# Bite 6: Newton s Third Law

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Bite 6: Newton s Third Law Newton s three laws of motion predict the motion of virtually all objects on Earth and in space. You are about to know all of them. Newton s 1st law: an object at rest tends to stay at rest and an object in motion tends to stay in motion. Newton s 2nd Law: Force equals mass times acceleration. Now this lesson, Newton s 3rd Law: Every action has an equal and opposite reaction. After this lesson, you guys will have the full set of Newton s Laws of Motion. Congratulations! Newton s Laws are all they used to launch space craft to the moon and soon you will understand them all. Pretty powerful stuff huh!? Are you ready for Newton s Third and final law of motion? Here it is, every action has an equal and opposite reaction. Taaa Daaa! Even though this is the most well known of Newton s Three, it seems to me to be the hardest to fully comprehend. Again, it is a tribute to Newton that he was able to see this law. For every action, every force, the same action/force happens in the opposite direction. As you sit on your chair reading this, gravity is pulling down with a certain force (the force of your weight and the weigh of the chair). The floor is pushing up with the same force. Quick quiz - what would happen if the floor pushed up with more force then force of the chair pushing down? There would be an upward force which would cause an acceleration of the chair causing your mass to lift upwards! (That s Newton s Second Law, right?) Because the force up and the force down is equal, the net force is zero and there is no motion. This law helps you walk. As you walk, you push backwards against the ground. The ground gives an equal and opposite push to you so you move forward. Try to imagine someone walking in a canoe. (I don t recommend trying this, unless you know how to swim and are willing to get wet!) As the person steps forward, the canoe moves backward. The equal and opposite force of the walking moves the person forward just as far as it moves the canoe backward. But Jim...how come as I walk on my floor, my house doesn t move backwards like the canoe? Ahhh, good, I m glad you re paying attention. Let s go back to Newton s Second Law again. Force equals mass times acceleration. What is the mass of you compared to your house? Pretty small right? So the force you create to move your mass forward, is nowhere near the force that is required to move the house backward (especially since your Mechanics: Newton s Third Law 1

2 house is anchored to the earth.) You do push backward on your house but due to the immense inertia of the house it doesn t move. Let s try the next few experiments and see if we can really get this concept. Experiment 2 Rocket Bus (A movie of this is available at This experiment will pop a cork out of a wine bottle and make it go 20 to 30 feet, while the bus moves in the other direction! This is an outdoor experiment. Be careful with this. The cork comes out with a good amount of force. Don t point it at anyone or anything. Don t point it at yourself. What you need: Wine bottle Cork (be careful that the corkscrew didn t go all the way through it) Baking Soda Vinegar Paper towel Fairly large Toy Car, Truck or Bus Duct Tape Flat Sidewalk or Driveway 1. Strap the wine bottle to the top of the toy bus with the duct tape. You want the opening of the bottle to be at the back of the bus. 2. Put about one inch of vinegar into the bottle. 3. Shove a wad of paper towel as far into the neck of the bottle as you can. Make sure the wad is not too tight. It needs to stick into the neck of the bottle but not too tightly. Mechanics: Newton s Third Law 2

3 4. Pour baking soda into the neck of the bottle. Fill the bottle from the wad of paper all the way to the top of the bottle. 5. Now put the cork into the bottle fairly tightly. 6. Now tap the whole contraption hard on the ground outside to force the wad of paper and the baking soda into the bottle. 7. Give the bottle a bit of a shake. 8. Set it down and watch. Do not stand behind the bus where the cork will shoot. 9. In 20 seconds or less, the cork should come popping off of the bottle. What you should see is the cork firing off the bottle and going some 10 or 20 feet. The bus should also move forward a foot or two. This is Newton s Third law in action. One force fired the cork in one direction. Another force, equal and opposite, moved the bus in the other direction. Why did the bus not go as far as the cork? The main reason is the bus is far heavier then the cork. F=ma. The same force could accelerate the light cork a lot more than the heavier bus. Now try this: Experiment 3 Do the Twist You need: A chair that can spin 1. Sit in the chair and put your arms out. 2. Lift your feet off the floor 3. Now twist your torso quickly in one direction. 4. Pretty simple huh? Mechanics: Newton s Third Law 3

