AP Physics C-Electricity and Magnetism Syllabus

Size: px
Start display at page:

Download "AP Physics C-Electricity and Magnetism Syllabus"

Transcription

1 AP Physics C-Electricity and Magnetism Syllabus Overview Students enrolled in AP Physics C have already completed a year-long, accelerated physics course in their junior year. It is required that they also have completed, or are concurrently enrolled in a calculus course. The AP Physics C course will meet five, 70-minute periods a week, for a75-day second semester. Approximately one and a half weeks will be allowed for review immediately prior to the AP exams in May, and review sessions will also be held outside of class time during the second semester. Students are expected to take both the mechanics and electricity and magnetism AP exams in May. Students are highly recommended to review practice exams and other materials available through the College Board website. Textbook University Physics, 12 th Edition, Young and Freedman (Pearson, 2008) Materials Needed Textbook Three-ring binder with tab dividers and notebook paper Scientific calculator Pens and pencils WebAssign account and access to internet outside of the class Course Description This fast-paced semester-long course is designed to prepare students for the AP Physics C exam in electricity and magnetism. Topics will be covered in the order presented in chapters of the Young and Freedman textbook, University Physics. Calculus will be used throughout this course, with emphasis on both differential and integral methods. Concepts and problem-solving techniques will be introduced through a series of lectures, interactive demonstrations, question and answer sessions, problem-solving sessions, laboratory investigations, and homework assignments. The course will adhere to a tight schedule and students will be expected to put in minutes per night in homework. Major Units of Study Unit 1: Electrostatics: charge, field and energy Unit 2: Conductors, Capacitors and Dielectrics Unit 3: Electric Circuits Unit 4: Magnetic Fields Unit 5: Electromagnetism 1

2 Instructional Strategies Lectures: Formal presentation of concepts will typically proceed through lecture. Since students have already completed a year-long, advanced course in physics, lectures will be limited in number and duration to topics deemed to be sufficiently difficult or novel to students. Wherever possible, the instructional strategy will be to present students with phenomena first, and follow this with explication of concepts, working from concrete to abstract. Interactive demonstrations: The instructor will incorporate a variety of demonstrations within the course. The purpose of such demonstrations ranges from introduction of a new concept (introductory) to detailed analysis of a phenomena using labware probes (advanced.) Demonstrations will serve to support the conceptual understandings required for the electricity and magnetism curriculum. Question and Answer Sessions: Interaction and feedback make question and answer sessions essential in this course. Class-wide question and answer sessions will be incorporated on a daily basis, in a largely informal manner. These may center on student queries about lecture topics, demonstrations, labs or physics problems. Problem-Solving Sessions: Students will be allowed class time to work individually and collaboratively on solving problems assigned in class or as homework. These sessions are valuable insofar as they allow students to exchange strategies for mastering problem-solving techniques, and also allow students to interact with the instructor on a one-on-one basis. Laboratory Investigations: As a laboratory-based course, students should expect to spend at least 20% of class time (1 day for every 5 days of instruction) doing hands-on laboratory work. Labs are designed to reinforce concepts from the electricity and magnetism curriculum. Labs are designed to maximize student inquiry, collaborative interactions, authentic applications and open-ended creative solutions whenever possible. Students will often be required to generate their own procedures, decide which information is relevant, and then decide how to organize and analyze this information. Students will be required to consider and evaluate possible sources of error in laboratory investigations. Clear communication of ideas and findings through writing, tables, graphs and calculations will be demanded. Reports will typically document purpose, method, data, analysis and conclusions. Students will work collaboratively in teams of 2-3, but will generally submit their own individual final reports. Students are expected to compile a portfolio of their lab work for each semester. Homework: AP Physics is a college-level course! Students will need to invest minutes of time each evening on preparation for class. This will include online and written problem assignments, reading assignments, laboratory write-ups and general study time. Problemsolving assignments are of particular importance in the homework regimen. Problems found at the end of the textbook chapter will be assigned on a weekly basis. Students will submit answers through Webassign and will be expected to achieve a minimum percentage of correct responses after a limited number of allowed attempts. From these problem sets, students will also be asked to submit a subset of fully-worked out problems in writing. These problems should be submitted on loose leaf paper. 2

