# Chapter 3 - Vectors. Arithmetic operations involving vectors. A) Addition and subtraction. - Graphical method - Analytical method Vector components

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 3 - Vectors. Arithmetic operations involving vectors. A) Addition and subtraction. - Graphical method - Analytical method Vector components"

## Transcription

1 Chpter 3 - Vectors I. Defnton II. Arthmetc opertons nvolvng vectors A) Addton nd sutrcton - Grphcl method - Anltcl method Vector components B) Multplcton Revew of ngle reference sstem 90º<θ <80º 90º 0º<θ <90º 80º θ θ 0º Orgn of ngle reference sstem 80º<θ 3 <70º 70º θ 3 θ 4 70º<θ 4 <360º Angle orgn Θ 4 300º-60º

2 I. Defnton Vector quntt: quntt wth mgntude nd drecton. It cn e represented vector. Emples: dsplcement, veloct, ccelerton. Dsplcement does not descre the oect s pth. Sme dsplcement Sclr quntt: quntt wth mgntude, no drecton. Emples: temperture, pressure II. Arthmetc opertons nvolvng vectors Vector ddton: - Geometrcl method Rules: s commuttve lw) 3.) s ) c c) ssoctve lw) 3.)

3 Vector sutrcton: d ) 3.3) Vector component: proecton of the vector on n s. cosθ snθ 3.4) Sclr components of tnθ 3.5) Vector mgntude Vector drecton Unt vector: Vector wth mgntude. No dmensons, no unts. ˆ, ˆ, ˆ unt vectors n postve drecton of,, es ˆ ˆ 3.6) Vector component Vector ddton: - Anltcl method: ddng vectors components. r )ˆ ) ˆ 3.7) 3

4 4 Vectors & Phscs: -The reltonshps mong vectors do not depend on the locton of the orgn of the coordnte sstem or on the orentton of the es. - The lws of phscs re ndependent of the choce of coordnte sstem. θ θ ' 3.8) ' ' Multplng vectors: - Vector sclr: - Vector vector: Sclr product sclr quntt s f 3.9) cos dot product) ) 90 0 cos 0 ) 0 cos Rule: ) cos90 cos0 Multplng vectors: - Vector vector Vector product vector sn ˆ ) ˆ ) )ˆ c c cross product) Mgntude Angle etween two vectors: cosϕ

5 0 sn 0 0 ) sn 90 ) Vector product Drecton rght hnd rule Rule: ) 3.) c perpendculr to plne contnng, ) Plce nd tl to tl wthout lterng ther orenttons. ) c wll e long lne perpendculr to the plne tht contns nd where the meet. 3) Sweep nto through the smllest ngle etween them. Rght-hnded coordnte sstem Left-hnded coordnte sstem 5

6 sn ) ) ) ˆ ˆ 4: If B s dded to C 3 4, the result s vector n the postve drecton of the s, wth mgntude equl to tht of C. Wht s the mgntude of B? Method Method Isosceles trngle B C B 3ˆ 4 ˆ) D D ˆ θ C D C tnθ 3/ 4) θ 36.9 B 3ˆ 4 ˆ) 5 ˆ B 3ˆ ˆ D B 9 3. θ B / θ sn B Dsn 3. D B/ B 50: A fre nt goes through three dsplcements long level ground: d for 0.4m SW, d 0.5m E, d 3 0.6m t 60º North of Est. Let the postve drecton e Est nd the postve drecton e North. ) Wht re the nd components of d, d nd d 3? ) Wht re the nd the components, the mgntude nd the drecton of the nt s net dsplcement? c) If the nt s to return drectl to the strtng pont, how fr nd n wht drecton should t move? ) ) d4 d d 0.8ˆ 0.8 ˆ) 0.5ˆ 0.ˆ 0.8 ˆ) m N d 0.4cos45 0.8m D d4 d3 0.ˆ 0.8 ˆ) 0.3ˆ 0.5 ˆ) 0.5ˆ 0.4 ˆ) m D d m E 0.4sn D m d 0.5m d 45º d d 4 d 3 d 0 d3 0.6cos m d3 0.6sn m 0.4 θ tn North of Est c) Return vector negtve of net dsplcement, D0.57m, drected 5º South of West 6

