Chapter 3, Lesson 4: Density: Sink and Float for Solids

Size: px
Start display at page:

Transcription

1 Chapter 3, Lesson 4: Density: Sink and Float for Solids Key Concepts The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in. Summary Students will investigate a wax candle and a piece of clay to understand why the candle floats and the clay sinks even though the candle is heavier than the piece of clay. Students will discover that it is not the weight of the object, but its density compared to the density of water, that determines whether an object will sink or float in water. Objective Students will be able to determine whether an object will sink or float by comparing its density to the density of water. Evaluation The activity sheet will serve as the Evaluate component of each 5-E lesson plan. The activity sheets are formative assessments of student progress and understanding. A more formal summative assessment is included at the end of each chapter. Safety Make sure you and your students wear properly fitting goggles. Materials for Each Group 2 tea light candles in their metal containers Clay Water in cup Small balance Tape Dropper Notes About the Materials A simple balance is required for the demonstration. One of the least expensive is Delta Education, Stackable Balance (21-inch) Product # Students can use the smaller version of the same balance, Delta Education, Stackable Balance (12-inch), Product # You will need tea light candles for the demonstration and for each student group. Look for candles in which the wax completely fills the metal container American Chemical Society Middle School Chemistry Unit 187

2 ENGAGE 1. Do a demonstration to show that the wax is heavier than the clay but that the wax floats and the clay sinks. Materials for the demonstration 1 tea light candle Clay Clear plastic container Water Large balance Teacher preparation Use a small enough piece of clay so that you are sure that the candle weighs more than the clay. Pour water into a clear plastic container (or large cup) until it is about ½-full. Procedure 1. Place a piece of clay that weighs less than a tea light candle on one end of a balance. 2. Remove the candle from its metal container and place the candle on the other end of the balance. 3. Ask students which is heavier, the clay or the candle. Ask them to predict which will sink and which will float. Then, place the clay and candle in a clear container of water. Expected results Even though the candle weighs more than the clay, the candle floats and the clay sinks. 2. Discuss students ideas about why the heavier candle floats and the lighter clay sinks. Why do you think the bigger, heavier candle floats and the smaller, lighter clay sinks? 188 Middle School Chemistry Unit 2011 American Chemical Society

3 Students may say that the clay is more dense than wax. Tell students that the density of the objects is important, but that in sinking and floating, the density of the water matters, too. In fact, by comparing the density of an object to the density of water, you can predict whether an object will sink or float. One way to compare them is to weigh equal volumes of each. Give an activity sheet to each student. Students will record their observations and answer questions about the activity on the activity sheet. The Explain It with Atoms and Molecules and Take It Further sections of the activity sheet will either be completed as a class, in groups, or individually depending on your instructions. Look at the teacher version of the activity sheet to find the questions and answers. EXPLORE 3. Have students compare the density of water, wax, and clay. Question to investigate Why does a heavier candle float and a lighter piece of clay sink? Materials for each group 2 tea light candles in their metal containers Clay Water in cup Small balance Tape Dropper Procedure Compare the density of wax and water 1. Roll two pieces of tape and stick them to the center of the pan at each end of the balance. 2. Attach each tea light candle to the tape so that each candle is in the center of the pan. 3. Use the wick to pull one candle out of its container. 4. Carefully pour water into the empty metal container until it fills the container to the same level as the candle in the other container. You may use a dropper to add the last bit of water and prevent spilling. The goal is to compare the mass of equal volumes of wax and water American Chemical Society Middle School Chemistry Unit 189

4 Expected results The water has a greater mass than an equal volume of wax. So, the density of water must be greater than the density of wax. Which weighs more, wax or an equal volume of water? Water weighs more than an equal volume of wax. Which is more dense, wax or water? Water is more dense. If students have trouble understanding this relationship between the mass and density of equal volumes, have them think about the demonstration from Chapter 3, Lesson 1 with the aluminum and copper cubes. Both had the same volume, but the copper cube weighed more. Because the copper had more mass, it also had a greater density. Compare the density of clay and water 1. Make sure you have one piece of tape in the center of each pan on the balance. 2. Fill one container with clay and place it on the tape so that it is in the center of the pan. 3. Place an empty container on the tape at the opposite end of the balance. 4. Slowly and carefully add water to the empty container until it is full. Expected results The clay has a greater mass than an equal volume of water. So, the density of clay is greater than the density of water. Which weighs more, the clay or an equal volume of water? The clay weighs more than an equal volume of water. Which is more dense, clay or water? Clay is more dense. Knowing the density of an object can help you predict if it will sink or float in water. If an object is more dense than water, would you expect it to sink or float? Objects that are more dense than water sink. If an object is less dense than water, would you expect it to sink or float? Objects that are less dense than water float. 190 Middle School Chemistry Unit 2011 American Chemical Society

