sp eil exceeds 25 iutes per dy. To test this belief, he tkes rdo sple of 18 workers d esure the out of tie ech speds redig d deletig sp. The results re listed here. If the popultio of tie is orlly distributed with stdrd devitio of 10 iutes, c the ger ifer t the 1% sigificce level tht he is correct? X~N(µ,10 =18 α=sigificce level = 0.01 Hypothesis (5
4 H 0 : µ =25 H A : µ >25 Clculte the sple e with forul give i erlier exercises Sple e=29 Forulte the test sttistic (se exercise 4 bove. Rejectio regio Z obs >Z α =Z 0.01 =2.33 The we reject the ull hypothesis Observed vlue Z obs = 10 / 18 = 1.69 Aswer: 1.69 < 2.33 d therefore we cot reject the ull hypothesis A rdo sple of 8 observtios ws drw fro orl popultio. The sple e d sple stdrd devitio re x = 40 d s = 10.. Estite the popultio e with 95% cofidece. Sice the popultio stdrd devitio is ukow d the sple size is sll we use the Studet t distributio to clculte 95% cofidece itervl for the popultio e: Forul: X ± t α / 2, 1 Which gives CI of 40±8.36 s b. Repet prt ssuig tht you kow tht the popultio stdrd devitio is = 10 Sice we hve the popultio stdrd devitio we c use the Zdistributio d forul: X ± Z α / 2 This gives estited CI of 40±6.93 d. Expli why the itervl estite produced i prt b is rrower th tht i prt Becuse the distributio of Z is rrower th tht of the Studet t e. Repet d b with = 100, expli. Usig the tdistributio for s=10 d =100 we will get CI of 40±1.984 Usig the Zdistributio for =10 d =100 we will get CI of 40±1.96 Becuse for lrge sple size (>30 the Studet t distributio is pproxitely orl distributed. The cetrl liit theore (CLT. 4(5
5 12.27 Most owers of digitl cers store their pictures o the cer. Soe will evetully dowlod these to coputer or prit the usig their ow priters or use coercil priter. A filprocessig copy wted to kow how y pictures were stored o cers. A rdo sple of 10 digitl cer owers produced the dt give here. Estite with 95% cofidece the e uber of pictures stored o digitl cers Strt by clcultig the sple e d stdrd devitio with foruls give i erlier prcticls/the book or forul sheet Sple e=17.7 s = 9 Sice the sple size is sll d we do t kow the popultio stdrd devitio we use t distributio to clculte the CI for the popultio e= Observed vlues 17.7 ± Which gives CI of 17.7±6.44 LCL (lower liit = UCL (upper liit = X ± t α / 2, 1 s A de of busiess school wted to kow whether the grdutes of her school used sttisticl iferece techique durig their first yer of eployet fter grdutio. She surveyed 418 grdutes d sked bout the use of sttisticl techiques. After tllyig up the resposes, she foud tht 217 used sttisticl iferece withi 1 yer of grdutio. Estite with 90% cofidece the proportio of ll busiess school grdutes who use their sttisticl eductio withi yer of grdutio. We kow tht the sple proportio ^p=x/ where x=the uber of success (i this cse uber who used sttistics d =sple size ^p=0.52 Further we kow tht the stdrd devitio for ^p is pˆ (1 pˆ To ke 90% cofidece itervl for the popultio proportio, p, use the forul: pˆ(1 pˆ pˆ ± Z α / 2 Where α=0.1 Usig our observed vlues we get CI of 0.52±0.04 for p 5(5
Showing Recursive Sequences Converge
Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.
More informationA Resource for Freestanding Mathematics Qualifications
A pie chrt shows how somethig is divided ito prts  it is good wy of showig the proportio (or frctio) of the dt tht is i ech ctegory. To drw pie chrt:. Fid the totl umer of items.. Fid how my degrees represet
More informationChapter 3 Section 3 Lesson Additional Rules for Exponents
Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters
More informationMore About Expected Value and Variance
More Aout Expected Vlue d Vrice Pge of 5 E[ X ] Expected vlue,, hs umer of iterestig properties These re t likely to e used i this course eyod this lesso, ut my come ito ply i lter sttistics course Properties
More informationDEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES
DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES The ultibioil odel d pplictios by Ti Kyg Reserch Pper No. 005/03 July 005 Divisio of Ecooic d Ficil Studies Mcqurie Uiversity Sydey NSW 09 Austrli
More informationThe Fundamental Theorems of Calculus
The Fudmetl Theorems of Clculus The Fudmetl Theorem of Clculus, Prt II Recll the Tkehome Messge we metioed erlier Exmple poits out tht eve though the defiite itegrl solves the re problem, we must still
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationGaussian Elimination Autar Kaw
Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationA black line master of Example 3 You Try is on provided on page 10 for duplication or use with a projection system.