7 53: d 5 ˆ 6ˆ 4ˆ d ˆ ˆ 3ˆ d 4ˆ 3 ˆ ˆ 3 ) r d d d3? ) Angle etween r nd? c) Component of d long d? d) Component of d perpendculr to d nd n plne of d, d? ) r d d d 4ˆ 5 ˆ 6ˆ) ˆ ˆ 3ˆ) 4ˆ 3 ˆ ˆ) 9ˆ 6 ˆ 7ˆ 3 r ˆ 7 ) r cosθ 7 θ cos 3.88 r m d perp d d c) d d dd cosθ cosθ d d θ d // d d d// d cosθ d 3.m d d 3.74 d m d d d) d d// dperp d perp m d m 30: If d ˆ 4ˆ 3ˆ d 5ˆ ˆ ˆ d d) d 4d)? d d) contned n d, d) plne d 4d) 4 d d) 4 perpendculr to d, d) plne perpendculr to cos Tp: Thn efore clculte!!! 54: Vectors A nd B le n n plne. A hs mgntude 8.00 nd ngle 30º; B hs components B -7.7, B Wht re the ngles etween the negtve drecton of the s nd ) the drecton of A, ) the drecton of AB, c) the drecton of AB3)? ˆ A 30º ) Angle etween nd A B ) Angle, A B) C ngle ˆ, ˆ ecuse C perpendculr plne A, B) ) 90 c) Drecton A B 3ˆ) D E B 3ˆ 7.7ˆ 9. ˆ 3ˆ ˆ D A E ˆ ˆ ˆ 5.4 ˆ 94.6ˆ 3 D ˆ D ˆ 8.39ˆ 5.4 ˆ 94.6ˆ) 5.4 ˆ 5.4 cos D θ θ 99 D

8 39: A wheel wth rdus of 45 cm rolls wthout sleepng long horontl floor. At tme t the dot P pnted on the rm of the wheel s t the pont of contct etween the wheel nd the floor. At lter tme t, the wheel hs rolled through one-hlf of revoluton. Wht re ) the mgntude nd ) the ngle reltve to the floor) of the dsplcement P durng ths ntervl? Vertcl dsplcement: R 0. 9m Horontl dsplcement: πr). 4m r.4m )ˆ 0.9m) ˆ r m R tnθ θ 3.5 πr d 6: Vector hs mgntude of 5.0 m nd s drected Est. Vector hs mgntude of 4.0 m nd s drected 35º West of North. Wht re ) the mgntude nd drecton of )?. ) Wht re the mgntude nd drecton of -)?. c) Drw vector dgrm for ech comnton. W - - N 5º S E 5ˆ ˆ 4sn 35 4cos35 ˆ.9ˆ 3.8 ˆ ).7ˆ 3.8 ˆ ) m 3.8 tnθ θ ) 7.9ˆ 3.8 ˆ m 3.8 tnθ θ or ) North of West 8

### Chapter 3 - Vectors. I. Definition. Arithmetic operations involving vectors. A) Addition and subtraction

Chpter 3 - Vectors I. Defnton II. Arthmetc opertons nvolvng vectors A Aton n sutrcton - Grphcl metho - Anltcl metho Vector components B Multplcton Revew of ngle reference sstem 9º º

### SCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar

SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,

### Lecture #8. Thévenin Equivalent Circuit

ecture #8 ANNOUNCEMENTS HW#2 solutons, HW#3 re posted onlne Chnge n Frhn s O.H. : 5-6 nsted of Mo 3-4 wll e wy next Mondy & Wednesdy Guest lecturer: Prof. Neureuther s offce hour on Wed. 9/17 cncelled

### Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

### Basics of Counting. A note on combinations. Recap. 22C:19, Chapter 6.5, 6.7 Hantao Zhang

Bscs of Countng 22C:9, Chpter 6.5, 6.7 Hnto Zhng A note on comntons An lterntve (nd more common) wy to denote n r-comnton: n n C ( n, r) r I ll use C(n,r) whenever possle, s t s eser to wrte n PowerPont

