# 4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

Save this PDF as:

Size: px
Start display at page:

Download "4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then"

## Transcription

1 SECTION 2.6 THE RATIO TEST THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of course there are a great may series for which these two tests are ot ideally suited, for example, the series Itegratig the terms of this series would be difficult, especially sice the first step would be to fid a cotiuous fuctio which agrees with! (this ca be doe, but the solutio is ot easy). We could try a compariso, but agai, the solutio is ot particular obvious (ideed, those readers who solved Exercise 37 of the last sectio should feel proud). Istead, the simplest approach to such a series is the followig test due to Jea le Rod d Alembert (77 783). 4!. The Ratio Test. Suppose that a is a series with positive terms ad let a a. If the a coverges. If the a diverges. If or the it does ot exist the the Ratio Test is icoclusive. You shold thik of the Ratio Test as a geeralizatio of the Geometric Series Test. For example, if a ar is a geometric sequece the a a r, ad we kow these series coverge if ad oly if r. (Note that we will oly cosider positive series here; we deal with mixed series i the ext sectio.) I fact, the proof of the Ratio Test is little more tha a applicatio o the Compariso Test. Proof. If the the sequece a is icreasig (for sufficietly large ), ad therefore the series diverges by the Test for Divergece. Now suppose that. Choose a umber r sadwiched betwee ad : r. Because a a, there is some iteger N such that for all N. Set a a N. The we have 0 a a r a N ra N ar,

2 80 CHAPTER 2 INFINITE SERIES ad a N 2 ra N ar 2, ad i geeral, a N k ar k. Therefore for sufficietly large (amely, N), the terms of the series a are bouded by the terms of a coverget geometric series (sice 0 r ), ad so a coverges by the Compariso Test. Sice the Ratio Test ivolves a ratio, it is particularly effective whe series cotai factorials, as our first example does. Example. verge? Does the series 4! coverge or di s Solutio. First we compute : Sice a a 4! 4! 4 4!! 0, this series coverges by the Ratio Test a It is importat to ote that the Ratio Test is always icoclusive for series of the form polyomial polyomial. As a example, we cosider the harmoic series ad 2. Example 2. Show that the Ratio Test is icoclusive for ad 2. Solutio. For the harmoic series, we have. I order to evaluate this it, remember that we factor out the highest order term:, so the test is icoclusive. The series 2 fails similarly: ,

3 SECTION 2.6 THE RATIO TEST 8 ad agai we factor out the highest order term, leavig 2 2 so either series ca be hadled by the Ratio Test., 2 As Example 2 demostrates, kowig that a a is ot eough to coclude that the sequece coverges; we must kow that the it of this ratio is less tha. Example 3. Does the series coverge or diverge? Solutio. The ratio betwee cosecutive terms is a a as. Sice this it is less tha, we ca coclude that the series coverges by the Ratio Test. The last example could also be hadled by the Compariso Test, sice so the series coverges by compariso with a coverget geometric series. However, what if we moved the from the deomiator to the umerator: 0 4 2? Now the iequality i the compariso goes the wrog way, makig the Compariso Test much harder to use. O the other had, the it i the Ratio Test is uchaged (you should check this for yourself). I geeral, it is usually a good idea to try the Ratio Test o all series with expoetials (like 0 ) or factorials. Example 4. Does the series 2! 2! 0 6, coverge or diverge? 0 6 Solutio. Here the ratio betwee cosecutive terms is a a 2 2! 2! 2! 2!

