21 Vectors: The Cross Product & Torque

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "21 Vectors: The Cross Product & Torque"

Transcription

1 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl somethng straght dscussed n the precedng chapter. There s a relatonal operator 1 for vectors that allows us to bpass the calculaton of the moment arm. The relatonal operator s called the cross product. It s represented b the smbol read cross. The torque τ can be epressed as the cross product of the poston vector r for the pont of applcaton of the force, and the force vector F tself: τ =r F 21-1 efore we begn our mathematcal dscusson of what we mean b the cross product, a few words about the vector r are n order. It s mportant for ou to be able to dstngush between the poston vector r for the force, and the moment arm, so we present them below n one and the same dagram. We use the same eample that we have used before: s of Rotaton O Poston of the Pont of pplcaton of the Force F n whch we are loong drectl along the as of rotaton so t loos le a dot and the force les n a plane perpendcular to that as of rotaton. We use the dagramatc conventon that, the pont at whch the force s appled to the rgd bod s the pont at whch one end of the arrow n the dagram touches the rgd bod. Now we add the lne of acton of the force and the moment arm r to the dagram, as well as the poston vector r of the pont of applcaton of the force. 1 You are much more famlar wth relatonal operators then ou mght reale. The sgn s a relatonal operator for scalars numbers. The operaton s addton. pplng t to the numbers 2 and 3 elds 23=5. You are also famlar wth the relatonal operators,, and for subtracton, multplcaton, and dvson of scalars respectvel. 132

2 The Moment rm Lne of cton of the Force r O r Poston Vector for the Pont of pplcaton of the Force F The moment arm can actuall be defned n terms of the poston vector for the pont of applcaton of the force. Consder a tlted - coordnate sstem, havng an orgn on the as of rotaton, wth one as parallel to the lne of acton of the force and one as perpendcular to the lne of acton of the force. We label the as for perpendcular and the as for parallel. O r F 133

3 and Chapter 21 Vectors: The Cross Product & Torque Now we brea up the poston vector r nto ts component vectors along the aes. r O r r F From the dagram t s clear that the moment arm r s ust the magntude of the component vector, n the perpendcular-to-the-force drecton, of the poston vector of the pont of applcaton of the force. 134

4 Now let s dscuss the cross product n general terms. Consder two vectors, and that are nether parallel nor ant-parallel 2 to each other. Two such vectors defne a plane. Let that plane be the plane of the page and defne θ to be the smaller of the two angles between the two vectors when the vectors are drawn tal to tal. θ The magntude of the cross product vector s gven b = snθ The drecton of the cross product vector s gven b the rght-hand rule for the cross product of two vectors 3. To appl ths rght-hand rule, etend the fngers of our rght hand so that the are pontng drectl awa from our rght elbow. Etend our thumb so that t s at rght angles to our fngers Two vectors that are ant-parallel are n eact opposte drectons to each other. The angle between them s 180 degrees. nt-parallel vectors le along parallel lnes or along one and the same lne, but pont n opposte drectons. 3 You need to learn two rght-hand rules for ths course: the rght-hand rule for somethng curl somethng straght, and ths one, the rght-hand rule for the cross product of two vectors. 135

5 Keepng our fngers algned wth our forearm, pont our fngers n the drecton of the frst vector the one that appears before the n the mathematcal epresson for the cross product; e.g. the n. Now rotate our hand, as necessar, about an magnar as etendng along our forearm and along our mddle fnger, untl our hand s orented such that, f ou were to close our fngers, the would pont n the drecton of the second vector. Ths thumb s pontng straght out of the page, rght at ou! Your thumb s now pontng n the drecton of the cross product vector. C =. The cross product vector C s alwas perpendcular to both of the vectors that are n the cross product the and the n the case at hand. Hence, f ou draw them so that both of the vectors that are n the cross product are n the plane of the page, the cross product vector wll alwas be perpendcular to the page, ether straght nto the page, or straght out of the page. In the case at hand, t s straght out of the page. 136