### Vector Geometry for Computer Graphics

Vector Geometry for Computer Grphcs Bo Getz Jnury, 7 Contents Prt I: Bsc Defntons Coordnte Systems... Ponts nd Vectors Mtrces nd Determnnts.. 4 Prt II: Opertons Vector ddton nd sclr multplcton... 5 The

### Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

### Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

### EN3: Introduction to Engineering. Teach Yourself Vectors. 1. Definition. Problems

EN3: Introducton to Engneerng Tech Yourself Vectors Dvson of Engneerng Brown Unversty. Defnton vector s mthemtcl obect tht hs mgntude nd drecton, nd stsfes the lws of vector ddton. Vectors re used to represent

### 2 If a branch is prime, no other factors

Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch

### 21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

### Chapter 7 Kinetic energy and work

Chpter 7 Kc energy nd wor I. Kc energy. II. or. III. or - Kc energy theorem. IV. or done by contnt orce - Grttonl orce V. or done by rble orce. VI. Power - Sprng orce. - Generl. D-Anly 3D-Anly or-kc Energy

### Chapter Solution of Cubic Equations

Chpter. Soluton of Cuc Equtons After redng ths chpter, ou should e le to:. fnd the ect soluton of generl cuc equton. Ho to Fnd the Ect Soluton of Generl Cuc Equton In ths chpter, e re gong to fnd the ect

Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

### Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### Chapter 7 Kinetic energy, potential energy, work

Chpter 7 netc energy, potentl energy, work I. netc energy. II. ork. III. ork - netc energy theorem. IV. ork done by constnt orce: Grttonl orce V. ork done by rble orce. VI. Power - Sprng orce. - Generl:

### Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

### 9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

### Two special Right-triangles 1. The

Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

### Lines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:

Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment

### Vectors 2. 1. Recap of vectors

Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

### CONIC SECTIONS. Chapter 11

CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we

### Sect 8.3 Triangles and Hexagons

13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

### APPLICATION OF INTEGRALS

Chpter 8 APPLICATION OF INTEGRALS 8.1 Overview This chpter dels with specific ppliction of integrls to find the re under simple curves, re etween lines nd rcs of circles, prols nd ellipses, nd finding

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### Naïve Gauss Elimination

Nïve Guss Elmnton Ch.9 Nïve Guss Elmnton Lner Alger Revew Elementry Mtr Opertons Needed for Elmnton Methods: Multply n equton n the system y nonzero rel numer. Interchnge the postons of two equton n the

### Resistive Network Analysis. The Node Voltage Method - 1

esste Network Anlyss he nlyss of n electrcl network conssts of determnng ech of the unknown rnch currents nd node oltges. A numer of methods for network nlyss he een deeloped, sed on Ohm s Lw nd Krchoff

### Name: Lab Partner: Section:

Chpter 4 Newton s 2 nd Lw Nme: Lb Prtner: Section: 4.1 Purpose In this experiment, Newton s 2 nd lw will be investigted. 4.2 Introduction How does n object chnge its motion when force is pplied? A force

### Sequences and Series

Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

### Experiment 8 Two Types of Pendulum

Experment 8 Two Types of Pendulum Preparaton For ths week's quz revew past experments and read about pendulums and harmonc moton Prncples Any object that swngs back and forth can be consdered a pendulum

### PARABOLA. 7. The points of intersection of a conic and its principal axis are called vertices of the conic.

PARABOLA. The locus of point which oves in plne so tht its distnce fro fied point ers constnt rtio to its distnce fro fied stright line is clled conic section or conic. The fied point is clled focus the

### Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

### Vector differentiation. Chapters 6, 7

Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

### Scalar Line Integrals

Mth 3B Discussion Session Week 5 Notes April 6 nd 8, 06 This week we re going to define new type of integrl. For the first time, we ll be integrting long something other thn Eucliden spce R n, nd we ll

### Moment of a force about a point and about an axis

3. STATICS O RIGID BODIES In the precedng chapter t was assumed that each of the bodes consdered could be treated as a sngle partcle. Such a vew, however, s not always possble, and a body, n general, should

### Lecture 3.1 Scalars and Vectors, Kinematics in Two and Three Dimensions

1. Sclrs n Vectors Lecture 3.1 Sclrs n Vectors, Kinemtics in Two n Three Dimensions Phsics is quntittive science, where everthing cn be escribe in mthemticl terms. As soon s the sstem of units hs been

### WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

### 4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A

Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter

### Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W02D3_0 Group Problem: Pulleys and Ropes Constraint Conditions

MSSCHUSES INSIUE OF ECHNOLOGY Deprtment of hysics 8.0 W02D3_0 Group roblem: ulleys nd Ropes Constrint Conditions Consider the rrngement of pulleys nd blocks shown in the figure. he pulleys re ssumed mssless

### . At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

### NCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as:

INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: side opposite to A BC sine of A = sin A = hypotenuse

### The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.

The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion

### Theory of Forces. Forces and Motion

his eek extbook -- Red Chpter 4, 5 Competent roblem Solver - Chpter 4 re-lb Computer Quiz ht s on the next Quiz? Check out smple quiz on web by hurs. ht you missed on first quiz Kinemtics - Everything

### Let us recall some facts you have learnt in previous grades under the topic Area.

6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

### STRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry

Mthemtics SKE: STRND I UNIT I Trigonometric Prolems: Text STRND I: Geometry nd Trigonometry I Trigonometric Prolems Text ontents Section * * * I. Mixed Prolems Using Trigonometry I. Sine nd osine Rules

### LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

### So there are two points of intersection, one being x = 0, y = 0 2 = 0 and the other being x = 2, y = 2 2 = 4. y = x 2 (2,4)

Ares The motivtion for our definition of integrl ws the problem of finding the re between some curve nd the is for running between two specified vlues. We pproimted the region b union of thin rectngles

### Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

### Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

### Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

### Physics 101: Lecture 15 Rolling Objects Today s lecture will cover Textbook Chapter

Exm II Physics 101: Lecture 15 olling Objects Tody s lecture will cover Textbook Chpter 8.5-8.7 Physics 101: Lecture 15, Pg 1 Overview eview K rottion = ½ I w Torque = Force tht cuses rottion t = F r sin

### Texas Instruments 30Xa Calculator

Teas Instruments 30Xa Calculator Keystrokes for the TI-30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check

### HCP crystal planes are described using the Miller-Bravais indices, (hkil) Draw the hexagonal crystal planes whose Miller-Bravais indices are:

.6 How re crystllogrphic plnes indicted in HCP unit cells? In HCP unit cells, crystllogrphic plnes re indicted using four indices which correspond to four xes: three bsl xes of the unit cell,,, nd, which

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

### A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

### Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

### Answer, Key Homework 8 David McIntyre 1

Answer, Key Homework 8 Dvid McIntyre 1 This print-out should hve 17 questions, check tht it is complete. Multiple-choice questions my continue on the net column or pge: find ll choices before mking your

### N Mean SD Mean SD Shelf # Shelf # Shelf #

NOV xercises smple of 0 different types of cerels ws tken from ech of three grocery store shelves (1,, nd, counting from the floor). summry of the sugr content (grms per serving) nd dietry fiber (grms

### EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

### Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

### Homework Assignment 1 Solutions

Dept. of Mth. Sci., WPI MA 1034 Anlysis 4 Bogdn Doytchinov, Term D01 Homework Assignment 1 Solutions 1. Find n eqution of sphere tht hs center t the point (5, 3, 6) nd touches the yz-plne. Solution. The

### Lecture 5. Inner Product

Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

### The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

### Pythagoras theorem and trigonometry (2)

HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

### Double Integrals over General Regions

Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

### ECE 307: Electricity and Magnetism Fall 2012

ECE 7: Electct nd Mgnetsm Fll Instucto: J.D. Wllms, ssstnt Pofesso Electcl nd Compute Engneeng Unvest of lbm n Huntsvlle 46 Optcs uldng, Huntsvlle, l 5899 Pone: (56) 84-898, eml: jon.wllms@u.edu Couse

### α Must use radians. τ = F

trnsltionl nd rottionl nlogues trnsltionl ( liner ) motion rottionl motion trnsltionl displcement d A = r A Δθ ngulr displcement Δx Δy Must use rdins. Δθ (delt thet) unit = m unit = rd trnsltionl elocity

### Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4 - Exmple 31: igonls of prllelogrm Given

### ENGR HOMEWORK-6-SOLUTIONS

ENGR -215 HOMEWORK-6-SOLUTIONS 1. Exercise 26.5 2. Exercise 26.6 3. Exercise 26.31 4. Exercise 26.32 5. Exercise 26.36 6. Exercise 26.4 7. Exercise 26.43 8. Exercise 26.54 9. Prolem 26.64 1. Prolem 26.67

### Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

### Chapter 6 Solving equations

Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

### Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

### Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

### Linear Open Loop Systems

Colordo School of Mne CHEN43 Lner Open Loop Sytem Lner Open Loop Sytem... Trnfer Functon for Smple Proce... Exmple Trnfer Functon Mercury Thermometer...2 Derblty of Devton Vrble...3 Trnfer Functon for

### Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### Mathematics in Art and Architecture GEK1518K

Mthemtics in Art nd Architecture GEK1518K Helmer Aslksen Deprtment of Mthemtics Ntionl University of Singpore slksen@mth.nus.edu.sg www.mth.nus.edu.sg/slksen/ The Golden Rtio The Golden Rtio Suppose we

Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

### GRADE 7 ADAPTED NJDOE ASSESSMENT. Assessed Standards: 7.NS.1 7.NS.2 7.NS.3. (To be administered after NPS Grade 7 Scope and Sequence Units 1&2)

ADAPTED NJDOE ASSESSMENT GRADE 7 (To e dministered fter NPS Grde 7 Scope nd Sequence Units &2) Assessed Stndrds: 7.NS. 7.NS.2 7.NS.3 The Newrk Pulic Schools - Office of Mthemtics 203 Nme Period Dte Grde

### Mechanics of Rigid Body

Mechancs of Rgd Body 1.- Introducton Knematcs, Knetcs and Statc 2.- Knematcs. Types of Rgd Body Moton: Translaton, Rotaton General Plane Moton 3.- Knetcs. Forces and Acceleratons. Energy and Momentum Methods.

### The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

### Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### MAGNETIC FIELD AROUND CURRENT-CARRYING WIRES. point in space due to the current in a small segment ds. a for field around long wire

MAGNETC FELD AROUND CURRENT-CARRYNG WRES How will we tckle this? Pln: 1 st : Will look t contibution d to the totl mgnetic field t some point in spce due to the cuent in smll segment of wie iot-svt Lw

### MATLAB: M-files; Numerical Integration Last revised : March, 2003

MATLAB: M-files; Numericl Integrtion Lst revised : Mrch, 00 Introduction to M-files In this tutoril we lern the bsics of working with M-files in MATLAB, so clled becuse they must use.m for their filenme

### 1 PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE

PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the smples, work the problems, then check your nswers t the end of ech topic. If you don t get the nswer given, check your work nd look

### r 2 F ds W = r 1 qe ds = q

Chpter 4 The Electric Potentil 4.1 The Importnt Stuff 4.1.1 Electricl Potentil Energy A chrge q moving in constnt electric field E experiences force F = qe from tht field. Also, s we know from our study

### Positive Integral Operators With Analytic Kernels

Çnky Ünverte Fen-Edeyt Fkülte, Journl of Art nd Scence Sy : 6 / Arl k 006 Potve ntegrl Opertor Wth Anlytc Kernel Cn Murt D KMEN Atrct n th pper we contruct exmple of potve defnte ntegrl kernel whch re

### Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

### Conic Sections MODULE - II Coordinate Geometry CONIC SECTIONS

Conic Sections MODULE - II Codinte 1 CONIC SECTIONS While cutting crrot ou might hve noticed different shpes shown b the edges of the cut. Anlticll ou m cut it in three different ws, nmel (i) (ii) (iii)

### Graphs on Logarithmic and Semilogarithmic Paper

0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

### 11. PYTHAGORAS THEOREM

11. PYTHAGORAS THEOREM 11-1 Along the Nile 2 11-2 Proofs of Pythgors theorem 3 11-3 Finding sides nd ngles 5 11-4 Semiirles 7 11-5 Surds 8 11-6 Chlking hndll ourt 9 11-7 Pythgors prolems 10 11-8 Designing