4 As you moved your torso, the chair twisted in the opposite direction of your moving arms. Why did the chair move in one direction while your arms moved in the other direction? If you said, because Newton said so. you re right! Every action has an equal and opposite reaction. The action of your body moving one way has an opposite action of the chair moving the other way. Experiment 4 Backwards Ho (A movie of this is available at You need: A skateboard or a wagon The heaviest thing you can throw safely Sidewalk or Driveway 1. Sit in the wagon or on the skateboard (please do not stand up). 2. Throw the heavy thing as hard as you can. Please be careful not to hit anybody or anything. If this doesn t work don t worry about it. You need a fairly low friction skateboard or wagon to make this work. At this point, you should know what should happen, so what do you think? If you said that the throw forward would move you backward, you re right! Mechanics: Newton s Third Law 4

5 Experiment 5 Balloon Races (A movie of this is available at You need: Balloon (the fat, long ones work well) String Straws Chair 1. Blow up the balloon (don t tie it) 2. Let it go. 3. Wheeeee! 4. Tie one end of the string to a chair. 5. Blow up the balloon (don t tie it). 6. Tape a straw to it so that one end of the straw is at the front of the balloon and the other is at the nozzle of the balloon. 7. Thread the other end of the string through the straw and pull the string tight. 8. Let go. With a little bit of work (unless you got it the first time) you should be able to get the balloon to shoot about ten feet along the string. Obviously this is a great demonstration of Newton s Third Law. It s also a good opportunity to bring up some science history. Many folks used to believe that it would be impossible for something to go to the moon because once something got into space there would be no air for the rocket engine to push against and so the rocket could not push itself forward. In other Mechanics: Newton s Third Law 5

6 words, those folks would have said that your balloon shoots along the string because the air coming out of the balloon pushes against the air in the room. The balloon gets pushed forward. You now know that that s hooey! What makes the balloon move forward is the mere action of the air moving backward. Every action has an equal and opposite reaction. You now have a great grasp of Newton s three laws and with it you understand a good deal about the way matter moves about on Earth and in space. Take a look around. Everything that moves or is moved follows Newton s Laws. Next lesson we will get into Newton s Third Law a little deeper when we discuss momentum and conservation of momentum. In a Nutshell Newton s Third Law states that every action has an equal and opposite reaction. (That s about it for this lesson. It s a one bite wonder!) Mechanics: Newton s Third Law 6

7 Did You Get it? 1. What s Newton s First Law? 2. What s Newton s Second Law? 3. What s Newton s Third Law? 4. What is force? 5. You are floating in space and your Super 3000 Space Jets short out on you. You are holding a wrench. How do you get back to the space ship? 6. I m hammering a nail into a hard piece of wood. I m using one of my son s light hammers and getting nowhere fast. Finally, I grab a hammer with a heavier head and it goes much easier. Which one of Newton s Laws did I finally remember? 7. David Letterman, a long time ago, had a race down a hallway with a fire extinguisher and a rolling office chair. As he shot the fire extinguisher one way, the chair zipped down the hallway. (Don t try this at home!!) Which of Newton s Laws was Dave delicately demonstrating? 8. I m riding on my bike and I accidentally hit the front brakes instead of the back brakes. The bike stops and flips me right over the handle bars. As I m falling, I realize that I am quite a comical example of which of Newton s Laws? 9. What two things on Earth cause Newton s First Law to appear to not be true? 10. What is acceleration? Mechanics: Newton s Third Law 7

