GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 NORM


 Gervase Austin
 2 years ago
 Views:
Transcription
1 GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 NORM BARRIOT JeanPerre, SARRAILH Mchel BGI/CNES 18.av.E.Beln TOULOUSE Cedex 4 (France) Emal: 1/Introducton The Bureau Gravmétrque Internatonal s managng a worldwde gravty database. These data have dfferent orgns and must be controlled to detect and elmnate outlers. Up to now, we used a predcton technque based on the L 2 norm (collocaton) method. We have developed a new method, usng the L 1 norm. We present here shortly the outlnes of ths method, and compare t for dfferent test cases wth the L 2 method. 2/ Theory of the L 1 predcton method Selfvaldaton s the detecton of outlers n a survey from the crosscomparson of all the values of the survey. g1 g 2 Let g the N  vector of the set of observed gravty values over a survey: g =. g N The N vector g of the "true" (unknown) values s related to the N vector g of observed values by I g = g +ε (1), where I N s the dentty matrx of order N and ε s the N vector of errors. N In a perfect world, ε = 0 and then g= g. In an mperfect (our) world, ε 0. We have then to solve Eq. (1) contamnated by errors. L 2  norm soluton: ε and g are consdered as random varables wth a pror 0 means and respectvely σ 2 ε I N and Cov( g) covarances. The L 2 a posteror estmate of g as then 1 * g = Cov( g) 2 Cov( g) + σ I ε N g mean
2 1 1 and σ ε + 2 IN Cov g covarance. Ths s the usual leastsquares collocaton soluton. L 1  norm soluton: From a L 1 norm pont of vew, we select the partcular g (), whch realzes mn g () ε j= M l= N j = 1 l = 1 () ( j g ) l gl over a set of M realzatons of the N vectors g and ε, wth () () = g +ε. Of course, n the real world, we have to cope wth a unque realzaton of g and (and we know only ther sum g ), so we 21/ select from g () observed M subvectors γ ( = 1,..., M) of dmenson K, 22/ complete through a gven nterpolatonextrapolaton procedure the mssng N K values n order to get M vectors Γ () of dmenson N, 23/ select the best estmate Γ () of g as the one whch realzes mn N l = 1 () l Γ g l. Fg. 1: Fttng a lne through 3 data ponts. The L 2 soluton (a) goes through the 3 data ponts( x, y) by realzng mn ( y ( ax+ b)) 2. For the L 1 soluton, the soluton fulflls mn y ( ax+ b), and ab, corresponds to one of the lnes (b1, b2, b3) that jons the 3 two ponts subsets. For L 1 norm, there s no equvalent of covarance matrces, so f we want to have some ndcaton about the robustness of the soluton, we can only construct MonteCarlo estmates of the errors ab,
3 by addng to the observed g values a random vector ζ of 0 nfer from ths perturbaton the correspondng mean and varance of Γ 3/ L 1 predcton method algorthm mean and known σ ζ 2 varance and (). For a gven gravty staton where we have to predct the gravty value: 31: search of all the neghbourng ponts, up to a gven radus; 32: determnaton of the "best" plane (Fg. 2) or parabolod (Fg. 3) approxmaton of the local gravty around the staton, by usng the gravty values of a subset of selected neghbours, n the sense of the L 1 norm. The gravty value at the predcted pont s excluded. As we consder only a lmted number of neghbourng ponts, we study all the subsets of neghbours (subsets of 3 ponts for the "best" plane, subsets of 6 ponts for the "best" parabolod), nstead of consderng the smplex method; 33: computaton of the dfference between observed and predcted anomaly, nterpolated from the "best" L 1 surface, at the locaton of the predcted value; 34: comparson wth a gven threshold; 35: rejecton or valdaton of the gravty value. 4/ Pros and cons of the L 1 norm method 41 Pro: no "contamnaton" of the neghbourng ponts by "bad" ponts (.e. a "good" pont can be flagged as false, f compared to erroneous ("bad") neghbourng ponts); 42 Pro: no need to use resdual anomales; 43 Con: systematc rejecton of extrema; 44 Con: rejecton of ponts near the edges of the map (only wth parabolod predcton); 45 Con: rejecton only based on a threshold on the dfference between observed and predcted anomaly; 46 Con: no error estmate of the predcted anomaly. 5/ Pros and cons of the L 2 norm method 51 Pro: rejecton based on thresholds for the dfference between observed and predcted anomaly and for the standard devaton error of the predcted anomaly; 52 Con: robustless soluton: a "good" pont can be flagged as "false", f compared to "bad" neghbourng ponts (see 41); 53 Con: need of computng resdual anomales before predcton; 54 Con: rejecton of extrema.