6 When we use the cross product to calculate the torque due to a force F whose pont of applcaton has a poston vector r, relatve to the pont about whch we are calculatng the torque, we get an aal torque vector τ. To determne the sense of rotaton that such a torque vector would correspond to, about the as defned b the torque vector tself, we use The Rght Hand Rule For Somethng Curl Somethng Straght. Note that we are calculatng the torque wth respect to a pont rather than an as the as about whch the torque acts, comes out n the answer. Calculatng the Cross Product of Vectors that are Gven n,, Notaton Unt vectors allow for a straghtforward calculaton of the cross product of two vectors under even the most general crcumstances, e.g. crcumstances n whch each of the vectors s pontng n an arbtrar drecton n a three-dmensonal space. To tae advantage of the method, we need to now the cross product of the Cartesan coordnate as unt vectors,, and wth each other. Frst off, we should note that an vector crossed nto tself gves ero. Ths s evdent from equaton 21-2: = snθ, because f and are n the same drecton, then θ = 0, and snce sn 0 = 0, we have = 0. Regardng the unt vectors, ths means that: = 0 = 0 = 0 Net we note that the magntude of the cross product of two vectors that are perpendcular to each other s ust the ordnar product of the magntudes of the vectors. Ths s also evdent from equaton 21-2: = snθ, because f s perpendcular to then θ = 90 and sn 90 = 1 so = Now f and are unt vectors, then ther magntudes are both 1, so, the product of ther magntudes s also 1. Furthermore, the unt vectors,, and are all perpendcular to each other so the magntude of the cross product of an one of them wth an other one of them s the product of the two magntudes, that s,

7 Now how about the drecton? Let s use the rght hand rule to get the drecton of : Fgure 1 Wth the fngers of the rght hand pontng drectl awa from the rght elbow, and n the same drecton as, the frst vector n to mae t so that f one were to close the fngers, the would pont n the same drecton as, the palm must be facng n the drecton. That beng the case, the etended thumb must be pontng n the drecton. Puttng the magntude the magntude of each unt vector s 1 and drecton nformaton together we see 4 that =. Smlarl: =, =, =, =, and =. One wa of rememberng ths s to wrte,, twce n successon:,,,,,. Then, crossng an one of the frst three vectors nto the vector mmedatel to ts rght elds the net vector to the rght. ut crossng an one of the last three vectors nto the vector 4 You ma have pced up on a bt of crcular reasonng here. Note that n Fgure 1, f we had chosen to have the as pont n the opposte drecton eepng and as shown then would be pontng n the drecton. In fact, havng chosen the and drectons, we defne the drecton as that drecton that maes =. Dong so forms what s referred to as a rght-handed coordnate sstem whch s, b conventon, the nd of coordnate sstem that we use n scence and mathematcs. If = then ou are dealng wth a left-handed coordnate sstem, somethng to be avoded. 138

8 139 mmedatel to ts left elds the negatve of the net vector to the left left-to-rght, but rght-to-left. Now we re read to loo at the general case. n vector can be epressed n terms of unt vectors: = Dong the same for a vector then allows us to wrte the cross product as: = Usng the dstrbutve rule for multplcaton we can wrte ths as: = = Usng, n each term, the commutatve rule and the assocatve rule for multplcaton we can wrte ths as: = Now we evaluate the cross product that appears n each term: = Elmnatng the ero terms and groupng the terms wth together, the terms wth together, and the terms wth together elds:

9 140 = Factorng out the unt vectors elds: = whch can be wrtten on one lne as: = 21-3 Ths s our end result. We can arrve at ths result much more qucl f we borrow a tool from that branch of mathematcs nown as lnear algebra the mathematcs of matrces. We form the 33 matr b wrtng,, as the frst row, then the components of the frst vector that appears n the cross product as the second row, and fnall the components of the second vector that appears n the cross product as the last row. It turns out that the cross product s equal to the determnant of that matr. We use absolute value sgns on the entre matr to sgnf the determnant of the matr. So we have: = 21-4 To tae the determnant of a 33 matr ou wor our wa across the top row. For each element n that row ou tae the product of the elements along the dagonal that etends down and to the rght, mnus the product of the elements down and to the left; and ou add the three results one result for each element n the top row together. If there are no elements down and to the approprate sde, ou move over to the other sde of the matr see below to complete the dagonal.

10 For the frst element of the frst row, the, tae the product down and to the rght, ths elds mnus the product down and to the left the product down-and-to-the-left s. For the frst element n the frst row, we thus have: whch can be wrtten as:. Repeatng the process for the second and thrd elements n the frst row the and the we get and respectvel. ddng the three results, to form the determnant of the matr results n: = as we found before, the hard wa

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

SCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar

SCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets . The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

Experiment 8 Two Types of Pendulum

Experiment 8 Two Types of Pendulum Experment 8 Two Types of Pendulum Preparaton For ths week's quz revew past experments and read about pendulums and harmonc moton Prncples Any object that swngs back and forth can be consdered a pendulum

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Chapter 3 Group Theory p. 1 - Remark: This is only a brief summary of most important results of groups theory with respect