5 EXPLAIN 4. Compare the density of wax, water, and clay on the molecular level. Project the image Wax. Wax is made of carbon and hydrogen atoms connected together in long chains. These long chains are tangled and intertwined and packed together to make the wax. Project the image Water. Even though they both have lots of hydrogen atoms, water is more dense than wax because the oxygen in water is heavier and smaller than the carbon in the wax. Also, the long chains of the wax do not pack as efficiently as the small water molecules American Chemical Society Middle School Chemistry Unit 191

6 Project the image Clay. Clay has oxygen atoms like water, but it also has heavier atoms like silicon and aluminum. The oxygen atoms are bonded to the silicon and aluminum to make molecules with a lot of mass. These are packed closely together, which makes the clay more dense than water. EXTEND 5. Have students explain, in terms of density, why a very heavy object like a big log floats and why a very light object like a tiny grain of sand sinks. A giant log can float on a lake, while a tiny grain of sand sinks to the bottom. Explain why a heavy object like the log floats while a very light grain of sand sinks. Students should recognize that a log will float because wood is less dense than water. If you could weigh a large amount of water that has the same volume as the log, the log will weigh less than the water. Therefore, the log floats. A grain of sand will sink because sand is more dense than water. If you could weigh a small amount of water that has the same volume as the grain of sand, the sand will weigh more than the water. Therefore, the sand sinks. Students should realize that if an object weighs more than an equal volume of water, it is more dense and will sink, and if it weighs less than an equal volume of water, it is less dense and will float. Remember that the density of water is about 1 g/cm 3. Predict whether the following objects will sink or float. 192 Middle School Chemistry Unit 2011 American Chemical Society

7 Will these objects sink or float? Object Density (g/cm 3 ) Sink or float Cork Float Anchor 7.8 Sink Spruce wood oar 0.4 Float Apple 0.9 Float Orange 0.84 Float Orange without peel 1.16 Sink 3 If a peach has a volume of 130 cm and sinks in water, what can you say about its mass? Its mass must be more than 130 grams. If a banana has a mass of 150 grams and floats in water, what can you say about its volume? Its volume must be more than 150 cm 3. Note: Students may wonder why boats made out of dense material like steel can be made to float. This is a good question and there are several ways of answering it. A key to understanding this phenomenon is that the density of the material and the density of an object made of that material are not necessarily the same. If a solid ball or cube of steel is placed in water, it sinks. But if that same steel is pounded and flattened thin and formed into a big bowl-like shape, the overall volume of the bowl is much Read more about sinking and floating in the additional teacher background section at the end of this lesson. greater than the volume of the steel cube. The mass of the steel is the same but the big increase in volume makes the density of the bowl less than the density of water so the bowl floats. This is the same reason why a steel ship is able to float. The material is shaped in such a way so that the density of the ship is less than the density of water American Chemical Society Middle School Chemistry Unit 193

Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

Unit A: Studying Materials Scientifically

ITEM BANKS Unit A: Studying Materials Scientifically Multiple choice: Circle the best answer. 1. What safety rules should you always follow while doing a science laboratory? a. Wear safety goggles at all

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

Chapter 4, Lesson 4: Energy Levels, Electrons, and Covalent Bonding

Chapter 4, Lesson 4: Energy Levels, Electrons, and Covalent Bonding Key Concepts The electrons on the outermost energy level of the atom are called valence electrons. The valence electrons are involved

T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and Materials Kit.........

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore:

Buoyancy Boats Florida Sunshine State Science Standards: SC.C.2.3.1 The student knows that many forces act at a distance. SC.C.2.3.2 The student knows common contact forces. SC.C.2.3.3 The student knows

Name Date Hour. Buoyancy

Name Date Hour Buoyancy Consider: If I gave you an object that you had never seen before and it was made of unknown material and then asked you whether or not it would float in water, what would you base

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

NaCl Lattice Science Activities

NaCl Lattice Science Activities STEM: The Science of Salt Using a Salt Lattice Model Teacher Notes Science Activities A Guided-Inquiry Approach Using the 3D Molecular Designs NaCl Lattice Model Classroom

Density. Density is how concentrated or compact matter is.

Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density

Lesson 2 The Buoyant Force

Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment

Multiple Choice For questions 1-10, circle only one answer.

Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

Buoyancy What floats your boat? Sink or float? Test The cube sinks to the bottom. WHY? Weight Due to the pulling force of gravity both the cube and the water have the property of weight. Gravity Gravity

Hot Leaks. See how the temperature of liquids changes the way they flow.

P h y s i c s Q u e s t A c t i v i t i e s Activity 2 1 Hot Leaks See how the temperature of liquids changes the way they flow. Safety: This experiment requires using the hot water tap and straight pins.

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction Key Concepts Reactants must be moving fast enough and hit each other hard enough for a chemical reaction to take place. Increasing the

Solids, Liquids, and Gases

Solids, Liquids, and Gases nd Intended for Grade: 2 Grade Subject: Science Description: Activities to help students understand solids, liquids, gases, and the changes between these states. Objective: The

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 Physical Science Overview Materials (matter) come in different forms. Water can be rain falling (liquid)

Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.

Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN

Milk Dye ACTIVITY PLAN Objective: Students will use the scientific method to test the difference between using whole milk and skim milk in this milk and food dye experiment. Students will explore ideas

What s in a Mole? Molar Mass

LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding

Chapter 4, Lesson 5: Energy Levels, Electrons, and Ionic Bonding Key Concepts The attractions between the protons and electrons of atoms can cause an electron to move completely from one atom to the other.

Sorting Materials into Groups

Sorting Materials into Groups 4 CHAPTER Tips and Tricks Objects around us have different shapes, colours and uses. They are made up of one or more materials such as paper, glass, plastic, cloth, wood,

Name: Class: Date: ID: A

Name: Class: Date: ID: A Chapter 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. Complete short answer questions on a separate sheet of paper.

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

10 g 5 g? 10 g 5 g. 10 g 5 g. scale

The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than

Grade 8 Activity Keep Your Head Above Water Do things that float behave differently in salt and fresh water? What lets them float, and when do they sink? Concepts Water has physical properties of density

MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou. Sink or Swim. Photo: M.

MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou Sink or Swim Type of Project: Facilitated activity with optional demonstration Target Museum: SciTech Hands-On

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

Mixtures. reflect. How is seawater different from pure water? How is it different from rocky soil?

reflect Everything around us is made out of tiny bits of matter. These particles may combine in different ways to produce new materials. Sometimes we need to separate the parts of a material. If we know

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.

Classifying Matter. reflect. look out!

reflect Do you know what air, water, and an apple all have in common? They are all examples of matter. Matter is a word we use a lot in science. It means stuff. All of the stuff in the world that has mass

Archimedes Principle. Biological Systems

Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

Density Lab. If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Name: Section: Due Date:

Name: Section: Due Date: Lab 01B-1 If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Density Lab Density is an important concept in oceanography,

KINDERGARTEN CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF KINDERGARTEN CHEMISTRY WEEK 1. PRE: Distinguishing the four types of matter. LAB: Classifying heavy and light rocks. POST:

Heterogeneous Homogenous. Mixtures; Solutions. Phases of matter: Solid. Phases of Matter: Liquid. Phases of Matter: Gas. Solid, Liquid, Gas

Phases of matter: Solid Heterogeneous Homogenous Mixtures Solutions Phases of Matter: Liquid Atoms and molecules are more spaced out and now can move. The material can be slightly compressed into a smaller

The Structure of Water Introductory Lesson

Dana V. Middlemiss Fall 2002 The Structure of Water Introductory Lesson Abstract: This is an introduction to the chemical nature of water and its interactions. In particular, this lesson will explore evaporation,

Greatest Discoveries With Bill Nye: Chemistry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Physical Science Lesson Duration: Two class periods Program Oxygen and Atoms Explore atomic and molecular structure and see how oxygen was first isolated.

