Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Size: px
Start display at page:

Download "Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum"

Transcription

1 Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a vector Newton s second law n vector form 1 Goals Rotatonal quanttes as vectors Math: Cross Product Angular momentum 1

2 So far: smple (planar) geometres Rotatonal quanttes Δθ, ω, α, τ, etc represented by postve or negatve numbers Rotaton axs was specfed smply as CCW or CW Problems were 2 dmensonal wth a perpendcular rotaton axs Now: 3D geometres rotaton represented n full vector form Angular dsplacement, angular velocty, angular acceleraton as vectors, havng drecton The angular dsplacement, speed, and acceleraton ( θ, ω, α ) are vectors wth drecton. The drectons are gven by the rght-hand rule: Fngers of rght hand curl along the angular drecton (See Fg.) Then, the drecton of thumb s the drecton of the angular quantty. 2

3 Example: trad of unt vectors showng rotaton n x- y plane +z ω = ωkˆ +x ω +y A dsk rotates at 3 rad/s n xy plane as shown above. What s angular velocty vector? Torque as a vector? Torque vector s defned from poston vector and force vector, usng cross product. 3

4 Math: Cross Product Cross Product (Vector Product) two vectors a thrd vector normal to the plane they defne measures the component of one vector normal to the other θ = smaller angle between the vectors c a b = ab sn( θ ) a b = b a c = a cross product of any parallel vectors = zero cross product s a maxmum for perpendcular vectors cross products of Cartesan unt vectors: î î = ĵ ĵ = kˆ kˆ = 0 kˆ = î ĵ = ĵ î ĵ = kˆ î = î kˆ î = ĵj kˆ = kˆ ĵj j k c b θ b a Drecton s defned by rght hand rule. More About the Cross Product Commutatve rule does not apply. A B B A, but A B= B A, The dstrbutve rule: A x ( B + C) = A x B + A x C If you are famlar wth calculus, the dervatve of a cross product obeys the chan rule, but preserves the order d ( ) = d of the terms: A + d B A B B A dt dt dt 4

5 Cross products usng components and unt vectors A B= ( AB ) ˆ+ ( ) ˆ+ ( ) ˆ y z AB z y AB z x AB x z j AB x y AB y x k A B= ˆ ˆ j kˆ A A A x y z B B B x y z Or, you can use dstrbutve b rule and + î î = ĵ ĵ = kˆ kˆ = 0 kˆ = î ĵ = ĵ î ĵ = kˆ î = î kˆ î = ĵ kˆ = kˆ ĵ j k Calculatng cross products usng unt vectors Fnd: A B Where: A = 2ˆ+ 3 ˆj; B = ˆ+ 2ˆj 5

6 Torque as a Cross Product τ = r F The torque s the cross product of a force vector wth the poston vector to ts pont of applcaton. τ = r F sn( θ) = r F = r F The torque vector s perpendcular to the plane formed by the poston vector and the force vector (e.g., magne drawng them tal-to-tal) Rght Hand Rule: curl fngers from r to F, thumb ponts along torque. Superposton: p τ = τ = r F net all all (vector sum) Can have multple forces appled at multple ponts. Drecton of τ net s angular acceleraton axs Fndng a cross product 5.1. A partcle located at the poston vector r = (î + ĵ) (n meters) has a force Fˆ = ( 2 î + 3ĵ) N actng on t. The torque n N.m about the orgn s? A) 1 kˆ B) 5 kˆ C) - 1 kˆ D) - 5 kˆ E) 2î + 3ĵ What f Fˆ = ( 3 î + 3ĵ)? 6

7 Net torque example: multple forces at multple ponts F F = 2 N ˆ appled at R = -2m ˆj = 4 N k ˆ appled at R = 3m ˆ Fnd the net torque about the orgn: j k Angular momentum concepts & defnton - Lnear momentum: p = mv - Angular (Rotatonal) momentum: L = moment of nerta x angular velocty = Iω nerta speed lnear momentum lnear m v p=mv rotatonal I ω L=Iω Angular momentum vector: L = Iω rgd body angular momentum 7