Chapter 3 Group Theory p. 1 - Remark: This is only a brief summary of most important results of groups theory with respect Chapter 3 Group Theory p. - 3. Compact Course: Groups Theory emark: Ths s only a bref summary of most mportant results of groups theory wth respect to the applcatons dscussed n the followng chapters. For

More information

2. Linear Algebraic Equations

2. Linear Algebraic Equations 2. Lnear Algebrac Equatons Many physcal systems yeld smultaneous algebrac equatons when mathematcal functons are requred to satsfy several condtons smultaneously. Each condton results n an equaton that

More information

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006 Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Texas Instruments 30Xa Calculator

Texas Instruments 30Xa Calculator Teas Instruments 30Xa Calculator Keystrokes for the TI-30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check

More information

Part IB Paper 1: Mechanics Examples Paper Kinematics

Part IB Paper 1: Mechanics Examples Paper Kinematics Engneerng Trpos Part B SECOND YEAR Straghtforward questons are marked t Trpos standard questons are marked *. Part B Paper 1: Mechancs Examples Paper Knematcs 1 ---~..-~---~---." 'SSUED ON t 7 JAN 20t4

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Chapter 6 Balancing of Rotating Masses

Chapter 6 Balancing of Rotating Masses Chapter 6 Balancng of otatng Masses All rotors have soe eccentrct. Eccentrct s present when geoetrcal center of the rotor and the ass center do not concde along ther length (gure ). Eaples of rotors are

More information

Linear Algebra for Quantum Mechanics

Linear Algebra for Quantum Mechanics prevous ndex next Lnear Algebra for Quantum Mechancs Mchael Fowler 0/4/08 Introducton We ve seen that n quantum mechancs, the state of an electron n some potental s gven by a ψ x t, and physcal varables

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR E-mal: ghapor@umedumy Abstract Ths paper

More information

Electric circuit components. Direct Current (DC) circuits

Electric circuit components. Direct Current (DC) circuits Electrc crcut components Capactor stores charge and potental energy, measured n Farads (F) Battery generates a constant electrcal potental dfference ( ) across t. Measured n olts (). Resstor ressts flow

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Mechanics of Rigid Body

Mechanics of Rigid Body Mechancs of Rgd Body 1.- Introducton Knematcs, Knetcs and Statc 2.- Knematcs. Types of Rgd Body Moton: Translaton, Rotaton General Plane Moton 3.- Knetcs. Forces and Acceleratons. Energy and Momentum Methods.

More information

Thinking about Newton's Laws

Thinking about Newton's Laws Newtonan modellng In ths actvty you wll see how Newton s Laws of Moton are used to connect the moton of an object wth the forces actng on t. You wll practse applyng Newton s three laws n some real contexts.

More information

Part 1. Electromagnetic Induction. Faraday s Law. Faraday s observation. Problem. Induced emf (Voltage) from changing Magnetic Flux.

Part 1. Electromagnetic Induction. Faraday s Law. Faraday s observation. Problem. Induced emf (Voltage) from changing Magnetic Flux. Electromagnetc Inducton Part 1 Faraday s Law Chapter 1 Faraday s obseraton Electrc currents produce magnetc elds. 19 th century puzzle: Can magnetc elds produce currents? A statc magnet wll produce no

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

ELE427 - Testing Linear Sensors. Linear Regression, Accuracy, and Resolution.

ELE427 - Testing Linear Sensors. Linear Regression, Accuracy, and Resolution. ELE47 - Testng Lnear Sensors Lnear Regresson, Accurac, and Resoluton. Introducton: In the frst three la eperents we wll e concerned wth the characterstcs of lnear sensors. The asc functon of these sensors

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2 EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

More information

Q3.8: A person trying to throw a ball as far as possible will run forward during the throw. Explain why this increases the distance of the throw.

Q3.8: A person trying to throw a ball as far as possible will run forward during the throw. Explain why this increases the distance of the throw. Problem Set 3 Due: 09/3/, Tuesda Chapter 3: Vectors and Moton n Two Dmensons Questons: 7, 8,, 4, 0 Eercses & Problems:, 7, 8, 33, 37, 44, 46, 65, 73 Q3.7: An athlete performn the lon jump tres to acheve

More information

SIGNIFICANT FIGURES (4SF) (4SF) (5SF) (3 SF) 62.4 (3 SF) x 10 4 (5 SF) Figure 0

SIGNIFICANT FIGURES (4SF) (4SF) (5SF) (3 SF) 62.4 (3 SF) x 10 4 (5 SF) Figure 0 SIGIFICAT FIGURES Wth any calbrated nstrument, there s a lmt to the number of fgures that can be relably kept n the answer. For dgtal nstruments, the lmtaton s the number of fgures appearng n the dsplay.