Grde Level/Course: Algebr Lesso/Uit Pl Nme: Geometric Sequeces Rtiole/Lesso Abstrct: Wht mkes sequece geometric? This chrcteristic is ddressed i the defiitio of geometric sequece d will help derive the
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationWe will begin this chapter with a quick refresher of what an exponent is.
.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for
More informationArithmetic Sequences
Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationHypothesis testing: one sample
Hypothesis testig: oe sample Describig iformatios Flowchart for QMS 202 Drawig coclusios Forecastig Improve busiess processes Data Collectio Probability & Probability Distributio Regressio Aalysis Timeseries
More informationEXPONENTS AND RADICALS
Expoets d Rdicls MODULE  EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More informationIntroduction to Hypothesis Testing
Itroductio to Hypothesis Testig I Cosumer Reports, April, 978, the results of tste test were reported. Cosumer Reports commeted, "we do't cosider this result to be sttisticlly sigifict." At the time, Miller
More informationMATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL  INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationA function f whose domain is the set of positive integers is called a sequence. The values
EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationNotes on Hypothesis Testing
Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More information8.2 Simplifying Radicals
. Simplifig Rdicls I the lst sectio we sw tht sice. However, otice tht (). So hs two differet squre roots. Becuse of this we eed to defie wht we cll the pricipl squre root so tht we c distiguish which
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationm n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.
TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationA. Description: A simple queueing system is shown in Fig. 161. Customers arrive randomly at an average rate of
Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig
More informationA proof of Goldbach's hypothesis that all even numbers greater than four are the sum of two primes.
A roof of Goldbch's hyothesis tht ll eve umbers greter th four re the sum of two rimes By Ket G Sliker Abstrct I this er I itroduce model which llows oe to rove Goldbchs hyothesis The model is roduced
More information1.2 Accumulation Functions: The Definite Integral as a Function
mth 3 more o the fudmetl theorem of clculus 23 2 Accumultio Fuctios: The Defiite Itegrl s Fuctio Whe we compute defiite itegrl b f (x) we get umber which we my iterpret s the et re betwee f d the xxis
More informationRepeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re shorthd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationName: Period GL SSS~ Dates, assignments, and quizzes subject to change without advance notice. Monday Tuesday Block Day Friday
Ne: Period GL UNIT 5: SIMILRITY I c defie, idetify d illustrte te followig ters: Siilr Cross products Scle Fctor Siilr Polygos Siilrity Rtio Idirect esureet Rtio Siilrity Stteet ~ Proportio Geoetric Me
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationChapter 04.05 System of Equations
hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vicevers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee
More informationChapter 8  Practice Problems 1
Chpter 8  Prctice Problems 1 MULTIPLE CHOICE. Choose the one lterntive tht best completes the sttement or nswers the question. A hypothesis test is to be performed. Determine the null nd lterntive hypotheses.
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More informationMath Bowl 2009 Written Test Solutions. 2 8i
Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,
More informationArea Between Curves: We know that a definite integral
Are Between Curves: We know tht definite integrl fx) dx cn be used to find the signed re of the region bounded by the function f nd the x xis between nd b. Often we wnt to find the bsolute re of region
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationSummation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation
Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....