4 82 CHAPTER 2 INFINITE SERIES as. Sice this it is greater tha (or ay other umber, for that matter), the series diverges by the Ratio Test. Our last example could be doe usig the Compariso Test (how?), but it is (probably) easier to use the Ratio Test. Example 5. Does the series or diverge? Solutio. terms is coverge I this case the ratio betwee cosecutive a a , so pullig out the highest order terms, we have a a as. Because this it is less tha, the series coverges by the Ratio Test. EXERCISES FOR SECTION 2.6 Exercises 4 give various values of a. a I each case, state what you coclude from the Ratio Test about the series a I Exercises 5 6, first compute a, a ad the use the Ratio Test to determie if the give series coverge or diverge

5 SECTION 2.6 THE RATIO TEST ! 2!! 2 2! 2!! 2!!! 99!!! 7. Fid a sequece a of positive (i particular, ozero) umbers such that both a ad a diverge. 8. Is there a sequece a satisfyig the coditios of the previous problem such that exists ad is ot equal to? a a A stroger test tha the Ratio Test, proved by Augusti ouis Cauchy ( ), is the followig. Use the Root Test to determie if the series i Exercises coverge or diverge l 2 2 Exercises 27 ad 28 show that the Root Test is a stroger test tha the Ratio Test. 27. Show that the Root Test ca hadle ay series that the Ratio Test ca hadle by provig that if a a exists the a. 28. Show that there are series that the Root Test ca hadle but that the Ratio Test caot hadle by cosiderig the series a where a 2 if is odd, 2 if is eve. The Root Test. Suppose that a 0 for all ad let a. The series a coverges if ad diverges if. (If the the Root Test is icoclusive.) I some cases where the ratio ad root tests are icoclusive, the followig test due to Joseph Raabe (80 859) ca prove useful. Our first task is to prove this result. 9. Copyig the begiig of the proof of the Ratio Test, give a proof of the Root Test. Raabe s Test. Suppose that a is a positive series. If there is some choice of p such that a a p

6 84 CHAPTER 2 INFINITE SERIES for all large, the a coverges. Exercises 29 3 ask you to prove Raabe s Test, while Exercises 32 ad 33 cosider a applicatio of the test. 29. Show that if p ad 0 x the px x p. This is called Beroulli s iequality, after Joha Beroulli ( ). Hit: Set f x px x p. Show that f 0 ad f x 0 for 0 x. Coclude from this that f x for all 0 x. 30. Assumig that the hypotheses of Raabe s Test hold ad usig Exercise 29, show that a a p b b where b p. 3. Rewrite the iequality derived i Exercise 30 as a b, b b use this to show that a Mb for some positive umber M ad all large, ad use this to prove Raabe s Test. 32. Show that the Ratio Test is icoclusive for the series 3 5 2k k Use Raabe s Test to prove that the series i Exercise 32 coverges.

7 SECTION 2.6 THE RATIO TEST 85 ANSWERS TO SEECTED EXERCISES, SECTION 2.6. The series diverges 3. The series coverges , so the series coverges by the Ratio Test. 7. 3, so the series diverges by the Ratio Test. a 9. 0 as, so the series coverges by the Ratio Test. a a. as, so the series coverges by the Ratio Test. a a 3. as, so the series diverges by the Ratio Test. a 5. The ratio here is a! a!. Recall from Example of Sectio 2. that the it of this ratio is Ratio Test because e. e, so the series diverges by the

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

### 4.3. The Integral and Comparison Tests

4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

### Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

### Theorems About Power Series

Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

### Sequences II. Chapter 3. 3.1 Convergent Sequences

Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

### 2.3. GEOMETRIC SERIES

6 CHAPTER INFINITE SERIES GEOMETRIC SERIES Oe of the most importat types of ifiite series are geometric series A geometric series is simply the sum of a geometric sequece, Fortuately, geometric series

More information

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

### INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

### Approximating the Sum of a Convergent Series

Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

More information

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

### The second difference is the sequence of differences of the first difference sequence, 2

Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

### a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

### 8.1 Arithmetic Sequences

MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

### x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

### Taylor Series and Polynomials

Taylor Series ad Polyomials Motivatios The purpose of Taylor series is to approimate a fuctio with a polyomial; ot oly we wat to be able to approimate, but we also wat to kow how good the approimatio is.