4 Fg. 2: Dark trangle: «best» approxmatng plane gong through the neghbourng gravty values. Black bar: dfference between the observed and the predcted anomaly on the selected pont (dot). Fg. 3: Lght grey: «best» approxmatng parabolod gong through the neghbourng gravty values. Black bar: dfference between the observed and the predcted anomaly on the selected pont (dot). 6/ Future mprovements of the L 1 method 61: estmatng of the error on the predcted anomaly by MonteCarlo method (see pont 2); 62: Replacng planar or parabolodal approxmaton by collocaton predcton, to take nto account the covarance functon of the anomales. Ths wll realze a "mx" between L 1 and L 2 methods.
5 7/ Example of data valdaton Fg. 4: Bouguer anomaly map: good ponts (cross marker), doubtful ponts (crcle marker) are dentfed by predcton usng a collocaton technque, takng nto account the local covarance functon. Fg. 5: Wth the collocaton technque, "bad" ponts can "contamnate" neghbourng ponts. Such ponts must be repredcted, after flaggng of the erroneous ("bad") ponts wth the largest dfferences between observed and predcted anomaly (see ponts 41 and 52).
6 Fg. 6: Predcton usng L 1 norm and plane approxmaton (Fg. 2). Seven neghbourng ponts are selected per predcted pont. The ponts predcted are consdered doubtful f the dfference between the observed anomaly and the predcted one s larger than 7 mgals. Fg. 7: Predcton usng L 1 norm and parabolod approxmaton (Fg. 3). Ten neghbourng ponts are selected per predcted pont. The ponts predcted are consdered doubtful f the dfference between the observed anomaly and the predcted one s larger than 7 mgals.
SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA
SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands Emal: e.lagendjk@tnw.tudelft.nl
More informationQuestions that we may have about the variables
Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationLinear Regression, Regularization BiasVariance Tradeoff
HTF: Ch3, 7 B: Ch3 Lnear Regresson, Regularzaton BasVarance Tradeoff Thanks to C Guestrn, T Detterch, R Parr, N Ray 1 Outlne Lnear Regresson MLE = Least Squares! Bass functons Evaluatng Predctors Tranng
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More informationThe Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15
The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the
More informationLecture 10: Linear Regression Approach, Assumptions and Diagnostics
Approach to Modelng I Lecture 1: Lnear Regresson Approach, Assumptons and Dagnostcs Sandy Eckel seckel@jhsph.edu 8 May 8 General approach for most statstcal modelng: Defne the populaton of nterest State
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More information"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
More informationApproximating Crossvalidatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC
Approxmatng Crossvaldatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationEconomic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
More informationAn Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch
An Integrated Semantcally Correct 2.5D Object Orented TIN Andreas Koch Unverstät Hannover Insttut für Photogrammetre und GeoInformaton Contents Introducton Integraton of a DTM and 2D GIS data Semantcs
More informationn + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (InClass) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationIntroduction to Regression
Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. 
More informationL10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationRing structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAMReport 201448 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
More informationMAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPPATBDClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
More informationHYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION
HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR Emal: ghapor@umedumy Abstract Ths paper
More informationv a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
More informationCapital asset pricing model, arbitrage pricing theory and portfolio management
Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securtyspecfc rsk
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationDamage detection in composite laminates using cointap method
Damage detecton n composte lamnates usng contap method S.J. Km Korea Aerospace Research Insttute, 45 EoeunDong, YouseongGu, 35333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The contap test has the
More informationLogistic Regression. Steve Kroon
Logstc Regresson Steve Kroon Course notes sectons: 24.324.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro
More informationA machine vision approach for detecting and inspecting circular parts
A machne vson approach for detectng and nspectng crcular parts DuMng Tsa Machne Vson Lab. Department of Industral Engneerng and Management YuanZe Unversty, ChungL, Tawan, R.O.C. Emal: edmtsa@saturn.yzu.edu.tw
More informationFrequency Selective IQ Phase and IQ Amplitude Imbalance Adjustments for OFDM Direct Conversion Transmitters
Frequency Selectve IQ Phase and IQ Ampltude Imbalance Adjustments for OFDM Drect Converson ransmtters Edmund Coersmeer, Ernst Zelnsk Noka, Meesmannstrasse 103, 44807 Bochum, Germany edmund.coersmeer@noka.com,
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationTime Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters
Internatonal Journal of Smart Grd and Clean Energy Tme Doman smulaton of PD Propagaton n XLPE Cables Consderng Frequency Dependent Parameters We Zhang a, Jan He b, Ln Tan b, Xuejun Lv b, HongJe L a *
More informationCS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
More informationAnalysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
More informationLETTER IMAGE RECOGNITION
LETTER IMAGE RECOGNITION 1. Introducton. 1. Introducton. Objectve: desgn classfers for letter mage recognton. consder accuracy and tme n takng the decson. 20,000 samples: Startng set: mages based on 20
More informationChapter 14 Simple Linear Regression
Sldes Prepared JOHN S. LOUCKS St. Edward s Unverst Slde Chapter 4 Smple Lnear Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationFace Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
More informationPortfolio Risk Decomposition (and Risk Budgeting)
ortfolo Rsk Decomposton (and Rsk Budgetng) Jason MacQueen RSquared Rsk Management Introducton to Rsk Decomposton Actve managers take rsk n the expectaton of achevng outperformance of ther benchmark Mandates
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationThe Analysis of Outliers in Statistical Data
THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationAn Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsnyng Wu b a Professor (Management Scence), Natonal Chao
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationNew bounds in BalogSzemerédiGowers theorem
New bounds n BalogSzemerédGowers theorem By Tomasz Schoen Abstract We prove, n partcular, that every fnte subset A of an abelan group wth the addtve energy κ A 3 contans a set A such that A κ A and A
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationInterIng 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007.