More informationGeometric Sequences. Definition: A geometric sequence is a sequence of the form
Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece
More informationMATHEMATICS SYLLABUS SECONDARY 7th YEAR
Europe Schools Office of the SecretryGeerl Pedgogicl developmet Uit Ref.: 201101D41e2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig
More information7.1 Inference for a Population Proportion
7.1 Iferece for a Populatio Proportio Defiitio. The statistic that estimates the parameter p is the sample proportio cout of successes i the sample ˆp = cout of observatios i the sample. Assumptios for
More informationSINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355  INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355  INTERMEDIATE ALGEBRA I (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationApplication: Volume. 6.1 Overture. Cylinders
Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationHypothesis testing in a Nutshell
Hypothesis testig i a Nutshell Summary by Pamela Peterso Drake Itroductio The purpose of this readig is to discuss aother aspect of statistical iferece, testig. A is a statemet about the value of a populatio
More information3 The Utility Maximization Problem
3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationLecture 34: The `Density Operator. Phy851 Fall 2009
Lecture 3: The `Deity Opertor Phy85 Fll 9 The QM `deity opertor HAS NOTHING TO DO WITH MASS PER UNIT VOLUME The deity opertor forli i geerliztio of the Pure Stte QM we hve ued o fr. New cocept: Mixed tte
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationChapter 10 Student Lecture Notes 101
Chapter 0 tudet Lecture Notes 0 Basic Busiess tatistics (9 th Editio) Chapter 0 Twoample Tests with Numerical Data 004 PreticeHall, Ic. Chap 0 Chapter Topics Comparig Two Idepedet amples Z test for
More informationOMG! Excessive Texting Tied to Risky Teen Behaviors
BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9
More informationCHAPTER 7 EXPONENTS and RADICALS
Mth 40 Bittiger 8 th Chpter 7 Pge 1 of 0 CHAPTER 7 EXPONENTS d RADICALS 7.1 RADICAL EXPRESSIONS d FUNCTIONS b mes b Exmple: Simplify. (1) 8 sice () 8 () 16 () 4 56 (4) 5 4 16 (5) 4 81 (6) 0.064 (7) 6 (8)
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationHomework 7 Solutions Total Points
Homework 7 Solutios  165 Total Poits STAT 201502 Lecture 11, 12, & 13 Material 1. Studies that compare treatmets for chroic medical coditios such as headaches ca use the same subjects for each treatmet.
More informationN Mean SD Mean SD Shelf # Shelf # Shelf #
NOV xercises smple of 0 different types of cerels ws tken from ech of three grocery store shelves (1,, nd, counting from the floor). summry of the sugr content (grms per serving) nd dietry fiber (grms
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationChapter 1 Calculating Sample Size in Anthropometry
Chpter Clcultig Smple Sie i Athropometry Crie A. Beller, Bethy J. Foster, d Jmes A. Hley Abstrct Smple sie estimtio is fudmetl step whe desigig cliicl trils d epidemiologicl studies for which the primry
More informationHomework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule.
Text questions, Chpter 5, problems 15: Homework #4: Answers 1. Drw the rry of world outputs tht free trde llows by mking use of ech country s trnsformtion schedule.. Drw it. This digrm is constructed
More informationReview for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review for 1 sample CI Name MULTIPLE CHOICE. Choose the oe alterative that best completes the statemet or aswers the questio. Fid the margi of error for the give cofidece iterval. 1) A survey foud that
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationPREMIUMS CALCULATION FOR LIFE INSURANCE
ls of the Uiversity of etroşi, Ecoomics, 2(3), 202, 97204 97 REIUS CLCULTIO FOR LIFE ISURCE RE, RI GÎRBCI * BSTRCT: The pper presets the techiques d the formuls used o itertiol prctice for estblishig
More informationUnit 29: Inference for TwoWay Tables
Unit 29: Inference for TwoWy Tbles Prerequisites Unit 13, TwoWy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl
More informationFourier Series (Lecture 13)
Fourier Series (Lecture 3) ody s Objectives: Studets will be ble to: ) Determie the Fourier Coefficiets for periodic sigl b) Fid the stedystte respose for system forced with geerl periodic forcig Rrely
More informationFOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2πperiodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),
FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8
Sectio 8 1C The Techiques of Hypothesis Testig A claim is made that 10% of the populatio is left haded. A alterate claim is made that less tha 10% of the populatio is left haded. We will use the techiques
More informationUNIT FIVE DETERMINANTS
UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationSTUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:
STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationSection 7.2 Confidence Interval for a Proportion
Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationI calculate the unemployment rate as (In Labor Force Employed)/In Labor Force
Introduction to the Prctice of Sttistics Fifth Edition Moore, McCbe Section 4.5 Homework Answers to 98, 99, 100,102, 103,105, 107, 109,110, 111, 112, 113 Working. In the lnguge of government sttistics,
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationProbability & Statistics Chapter 9 Hypothesis Testing
I Itroductio to Probability & Statistics A statisticia s most importat job is to draw ifereces about populatios based o samples take from the populatio Methods for drawig ifereces about parameters: ) Make
More informationSquare & Square Roots
Squre & Squre Roots Squre : If nuber is ultiplied by itself then the product is the squre of the nuber. Thus the squre of is x = eg. x x Squre root: The squre root of nuber is one of two equl fctors which
More informationSTA 2023 Test #3 Practice Multiple Choice
STA 223 Test #3 Prctice Multiple Choice 1. A newspper conducted sttewide survey concerning the 1998 rce for stte sentor. The newspper took rndom smple (ssume it is n SRS) of 12 registered voters nd found
More information