3 Assessment Strategies Philosophy: Assessment of Student Understanding: Since this course is fast-paced, it is essential that students prepare themselves in a daily manner for lessons. Toward this end, the instructor will assess students on a daily basis in either formative or summative manners. Students will be assessed formatively on a daily basis in a variety of ways, including o Formative: Although homework assignments and quizzes will comprise 20% of the classroom grade, the spirit of homework assessment is to provide formative feedback. Students will be given multiple opportunities to achieve full credit on problem assignments, encouraging them to revisit problems that they find especially difficult. On a weekly basis, students will be expected to successfully complete a minimum percentage of online problems. The instructor will also collect and provide feedback on students written problems on a weekly basis. Homework quizzes will be administered on a frequent basis to test student understanding and provide feedback for improvement. o Summative: Laboratory reports (see previous section), unit tests and the final exam are modeled on the AP exams and are very difficult. Unit tests are given at the end of each unit and are written to encourage students to see the big picture. Unit tests will be divided into multiple choice and free response sections. Free response problems on unit tests will involve combining material from previous units. Weighting of Class Work Grade: The class work portion of the grade will be weighted as follows: Homework and Quizzes (20%), Labs (20%), Unit Tests (60%) Final Exam: A final examination will be administered at the termination of each semester and will be cumulative. The final exam will count for 20% of the semester grade. Grading: Final grades for the quarter and semester will be assigned according to the following scale: A (90-100%), B ( %), C ( %), D ( %), F (<60%) 3

4 Lab Report Guidelines Students are required to complete written lab reports to be compiled in a lab portfolio. A general description of laboratory report requirements is provided below. Title: Short and precise; should accurately depict experiment done. Purpose: Give a rational explanation as to why you are conducting the experiment. Hypothesis: State your hypothesis. This should be an educated guess as to what you believe your investigation will show. Theoretical Background: Provide a summary of the relationships, including mathematical equations, which are relevant to the experiment. Materials and Equipment: Provide a concise list of any materials and equipment that is needed to carry out the experiment. Procedure: Give a detailed step-by-step description of how this experiment was conducted. Another scientist should be able to perform your lab using your method. The procedure should include figures that are labeled with the specific quantities that you need to measure. For example, in an experiment involving a ramp, draw the ramp and label the height and angle above horizontal. Figures should NOT be cute images copied from the web, but should be your OWN, hand-drawn or computer drawn figures. Data: Data table (Produce a labeled table of your results, including units of measurements). Calculations show any calculations that you used in the interpretation o your data. Graphs provide any labeled with units, suitably scaled graphs to help with the data you collected. Diagrams provide relevant diagrams, correctly labeled. It is especially important to include force diagrams if appropriate. Analysis: Summarize data trends give a brief explanation of the observations, trends/links in the results. Explain how errors could have occurred during the experiment and what steps could be taken to minimize their effects. If necessary, provide a statistical analysis of the accuracy of your data. Please avoid using the term human error, which is imprecise and lacking in specificity. Conclusion: Give a full, but concise explanation of the outcome of your experiment, noting if the purpose was fulfilled using this procedure. Was your hypothesis validated why or why not? Cite specific results! 4