InterIng 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN
More informationForecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network
700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationMultivariate EWMA Control Chart
Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant
More informationYves Genin, Yurii Nesterov, Paul Van Dooren. CESAME, Universite Catholique de Louvain. B^atiment Euler, Avenue G. Lema^tre 46
Submtted to ECC 99 as a regular paper n Lnear Systems Postve transfer functons and convex optmzaton 1 Yves Genn, Yur Nesterov, Paul Van Dooren CESAME, Unverste Catholque de Louvan B^atment Euler, Avenue
More informationConversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
More informationPLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph
PLANAR GRAPHS Basc defntons Isomorphc graphs Two graphs G(V,E) and G2(V2,E2) are somorphc f there s a onetoone correspondence F of ther vertces such that the followng holds:  u,v V, uv E, => F(u)F(v)
More informationPRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and mfle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
More informationAn Algorithm for DataDriven Bandwidth Selection
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 2, FEBRUARY 2003 An Algorthm for DataDrven Bandwdth Selecton Dorn Comancu, Member, IEEE Abstract The analyss of a feature space
More information1 Example 1: Axisaligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
More informationINVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMAHDR NETWORKS
21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS
More informationAbstract. Dublin City University
Abstract The gender dentfcaton can be made to approxmately 95% accuracy when all the bones that the skull conssts of are present and well preserved. A dffcult problem that occurs for the medcal examner
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More informationSCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar
SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More information9.1 The Cumulative Sum Control Chart
Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationIdentifying Workloads in Mixed Applications
, pp.395400 http://dx.do.org/0.4257/astl.203.29.8 Identfyng Workloads n Mxed Applcatons Jeong Seok Oh, Hyo Jung Bang, Yong Do Cho, Insttute of Gas Safety R&D, Korea Gas Safety Corporaton, ShghungSh,
More informationLinear Regression Analysis for STARDEX
Lnear Regresson Analss for STARDEX Malcolm Halock, Clmatc Research Unt The followng document s an overvew of lnear regresson methods for reference b members of STARDEX. Whle t ams to cover the most common
More informationThe Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1
EWEA, Specal Topc Conference 24: The Scence of Makng Torque from the Wnd, Delft, Aprl 92, 24, pp. 546555. The Effect of Mean Stress on Damage Predctons for Spectral Loadng of Fberglass Composte Coupons
More informationStatistical Approach for Offline Handwritten Signature Verification
Journal of Computer Scence 4 (3): 181185, 2008 ISSN 15493636 2008 Scence Publcatons Statstcal Approach for Offlne Handwrtten Sgnature Verfcaton 2 Debnath Bhattacharyya, 1 Samr Kumar Bandyopadhyay, 2
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More informationTwo Analytical Methods for Detection and Elimination of the Static Hazard in Combinational Logic Circuits
Crcuts and Systems,, 4, 46647 Publshed Onlne November (http//wwwscrporg/journal/cs) http//ddoorg/46/cs476 Two Analytcal Methods for Detecton and Elmnaton of the Statc Hazard n Combnatonal Logc Crcuts
More informationCS 2750 Machine Learning. Lecture 17a. Clustering. CS 2750 Machine Learning. Clustering
Lecture 7a Clusterng Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Clusterng Groups together smlar nstances n the data sample Basc clusterng problem: dstrbute data nto k dfferent groups such that
More informationA Note on the Decomposition of a Random Sample Size
A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton
More informationA MultiCamera System on PCCluster for Realtime 3D Tracking
The 23 rd Conference of the Mechancal Engneerng Network of Thaland November 4 7, 2009, Chang Ma A MultCamera System on PCCluster for Realtme 3D Trackng Vboon Sangveraphunsr*, Krtsana Uttamang, and
More informationLearning Curves for Gaussian Processes via Numerical Cubature Integration