Chapter 3: Separating Mixtures (pg. 54 81)

Chapter 3: Separating Mixtures (pg. 54 81) 3.2: Separating Mechanical Mixtures (PB Pg. 40 5 & TB Pg. 58 61): Name: Date: Check Your Understanding & Learning (PB pg. 40 & TB pg. 61): 1. What are four methods

Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

O o. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.org/

O o b l ekk c What is Oobleck? Can you use THE SCIENTIFIC METHOD AND your senses to solve the mystery of Oobleck? Problem Three liquids are mixed together in a plastic bag. Using your senses (except for

Activity: How Do We Clean Up an Oil Spill?

Activity: How Do We Clean Up an Oil Spill? Summary In this activity, students simulate an oil spill and test different materials abilities to clean the oil spill. Resource Type Activity Grade Level High

Sink or Float HELP CHILDREN TALK ABOUT SINKING AND FLOATING:

Sink or Float KEY VOCABULARY analyzing: considering information gathered during an experiment float: to stay above the surface of the water investigating: gathering information by observing or testing

CHEM 150 Exam 1 KEY Name Multiple Choice

CEM 150 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _B 1. Which of the following is synonymous with "fact"? a. a hypothesis

Chapter Test B. Chapter: Measurements and Calculations

Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

Physical and Chemical Changes Pre Test Questions

Pre Test Questions Name: Period: Date: 1. Which of the following is an example of physical change? a. Mixing baking soda and vinegar together, and this causes bubbles and foam. b. A glass cup falls from

Determination of a Chemical Formula

1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home

sciencemuseumoutreach Kitchen Science 1 Demonstrations to do at home The Creative Canal Project (CCP) is part of the Science Museum s Outreach Department, which works with teachers, students, families

Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.

Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

Heat Transfer: Conduction, Convection, and Radiation

Heat Transfer: Conduction, Convection, and Radiation Introduction We have learned that heat is the energy that makes molecules move. Molecules with more heat energy move faster, and molecules with less

FIRST GRADE CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF FIRST GRADE CHEMISTRY WEEK 1. PRE: Comparing solids, gases, liquids, and plasma. LAB: Exploring how states of matter can

Integrated Physics & Chemistry Supply List (2010)

Integrated Physics & Chemistry Supply List (2010) Integrated Physics and Chemistry is a physical science course covering basic concepts found in chemistry and physics. Topics included in the study are

Balloon Inside a Bottle

Balloon Inside a Bottle What is Needed * One small party balloon * One small bottle. A 16 ounce pop bottle works well. What to Do Put approximately 1 tablespoon of water into the empty pop bottle. Then

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond

SUGGESTED ACTIVITIES

SUGGESTED ACTIVITIES (Thermal Energy) From Invitations to Science Inquiry 2 nd Edition by Tik L. Liem: Activity Page Number Concept Warm a Bottle by Shaking 184 Heat, Friction The Confused Bottles 206

Mineral Identification

Mineral Identification Name Notes Page Objectives Explain which mineral properties are most important in identification. Explain how to identify minerals by their properties. Classify some common minerals

Luminol Test PROCESS SKILLS SCIENCE TOPICS VOCABULARY

EXPERIMENT: LUMINOL TEST Luminol Test Visitors mix a solution of luminol with fake blood (hydrogen peroxide) to produce a reaction that gives off blue light. OBJECTIVES: Visitors learn that some chemical

Student Exploration: Archimedes Principle

Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

POTATO FLOAT. Common Preconceptions:

POTATO FLOAT Unit: Salinity Patterns & the Water Cycle l Grade Level: Middle l Time Required: 30 min. (in class) after solutions are prepared by the teacher l Content Standard: NSES Physical Science, properties

Create your own dig! Archaeologists find out about the past by DISCOVERING artefacts left behind by our ancestors, EXAMINING what they have found and then RECORDING their discoveries for the future. You

Chemistry Worksheet: Matter #1

Chemistry Worksheet: Matter #1 1. A mixture (is/is not) a chemical combining of substances. 2. In a compound the (atoms/molecules) are (chemically/physically) combined so that the elements that make up

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

Moles Lab mole. 1 mole = 6.02 x 1023. This is also known as Avagadro's number Demo amu amu amu

Moles I. Lab: Rice Counting II. Counting atoms and molecules I. When doing reactions chemists need to count atoms and molecules. The problem of actually counting individual atoms and molecules comes from

Chemical Composition Review Mole Calculations Percent Composition Copyright Cengage Learning. All rights reserved. 8 1 QUESTION Suppose you work in a hardware store and a customer wants to purchase 500

Kinetic and Potential Energy

Kinetic and Potential Energy Vocabulary: kinetic energy energy of movement potential energy stored energy potential chemical energy stored energy released by chemical changes Comprehension Questions 1.