8 Answers Answers to Did You Get It 1. An object at rest tends to stay at rest, an object in motion tends to stay in motion. 2. F=ma or Force equals mass times acceleration. 3. Every action has an equal and opposite reaction. 4. Force is a push or a pull. 5. You can throw the wrench so that it goes in the opposite direction of the ship. The force of the throw will have an opposite force on you and you will zip to the ship. See how handy physics is?! 6. Newton s Second. The heavier head of the hammer has a larger mass. The larger mass with the same acceleration will hit with a greater force on the nail then the lighter hammer will. F=ma 7. Newton s Third Law. Every action has an equal and opposite reaction. The action of the fire extinguisher firing will have an equal and opposite reaction which zips Dave backwards down the hall. 8. Newton's First Law. An object in motion tends to stay in motion. An object at rest tends to stay at rest. Since I was moving, I continued moving even though the bike stopped. Luckily, my face broke my fall! (Helmets are a good idea!) 9. Gravity and Friction are two ever present forces on this planet that cause things to stop moving. If these forces did not exist, there would be nothing to stop objects from moving all over the place. 10. Acceleration is a change in velocity or in other words a change in speed or direction. Mechanics: Newton s Third Law 8

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

### Newton s Second Law. What is Force Anyway?

Newton s Second Law Newton s second law is the toughest of his laws to understand, but it is very powerful. In its mathematical form, it is so simple it s elegant. Mathematically it is F=MA or Force =

### Force and Motion Test

Force and Motion Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (1 point each) 1. Your best guess of how an experiment might turn out

### Isaac Newton was a British scientist whose accomplishments included

80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

### Magnetism and Gravity

reflect Imagine that you had two superpowers. Both powers allow you to move things without touching them. You can even move things located on the other side of a wall! One power is the ability to pull

### E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

### 356 CHAPTER 12 Bob Daemmrich

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Name Period Chapter 10 Study Guide

Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

### Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### 7 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force.

For every force, there is an equal and opposite force. 7.1 Forces and Interactions A force is always part of a mutual action that involves another force. 7.1 Forces and Interactions In the simplest sense,

### Baking Soda & Vinegar Rocket

Baking Soda & Vinegar Rocket Category: Chemistry; Physics: Force & Motion Type: Make & Take Rough Parts List: 1 Plastic bottle 1 Cork 1 Paper towel Cardstock or thin cardboard Baking soda Vinegar Cardboard

### A Place Where Learning is Fun! Student Manual Elementary School

A Place Where Learning is Fun! Student Manual Elementary School 1 TO BE READ ON THE BUS ON YOUR WAY TO CAROWINDS! Your bus pulls up to the entrance of Carowinds and you are about to jump out of your seat

### A Place Where Learning is Fun! Student Manual Middle School

A Place Where Learning is Fun! Student Manual Middle School 1 TO BE READ ON THE BUS ON YOUR WAY TO CAROWINDS! Your bus pulls up to the entrance of Carowinds and you are about to jump out of your seat with

### STUDY GUIDE UNIT 10-Newton s Third Law

Name ANSWERS STUDY GUIDE UNIT 10-Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.1-6.3 Fill in Reading Notes (p. 2) Worksheet - Action-Reaction Pairs (p. 3) Go over

### 1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

### For every action, there is an and.

SPH4C1 Lesson 03 Newton s Laws NEWTON S THIRD LAW LEARNING GOALS Students will: Be able to state Newton s 3 rd Law and apply it in qualitative and quantitative terms to explain the effect of forces acting

### Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

### Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket

Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on

### Experimenting With Forces

Have you heard the story about Isaac Newton and the apple? Newton was a scientist who lived about 300 years ago. He made many important discoveries about how and why things move. The apple story goes like

### Educational Innovations

Educational Innovations NA-100/95S Newton s Apple grav i ty (gravitē) noun 1. The force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes

### Chapter 06 Multi-format Test

Name: Class: Date: Chapter 06 Multi-format Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The inertia

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### Forces. Lecturer: Professor Stephen T. Thornton

Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

### Topic: Gravity. Beyond Our Planet Science. A Poppins Book Nook Science Experiment. My Name Is:

Beyond Our Planet Science A Poppins Book Nook Science Experiment Topic: Gravity My Name Is: --------------------------------------------------------------------------------------------------------- Clip