8 Angular momentum of a bowlng ball 6.1. A bowlng ball s rotatng as shown about ts mass center axs. Fnd t s angular momentum about that axs, n kg.m 2 /s A) 4 B) ½ C) 7 D) 2 E) ¼ ω = 4 rad/s M = 5 kg r = ½ m I = 2/5 MR 2 L = Iω Angular momentum of a pont partcle 2 L = Iω = mr ω = mv r = mvr sn( ϕ) = mvr = r p r P r r v v φ v = ω r r : moment arm Note: L = 0 f v s parallel to r (radally n or out) Angular momentum vector for a pont partcle L r p = m(r v) 8

9 Angular momentum of a pont partcle O r p r p T θ p L= rp = rpsn θ = r p T p If r = ( r, r,0) p= ( px, py,0) x y L = (0,0, rp rp) x y y x Angular momentum for car 5.2. A car of mass 1000 kg moves wth a speed of 50 m/s on a crcular track of radus 100 m. What s the magntude of ts angular momentum (n kg m 2 /s) relatve to the center of the race track (pont P )? A) A B) C) D) E) P B 5.3. What would the angular momentum about pont P be f the car leaves the track at A and ends up at pont B wth the same velocty? A) Same as above B) Dfferent from above C) Not Enough Informaton L = r p = p r = pr sn( θ) 9

10 net Net angular momentum L = L + L + L Example: calculatng angular momentum for partcles PP *: Two objects are movng as shown n the fgure. What s ther total angular momentum about pont O? m 2 m 1 10

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

Lagrangian Dynamics: Virtual Work and Generalized Forces

Lagrangian Dynamics: Virtual Work and Generalized Forces Admssble Varatons/Vrtual Dsplacements 1 2.003J/1.053J Dynamcs and Control I, Sprng 2007 Paula Echeverr, Professor Thomas Peacock 4/4/2007 Lecture 14 Lagrangan Dynamcs: Vrtual Work and Generalzed Forces

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

Review C: Work and Kinetic Energy

Review C: Work and Kinetic Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physcs 8.2 Revew C: Work and Knetc Energy C. Energy... 2 C.. The Concept o Energy... 2 C..2 Knetc Energy... 3 C.2 Work and Power... 4 C.2. Work Done by

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Chosen problems and their final solutions of Chap. 2 (Waldron)- Par 1

Chosen problems and their final solutions of Chap. 2 (Waldron)- Par 1 Chosen problems and their final solutions of Chap. 2 (Waldron)- Par 1 1. In the mechanism shown below, link 2 is rotating CCW at the rate of 2 rad/s (constant). In the position shown, link 2 is horizontal

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

1 What is a conservation law?

1 What is a conservation law? MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2015 2016, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Lnear Momentum and Collsons CHAPTER OUTLINE 9.1 Lnear Momentum and Its Conservaton 9.2 Impulse and Momentum 9.3 Collsons n One Dmenson 9.4 Two-Dmensonal Collsons 9.5 The Center of Mass 9.6 Moton

More information

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Work and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa

Work and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

Damage detection in composite laminates using coin-tap method

Damage detection in composite laminates using coin-tap method Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea [email protected] 45 The con-tap test has the

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Poltecnco d orno Porto Insttutonal Repostory [Proceedng] rbt dynamcs and knematcs wth full quaternons rgnal Ctaton: Andres D; Canuto E. (5). rbt dynamcs and knematcs wth full quaternons. In: 16th IFAC

More information

Lecture Topics. 6. Sensors and instrumentation 7. Actuators and power transmission devices. (System and Signal Processing) DR.1 11.12.