Learnng Curves for Gaussan Processes va Numercal Cubature Integraton Smo Särkkä Department of Bomedcal Engneerng and Computatonal Scence Aalto Unversty, Fnland smo.sarkka@tkk.f Abstract. Ths paper s concerned
More informationPoint cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors
Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and
More informationEliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective based on Smart Factors
Elmnatng Condtonally Independent Sets n Factor Graphs: A Unfyng Perspectve ased on Smart Factors Luca Carlone, Zsolt Kra, Chrs Beall, Vadm Indelman, and Frank Dellaert Astract Factor graphs are a general
More informationCalendar Corrected Chaotic Forecast of Financial Time Series
INTERNATIONAL JOURNAL OF BUSINESS, 11(4), 2006 ISSN: 1083 4346 Calendar Corrected Chaotc Forecast of Fnancal Tme Seres Alexandros Leonttss a and Costas Sropoulos b a Center for Research and Applcatons
More informationSingle and multiple stage classifiers implementing logistic discrimination
Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul  PUCRS Av. Ipranga,
More informationSTATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 1401013 petr.nazarov@crpsante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
More informationOUTLIERS IN REGRESSION
OUTLIERS IN REGRESSION Dagmar Blatná Introducton A observaton that s substantally dfferent from all other ones can make a large dfference n the results of regresson analyss. Outlers occur very frequently
More informationLecture 5,6 Linear Methods for Classification. Summary
Lecture 5,6 Lnear Methods for Classfcaton Rce ELEC 697 Farnaz Koushanfar Fall 2006 Summary Bayes Classfers Lnear Classfers Lnear regresson of an ndcator matrx Lnear dscrmnant analyss (LDA) Logstc regresson
More informationI. SCOPE, APPLICABILITY AND PARAMETERS Scope
D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable
More informationCapturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation
PNNL2323 Prepared for the U.S. Department of Energy under Contract DEAC576RL83 Capturng Dynamcs n the Power Grd: Formulaton of Dynamc State Estmaton through Data Assmlaton N Zhou Z Huang D Meng S Elbert
More informationMixtures of Factor Analyzers with Common Factor Loadings for the Clustering and Visualisation of HighDimensional Data
Mxtures of Factor Analyzers wth Common Factor Loadngs for the Clusterng and Vsualsaton of HghDmensonal Data Jangsun Baek 1 and Geoffrey J. McLachlan 2 1 Department of Statstcs, Chonnam Natonal Unversty,
More informationLeast Squares Fitting of Data
Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 19982016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng
More informationTraffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,
More informationCalibration and Linear Regression Analysis: A SelfGuided Tutorial
Calbraton and Lnear Regresson Analyss: A SelfGuded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
More informationINTERACTING BANKS OF BAYESIAN MATCHED FILTERS
SPIE Proceedngs: Sgnal and Data Processng of Small Targets, Vol. 4048, Orlando, FL, 2000. INTERACTING BANKS OF BAYESIAN MATCHED FILTERS B. L. Rozovsk, A. Petrov, and R. B. Blažek. Center for Appled Mathematcal
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationFeature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College
Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure
More informationLogical Development Of Vogel s Approximation Method (LDVAM): An Approach To Find Basic Feasible Solution Of Transportation Problem
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77866 Logcal Development Of Vogel s Approxmaton Method (LD An Approach To Fnd Basc Feasble Soluton Of Transportaton
More informationNuno Vasconcelos UCSD
Bayesan parameter estmaton Nuno Vasconcelos UCSD 1 Maxmum lkelhood parameter estmaton n three steps: 1 choose a parametrc model for probabltes to make ths clear we denote the vector of parameters by Θ
More informationSupport vector domain description
Pattern Recognton Letters 20 (1999) 1191±1199 www.elsever.nl/locate/patrec Support vector doman descrpton Davd M.J. Tax *,1, Robert P.W. Dun Pattern Recognton Group, Faculty of Appled Scence, Delft Unversty
More information行 政 院 國 家 科 學 委 員 會 補 助 專 題 研 究 計 畫 成 果 報 告 期 中 進 度 報 告
行 政 院 國 家 科 學 委 員 會 補 助 專 題 研 究 計 畫 成 果 報 告 期 中 進 度 報 告 畫 類 別 : 個 別 型 計 畫 半 導 體 產 業 大 型 廠 房 之 設 施 規 劃 計 畫 編 號 :NSC 962628E009026MY3 執 行 期 間 : 2007 年 8 月 1 日 至 2010 年 7 月 31 日 計 畫 主 持 人 : 巫 木 誠 共 同
More informationCalculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More information