### CHAPTER 3: INERTIA. 1. Purpose of Experiments with Inertia. 2. Inertia. 3. Experiments with Inertia. 4. Other Activities. 5. The Importance of Inertia

CHAPTER 3: INERTIA 1. Purpose of Experiments with Inertia 2. Inertia 3. Experiments with Inertia 4. Other Activities 5. The Importance of Inertia 6. Bibliography 7. Research Topics Montessori Research

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Draft -4_30_2010. Unit 3: Simple Machines Key Ideas:

Unit 3: Simple Machines Key Ideas: 3.1 Demonstrate how mechanical energy may cause change in motion through the application of force or the use of simple machines. 3.2 Observe and describe how the amount

### The Laws of Newton. Overview. Venn Diagram Positioning. Time Required. Standards Addressed. Materials Required. The Laws of Newton [ 1 ]

The Laws of Newton Overview Gravity is one of the fundamental concepts of Physics. It is an abstract concept which can t be explained without the help of activities. Students in the middle grades need

### Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

### Newton's First Law. Newton s Laws. Page 1 of 6

Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),

### LAWS OF FORCE AND MOTION

reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

### Guiding Questions Activity 5. What is a force? What are Newton s laws of motion? Purpose: To define force and explore Newton s three laws of motion.

Guiding Questions Activity 5 What is a force? What are Newton s laws of motion? Purpose: To define force and explore Newton s three laws of motion. Note: Earlier we established through experimentation

### Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

### Pulleys. Experiment 1 The Lone Pulley

Pulleys Well, I hope you used the lever lesson to get some leverage on this work, energy and simple machines concept. This lesson we re going to pulley ourselves up by our bootstraps and play with these

### Physics 101. Chapter 5: Newton s Third Law

Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can

### Describe the relationship between gravitational force and distance as shown in the diagram.

Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

### External vs. Internal Force

NEWTON'S THIRD LAW External vs. Internal Force External Force: Exerted on the system by something outside the system Internal Force: Exerted by one part of the system on another part Newton's Second Law:

### The Laws of Newton. Overview. Time Required. Standards Addressed. Objectives. The Laws of Newton [ 1 ] Physical Science Space Science

The Laws of Newton Overview In this three-part activity, students explore Newton s three Laws of Motion that govern all bodies in motion, from toy cars to spacecraft in orbit around Earth. Each part (experiment)

### Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

### Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure

Rocket Principles Outside ir Pressure Inside ir Pressure ir Moves Balloon Moves rocket in its simplest form is a chamber enclosing a gas under pressure. small opening at one end of the chamber allows the

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home

sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home The Creative Canal Project (CCP) is part of the Science Museum s Outreach Department, which works with teachers, students, families

### Newton s Third Law of Motion

Newton s Third Law of Motion Summary of Newton s Laws So Far Newton s 1 st Law of Motion explains the Law of Inertia This law predicts the behavior of objects when all forces acting on them are balanced

3rd Grade Scientific Inquiry Performance Task DRAFT- Balloon Rockets Science Standards: 3.2! Interaction and Change: Living and non-living things interact with energy and forces. 3.2P.1! Describe how forces

### April 07, 2015. Force motion examples.notebook MOTION AND FORCES. GRAVITY: a force that makes any object pull toward another object.

Force motion examples.notebook April 07, 2015 MOTION AND FORCES GRAVITY: a force that makes any object pull toward another object Feb 15 12:00 PM 1 FRICTION: a force that acts to slow down moving objects

### Here is a list of concepts that you will need to include in your observations and explanations:

NEWTON S LAWS Sir Isaac Newton (1642-1727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16 HISTORY OF IDEAS ABOUT MOTION Aristotle (384-322 BC) o Natural Motion An object will strive to get to its proper place determined by its nature or

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

### Newton s Laws of Motion

Newton s Laws of Motion Isaac Newton is famous for three laws. They are about the way things move. He didn t write the laws. Other people called them Newton s Laws of Motion. Newton s First Law The first

### Described by Isaac Newton

Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

### Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

### 2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions

SUMMARY Newton s Second Law of Motion Newton s second law of motion relates the acceleration of an object to the mass of the object and the net force acting on it. The equation is a = F net or F m net

### (green chalkboard on screen) VO Newton s Third Law of Motion is also known as the Law of Interaction or Action-Reaction.