Lecture Topics. 6. Sensors and instrumentation 7. Actuators and power transmission devices. (System and Signal Processing) DR.1 11.12. Lecture Tocs 1. Introducton 2. Basc knematcs 3. Pose measurement and Measurement of Robot Accuracy 4. Trajectory lannng and control 5. Forces, moments and Euler s laws 5. Fundamentals n electroncs and

More information

Chapter 7 Homework solutions

Chapter 7 Homework solutions Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Laws of Electromagnetism

Laws of Electromagnetism There are four laws of electromagnetsm: Laws of Electromagnetsm The law of Bot-Savart Ampere's law Force law Faraday's law magnetc feld generated by currents n wres the effect of a current on a loop of

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Ch. 9 Center of Mass Momentum. Question 6 Problems: 3, 19, 21, 27, 31, 35, 39, 49, 51, 55, 63, 69, 71, 77

Ch. 9 Center of Mass Momentum. Question 6 Problems: 3, 19, 21, 27, 31, 35, 39, 49, 51, 55, 63, 69, 71, 77 Ch. 9 Center of Mass Moentu Queston 6 Probles: 3, 9,, 7, 3, 35, 39, 49, 5, 55, 63, 69, 7, 77 Center of Mass Use center of ass when no longer dealng wth a pont partcle. The center of ass of a syste of partcles

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

Introduction to Statistical Physics (2SP)

Introduction to Statistical Physics (2SP) Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth

More information

Scalar : Vector : Equal vectors : Negative vectors : Proper vector : Null Vector (Zero Vector): Parallel vectors : Antiparallel vectors :

Scalar : Vector : Equal vectors : Negative vectors : Proper vector : Null Vector (Zero Vector): Parallel vectors : Antiparallel vectors : ELEMENTS OF VECTOS 1 Scalar : physical quantity having only magnitue but not associate with any irection is calle a scalar eg: time, mass, istance, spee, work, energy, power, pressure, temperature, electric

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Vectors and Scalars. AP Physics B

Vectors and Scalars. AP Physics B Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial

More information

HALL EFFECT SENSORS AND COMMUTATION

HALL EFFECT SENSORS AND COMMUTATION OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth three-phase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how

More information

Exam 2 Practice Problems Part 2 Solutions

Exam 2 Practice Problems Part 2 Solutions Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

More information

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi. SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

More information

Multi-Robot Tracking of a Moving Object Using Directional Sensors

Multi-Robot Tracking of a Moving Object Using Directional Sensors Mult-Robot Trackng of a Movng Object Usng Drectonal Sensors Xaomng Hu, Karl H. Johansson, Manuel Mazo Jr., Alberto Speranzon Dept. of Sgnals, Sensors & Systems Royal Insttute of Technology, SE- 44 Stockholm,

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B) Vector Algebra When dealing with scalars, the usual math operations (+, -, ) are sufficient to obtain any information needed. When dealing with ectors, the magnitudes can be operated on as scalars, but

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

More information

Physical Quantities, Symbols and Units

Physical Quantities, Symbols and Units Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

More information

Figure 1. Inventory Level vs. Time - EOQ Problem

Figure 1. Inventory Level vs. Time - EOQ Problem IEOR 54 Sprng, 009 rof Leahman otes on Eonom Lot Shedulng and Eonom Rotaton Cyles he Eonom Order Quantty (EOQ) Consder an nventory tem n solaton wth demand rate, holdng ost h per unt per unt tme, and replenshment

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m.

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m. PHYS 6: Eam III Fall 003 PHYSICS 6 EXAM III: Thusda Decembe 04, 003 :00 a.m. Po. N. S. Chan. Please pn ou name and ene ou sea numbe o den ou and ou eamnaon. Suden s Pned Name: Recaon Secon Numbe: Sea Numbe:.

More information

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN

More information

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given: RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Chapter 12 Inductors and AC Circuits

Chapter 12 Inductors and AC Circuits hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Problem Set #13 Solutions

Problem Set #13 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings

More information

Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets

Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets Stochastc Sx-Degree-of-Freedom Flght for Passvely Controlled Hgh-Power s Smon Box 1 ; Chrstopher M. Bshop 2 ; and Hugh Hunt 3 Downloaded from ascelbrary.org by TECHNISCHE UNIVERSITEIT DELFT on 2/7/13.

More information