More information

### Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

### Building Blocks Problem Related to Harmonic Series

TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

### 2.7 Sequences, Sequences of Sets

2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

### The Euler Totient, the Möbius and the Divisor Functions

The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

### Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

### Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

### Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

### FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

### Section 8.3 : De Moivre s Theorem and Applications

The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

### Irreducible polynomials with consecutive zero coefficients

Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

More information

### Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

### CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

### Solving Divide-and-Conquer Recurrences

Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

More information

### 1. C. The formula for the confidence interval for a population mean is: x t, which was

s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

### The Field Q of Rational Numbers

Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

More information

### Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

### Economics 140A Confidence Intervals and Hypothesis Testing

Ecoomics 140A Cofidece Itervals ad Hypothesis Testig Obtaiig a estimate of a parameter is ot the al purpose of statistical iferece because it is highly ulikely that the populatio value of a parameter is

More information

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

### TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

### Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

### f(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions.

Fourier Series. Itroductio Whe the Frech mathematicia Joseph Fourier (768-83) was tryig to study the flow of heat i a metal plate, he had the idea of expressig the heat source as a ifiite series of sie

More information

### 7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

More information

### Recursion and Recurrences

Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

### Hypothesis testing. Null and alternative hypotheses

Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

### Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University

Sequeces, Series ad Covergece with the TI 92. Roger G. Brow Moash Uiversity email: rgbrow@deaki.edu.au Itroductio. Studets erollig i calculus at Moash Uiversity, like may other calculus courses, are itroduced

More information

### 3. Covariance and Correlation

Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

### Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

### Lesson 15 ANOVA (analysis of variance)

Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

### SEQUENCES AND SERIES

Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

### Class Meeting # 16: The Fourier Transform on R n

MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

### Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

### Lecture 4: Cheeger s Inequality

Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

### GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

### CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

### CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

### The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

### WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

### Sampling Distribution And Central Limit Theorem

() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,

More information

### Overview of some probability distributions.

Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

### Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

### Factors of sums of powers of binomial coefficients

ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

### Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

### 7.1 Finding Rational Solutions of Polynomial Equations

4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

### Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

### CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

### Introductory Explorations of the Fourier Series by

page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information

### Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

### Maximum Likelihood Estimators.

Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

### 1 Itroductio Let A be a complex matrix ad let C (A) be its th compoud. It was show i [10, Formula (12)] that the imal row sum (of moduli) of elemets o

Bouds o orms of compoud matrices ad o products of eigevalues Ludwig Elser Faultat fur Mathemati Uiversitat Bielefeld Postfach 100131 D-33615 Bielefeld Germay Daiel Hershowitz Departmet of Mathematics Techio

More information

### Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

### 3. Continuous Random Variables

Statistics ad probability: 3-1 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay

More information

### BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

### Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

### Radicals and Fractional Exponents

Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

More information

### SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif.

SUMS OF -th OWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION N.A. Draim, Vetura, Calif., ad Marjorie Bickell Wilcox High School, Sata Clara, Calif. The quadratic equatio whose roots a r e the sum or differece

More information

### 5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

### 7. Sample Covariance and Correlation

1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

### Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. The Weak Law of Large Numbers

Steve R. Dubar Departmet o Mathematics 203 Avery Hall Uiversity o Nebrasa-Licol Licol, NE 68588-0130 http://www.math.ul.edu Voice: 402-472-3731 Fax: 402-472-8466 Topics i Probability Theory ad Stochastic

More information

### Analysis Notes (only a draft, and the first one!)

Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

### Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

### AN ASYMPTOTIC ROBIN INEQUALITY. Patrick Solé CNRS/LAGA, Université Paris 8, Saint-Denis, France.

#A8 INTEGERS 6 (206) AN ASYMPTOTIC ROBIN INEQUALITY Patrick Solé CNRS/LAGA, Uiversité Paris 8, Sait-Deis, Frace. sole@est.fr Yuyag Zhu Departmet of Math ad Physics, Hefei Uiversity, Hefei, Chia zhuyy@hfuu.edu.c

More information

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information