Surface Tension: Liquids Stick Together Teacher Version

Surface Tension: Liquids Stick Together Teacher Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

Physical and Chemical Properties of Materials

Physical and Chemical Properties of Materials 40- to 2 50-minute sessions ACTIVITY OVERVIEW 14 L A B O R ATO R Y Students explore the properties of a wide variety of materials and examine the relationship

Mechanical Energy. Mechanical Energy is energy due to position or motion.

Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,

engineering is out of this world

Light but Strong A Lesson in Engineering EP-2013-09-107-MSFC engineering is out of this world National Aeronautics and Space Administration Light but Strong teacher notes Next Generation Science Standards:

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml

elearning 2009 Introduction Target Mole Lab Mole Relationships and the Balanced Equation Publication No. A common chemical reaction used in chemistry class is zinc and hydrochloric In this lab, students

Buoyancy Problem Set

Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

\$\$059?7=V\$HRIR\$W\$#49;\$!9PP5=>\$;<\$)9>>\$?L@7=V\$9\$%456789:\$0598;7<=\$7=\$9\$ %:<>5?\$,K>;563

\$\$059?7=V\$RIR\$W\$#49;\$!9PP5=>\$;>\$?L@7=V\$9\$%456789:\$0598;7;563 D\$&&'"(*B\$)7 Did you know that when you play with glow sticks, you are watching a chemical reaction in a closed system?

Hands-On Labs SM-1 Lab Manual

EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

Buoyancy. Program Description. Louisiana GLEs: Grades: 3 rd - 5 th grades Program Duration: 60 Minutes Program Type: Demonstration

Buoyancy Grades: 3 rd - 5 th grades Program Duration: 60 Minutes Program Type: Demonstration Program Description In this program students will investigate Archimedes Principle by using pan balances and

The Empirical Formula of a Compound

The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Discovering the Properties of Magic Sand

NNIN Nanotechnology Education Teacher s Preparatory Guide Discovering the Properties of Magic Sand Purpose Explore the properties of molecular bonding Introduce students to the engineering of hydrophobic

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

Atomic Structure Chapter 5 Assignment & Problem Set

Atomic Structure Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Atomic Structure 2 Study Guide: Things You Must Know Vocabulary (know the definition

Law of Conservation of Matter

Law of onservation of Matter Type of Lesson: ontent with Process: Focus on constructing knowledge though active learning. IP ontent TEKS: 8 Investigate and identify the law of conservation of mass. Learning

Chapter 6 Notes. Chemical Composition

Chapter 6 Notes Chemical Composition Section 6.1: Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number

Chemical Reactions & Electricity

THE TEAK PROJECT: TRAVELING ENGINEERING ACTIVITY KITS Chemical Reactions & Electricity Partial support for this project was provided by the National Science Foundation's Course, Curriculum, and Laboratory

Write True or False in the space provided.

CP Physics -- Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the

Lesson Plan. The Northern Lights in a Bowl. Developed by: Laura Wright 2016 Iditarod Teacher on the Trail. Discipline / Subject:

Lesson Plan The Northern Lights in a Bowl Developed by: Laura Wright 2016 Iditarod Teacher on the Trail Discipline / Subject: Language Arts and Science Topic: Mixtures and Solutions - Science Grade Level:

CHEMICAL FORMULAS AND EQUATIONS

reflect Imagine that you and three other classmates had enough supplies and the recipe to make one pepperoni pizza. The recipe might include a ball of dough, a cup of pizza sauce, a cup of cheese, and

Lesson Plan: The Building Blocks of Photosynthesis

Lesson Plan: The Building Blocks of Photosynthesis Summary In this lesson, students will use colored blocks to represent the elements in photosynthesis and illustrate how they are broken down and reassembled

Discover what you can build with ice. Try to keep ice cubes from melting. Create colored ice for painting

Visit Moody Gardens this holiday season and check out the coolest exhibit around ICE LAND: Ice Sculptures. After your visit, try out these ice-related activities. Discover what you can build with ice Try