Physics 404 - Newton s Third Law and Projectile Motion (Read objectives on screen.) Did you know that it is impossible to touch something or someone without being touched back? That s what Newton s Third

### Compound Machine: Two or more simple machines working together to make work easier. Examples: Wheelbarrow, Can Opener, Bicycle

Name SOL 4.2 Simple and Compound Machines NOTE - Simple machines are NOT included in the 5 th REVISED Science Standards Simple Machine: A machine with few or no moving parts. Simple machines make work

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

### Sir Isaac Newton and LeBron James

Sir Isaac Newton and LeBron James Sir Isaac Newton and LeBron James The English physicist and mathematician Sir Isaac Newton discovered three basic laws of motion. The First Law says that objects at rest

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Simple machines provide a mechanical advantage that makes our work faster and easier, and they are all around us every day.

LEARNING MODULE: SIMPLE MACHINES Pre-Visit Activities We suggest that you use these pre-visit classroom acitivites to prepare your students for a rewarding Museum visit. Before your visit, introduce your

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Explore 3: Crash Test Dummies

Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

### Speed, acceleration, friction, inertia, force, gravity 11/13/15

Speed, acceleration, friction, inertia, force, gravity 11/13/15 Sarah starts at a positive position along the x- axis. She then undergoes a negative displacement. Her final position A. is positive. B.

### Lesson Plan for Zip-Line Balloon Racer

Lesson Plan for Zip-Line Balloon Racer Written by Zhihao Zhao Background Info Have you ever wondered why when you push a table it resists your pushing and doesn t collapse? Have you ever wondered how a

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

### 25 N to the right. F gravity

Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Lesson 2: YOU RE PLANNING TO LAUNCH A ROCKET!

Key to Curriculum Formatting: Volunteer Directions Volunteer Notes Volunteer-led Classroom Experiments Lesson 2: YOU RE PLANNING TO LAUNCH A ROCKET! Begin the presentation by telling the class that this

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

### Handheld Water Bottle Rocket & Launcher

Handheld Water Bottle Rocket & Launcher Category: Physics: Force and Motion Type: Make & Take Rough Parts List: Rocket Launcher: 1 3/8 One- hole rubber stopper 2 Valve stems, from an inner tube 4 Small

### Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage

### FORCES AND MOTION THERE ARE DIFFERENT TYPES OF FORCES... NON-CONTACT FORCES

FORCES AND MOTION Forces are what make things move, like a push (kicking a football), or a pull (train) THERE ARE DIFFERENT TYPES OF FORCES... Some of the forces are more obvious than others and they can

### Teaching Time: Projectiles

27206_U04L18_184-195.indd Page a184 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit 4 27206_U04L18_184-195.indd Page a185 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit

### Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

### There are many different types of contact forces. In fact there is four. Book resting on table

You may not know but forces are everyday life movements, by reading a book, talking, running and writing on a page you are applying a force. They cause objects to move or stay stationary. There are two

### Toys In Space Lesson 1 of 2

Lesson 1 of 2 Grade Level: 9-12 Subject(s): Physical Science, Space Science Prep Time: < 10 minutes Activity Duration: 50 minutes Materials Category: Special requirements Science 3d, 3f National Education

### b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

### PHYSICS DAY ELEMENTARY SCHOOL

ELEMENTARY SCHOOL PHYSICS DAY Table of Contents Canyon Blaster Sponge Bob 4-D Rim Runner Rockin Canyon Cars Sand Pirate Chaos/Road Runner Newton s Laws of Motion Simple Machines Glossary 2 3 4 5 6 7 8

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is