More information

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 201 Introducton 1 202 Constraned Moton: Translaton and Rotaton 1 2021 Rollng wthout slppng 5 Example 201 Bcycle Wheel Rollng

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

HALL EFFECT SENSORS AND COMMUTATION

HALL EFFECT SENSORS AND COMMUTATION OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth three-phase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Portfolio Risk Decomposition (and Risk Budgeting)

Portfolio Risk Decomposition (and Risk Budgeting) ortfolo Rsk Decomposton (and Rsk Budgetng) Jason MacQueen R-Squared Rsk Management Introducton to Rsk Decomposton Actve managers take rsk n the expectaton of achevng outperformance of ther benchmark Mandates

More information

Attention: This material is copyright Chris Hecker. All rights reserved.

Attention: This material is copyright Chris Hecker. All rights reserved. Attenton: Ths materal s copyrght 1995-1997 Chrs Hecker. All rghts reserved. You have permsson to read ths artcle for your own educaton. You do not have permsson to put t on your webste (but you may lnk

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Laws of Electromagnetism

Laws of Electromagnetism There are four laws of electromagnetsm: Laws of Electromagnetsm The law of Bot-Savart Ampere's law Force law Faraday's law magnetc feld generated by currents n wres the effect of a current on a loop of

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Chapter 4: Motion in Two Dimensions

Chapter 4: Motion in Two Dimensions Answers and Solutons. (a) Tme s a scalar quantt. (b) Dsplacement s a vector quantt. (c) Veloct s a vector quantt. (d) Speed s a scalar quantt.. An nspecton of the lengths, or magntudes, or the vectors

More information

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Conversion between the vector and raster data structures using Fuzzy Geographical Entities Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

The eigenvalue derivatives of linear damped systems

The eigenvalue derivatives of linear damped systems Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

More information

LECTURE 1: MOTIVATION

LECTURE 1: MOTIVATION LECTURE 1: MOTIVATION STEVEN SAM AND PETER TINGLEY 1. Towards quantum groups Let us begn by dscussng what quantum groups are, and why we mght want to study them. We wll start wth the related classcal objects.

More information

Solutions to First Midterm

Solutions to First Midterm rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Introduction: Analysis of Electronic Circuits

Introduction: Analysis of Electronic Circuits /30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,

More information

( ) Homework Solutions Physics 8B Spring 09 Chpt. 32 5,18,25,27,36,42,51,57,61,76

( ) Homework Solutions Physics 8B Spring 09 Chpt. 32 5,18,25,27,36,42,51,57,61,76 Homework Solutons Physcs 8B Sprng 09 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat = E. Please refer to Fgure EX32.5. We wll choose a clockwse

More information

Homework Solutions Physics 8B Spring 2012 Chpt. 32 5,18,25,27,36,42,51,57,61,76

Homework Solutions Physics 8B Spring 2012 Chpt. 32 5,18,25,27,36,42,51,57,61,76 Homework Solutons Physcs 8B Sprng 202 Chpt. 32 5,8,25,27,3,42,5,57,,7 32.5. Model: Assume deal connectng wres and an deal battery for whch V bat =. Please refer to Fgure EX32.5. We wll choose a clockwse

More information

Systematic Circuit Analysis (T&R Chap 3)

Systematic Circuit Analysis (T&R Chap 3) Systematc Crcut Analyss TR Chap ) Nodeoltage analyss Usng the oltages of the each node relate to a ground node, wrte down a set of consstent lnear equatons for these oltages Sole ths set of equatons usng,

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Poltecnco d orno Porto Insttutonal Repostory [Proceedng] rbt dynamcs and knematcs wth full quaternons rgnal Ctaton: Andres D; Canuto E. (5). rbt dynamcs and knematcs wth full quaternons. In: 16th IFAC

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physcs (PHY 30) Lecture 8 Moentu Collsons Elastc and nelastc collsons http://www.physcs.wayne.edu/~apetro/phy30/ Lghtnng Reew Last lecture:. Moentu: oentu and pulse oentu conseraton Reew Proble:

More information

GEOLOGIC STRUCTURES. I. Tectonic Forces (Forces that move and deform rocks, especially along plate boundaries.)

GEOLOGIC STRUCTURES. I. Tectonic Forces (Forces that move and deform rocks, especially along plate boundaries.) GEOLOGIC STRUCTURES Structural geology s the branch of geology that pertans to the shapes, arrangement, and nterrelatonshps of bedrock unts and the forces that cause them. Structural geologsts study the

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Complex Number Representation in RCBNS Form for Arithmetic Operations and Conversion of the Result into Standard Binary Form

Complex Number Representation in RCBNS Form for Arithmetic Operations and Conversion of the Result into Standard Binary Form Complex Number epresentaton n CBNS Form for Arthmetc Operatons and Converson of the esult nto Standard Bnary Form Hatm Zan and. G. Deshmukh Florda Insttute of Technology rgd@ee.ft.edu ABSTACT Ths paper

More information

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits E6 Electrcal Engneerng A rcut Analyss and Power ecture : Parallel esonant rcuts. Introducton There are equvalent crcuts to the seres combnatons examned whch exst n parallel confguratons. The ssues surroundng

More information

greatest common divisor

greatest common divisor 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

More information

Pre-Algebra. Mix-N-Match. Line-Ups. Inside-Outside Circle. A c t. t i e s & v i

Pre-Algebra. Mix-N-Match. Line-Ups. Inside-Outside Circle. A c t. t i e s & v i IV A c t Pre-Algebra v Mx-N-Match 1. Operatons on Fractons.................15 2. Order of Operatons....................15 3. Exponental Form......................16 4. Scentfc Notaton......................16

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Simultaneous eigenstates: Consider two operators that commute:  η = a η (13.29) 5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let  satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB  η = a η (13.29) ˆB [  η ] = ˆB [a η ] = a

More information

408-8858 05 AUG 10 Rev L

408-8858 05 AUG 10 Rev L SL Jack Tool Kt 1725150- [ ] Instructon Sheet 408-8858 05 AUG 10 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually powered hand tools. Hand tools are ntended

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Loop Parallelization

Loop Parallelization - - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

More information

Review C: Work and Kinetic Energy

Review C: Work and Kinetic Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physcs 8.2 Revew C: Work and Knetc Energy C. Energy... 2 C.. The Concept o Energy... 2 C..2 Knetc Energy... 3 C.2 Work and Power... 4 C.2. Work Done by

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)

Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments) Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980) Introducton We want

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages:

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages: Welcome to ALERT BINGO, a fun-flled and educatonal way to learn the fve ways to change engnes levels (Put somethng n your Mouth, Move, Touch, Look, and Lsten) as descrbed n the How Does Your Engne Run?

More information

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands E-mal: e.lagendjk@tnw.tudelft.nl

More information

ErrorPropagation.nb 1. Error Propagation

ErrorPropagation.nb 1. Error Propagation ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

Today in Physics 217: the divergence and curl theorems

Today in Physics 217: the divergence and curl theorems Today n Physcs 217: the dvergence and curl theorems Flux and dvergence: proof of the dvergence theorem, à lá Purcell. rculaton and curl: proof of tokes theorem, also followng Purcell. ee Purcell, chapter

More information

Semiconductor sensors of temperature

Semiconductor sensors of temperature Semconductor sensors of temperature he measurement objectve 1. Identfy the unknown bead type thermstor. Desgn the crcutry for lnearzaton of ts transfer curve.. Fnd the dependence of forward voltage drop

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

Introduction to the Least Squares Fit. Table of Contents. Least Squares Fitting with Excel.1

Introduction to the Least Squares Fit. Table of Contents. Least Squares Fitting with Excel.1 Least Squares Fttng wth Ecel. Introducton to the Least Squares Ft Tale of Contents. Uses for a Least Squares Ft: Lnear Dependence. Methods of Fndng the Best Ft Lne: Estmatng, Usng Ecel, and Calculatng

More information

1. Select the extent of the free-body and detach it from the ground and all other bodies.

1. Select the extent of the free-body and detach it from the ground and all other bodies. Chapte fou.lectue Saddam K. Kwas Equlbum Of Rgd odes 4/1 Rgd bod n equlbum gd bod s sad to be n equlbum the esultant of all foces actng on t s zeo. hus, the esultant foce R and the esultant couple ae both

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1 Nov Sad J. Math. Vol. 36, No. 2, 2006, 0-09 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned

More information

Nordea G10 Alpha Carry Index

Nordea G10 Alpha Carry Index Nordea G10 Alpha Carry Index Index Rules v1.1 Verson as of 10/10/2013 1 (6) Page 1 Index Descrpton The G10 Alpha Carry Index, the Index, follows the development of a rule based strategy whch nvests and

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Section B9: Zener Diodes

Section B9: Zener Diodes Secton B9: Zener Dodes When we frst talked about practcal dodes, t was mentoned that a parameter assocated wth the dode n the reverse bas regon was the breakdown voltage, BR, also known as the peak-nverse

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information