5 Electricity and Magnetism Labs Students will spend at least 20% of course time on laboratory work and sometimes more depending on the unit. This work will include both informal activities of an exploratory nature, and also lengthier laboratory investigations requiring a formal analysis and write-up. Activities are hands-on in nature. In many laboratories, students will be encouraged to develop their own procedures and methods of inquiry. The following laboratory investigations will support the electricity and magnetism curriculum: Topographic Mapping Lab: Students use water levels around a plastic mountain model to draw the topographic lines for the mountain. They are then asked questions to prepare them for similar concepts on lines of equipotential, gradient and electric fields. Electric Potential Mapping Lab: Using conductive ink pens, students will create and test a variety of conductive patterns on a sheet of resistive paper. They will use a voltage probe to measure the magnitude and sign of the electric potential at a variety of key locations. They will use their results to sketch equipotential surfaces and to determine electric fields around the conductors. Charging and Discharging a Capacitor Lab: Students will construct a basic resistor and capacitor DC circuit using breadboards with stock capacitors and resistors. They will use a Pasco voltage probe to measure the voltage across the capacitor as a function of time for both charging and discharging cases. For long time-constant circuits (5-30 seconds,) students will obtain a single voltage-time dataset. For short time-constant circuits (<1 second) students will use the voltage probe in oscilloscope mode to again determine time constant based on percent charge or discharge. Home-built Capacitor lab: Students will construct a capacitor from paper and aluminum foil. They will determine the time constant by using a function generator and Pasco voltage probe. Combining Capacitors in Series and Parallel Lab: Students will construct a variety of series, parallel and combination circuits involving capacitors. They will use a digital multimeter to measure voltage drops across capacitors in these networks, and will compare their results to theoretical predictions. Resistivity of a Slinky Lab: In this lab students will investigate the relationship between the resistance and length of a toy Slinky. They will use a digital ohmmeter to determine resistance as a function of the number of coils. Ohmic Material Lab: Students will make a series of measurements of current versus applied voltage for a light-bulb filament in order to determine if the filament displays ohmic behavior. They will construct a graph of current versus voltage and will use it to justify their conclusion. They will correctly discuss the behavior in terms of the increase of resistance with temperature in most metals. Internal Resistance Lab: Students will use a battery in combination with a low-resistance, high-power resistor in order to determine the internal resistance of the battery. In this lab, students will be required to demonstrate proper usage of both a voltmeter an ammeter. 5

6 Series and Parallel Circuits Lab: Students will construct series circuits, parallel circuits and combination networks using a set of stock carbon resistors on a prototyping breadboard. They will measure voltage drops across resistors, current through resistors, and equivalent resistance of networks, using a standard digital multimeter probe (acts as voltmeter, ammeter and ohmmeter.) DC Motor Lab: Students will apply principles of force acting on a current loop in a uniform magnetic field to design, construct and test a simple DC motor, using a battery, length of insulated wire, and small permanent magnet. Student motors will have a 50% duty cycle, achieved by using a permanent marker to shut off current for half of a turn. Helmholtz Coil Lab: Students will construct Helmholtz coils using wire and cardboard discs. They will use a Hall probe to measure the magnetic field along the axis of these coils when a DC current is applied, comparing field magnitudes and directions to theoretical predictions. Slinky Solenoid Lab: Students will use a Hall probe to measure the magnitude and direction of the magnetic field generated within a toy Slinky. They test the relationship between field strength and the number of coils per unit length. They will also determine the permeability constant. Induction Lab: Students will explore a variety of concepts relating to Faraday s law, and electromagnetic induction by exploring stations at which they investigate how changing magnetic fields induce EMFs. They will use Lenz s law to predict the direction of the flow of induced current when a bar magnet is moved into and out of a solenoid, comparing these results to the current induced in a neighboring solenoid that is hooked up to a power supply. Students will also explore magnetic braking by analyzing the motion of a magnet dropped through a copper tube, and will investigate the repulsion of an aluminum ring when placed over a changing field core. RL Circuit Lab: Students use a signal generator to generate a positive square-wave voltage supply. They then use a Pasco voltage sensor to measure the varying voltage across the resistor of an RL circuit. By doing this they can analyze the time constant of the circuit. 6

7 Units of Study, Detailed Outline Electricity and Magnetism Unit 1: Electrostatics: Charge, Field and Energy (15 days), Chapters o Electric charge and Coulomb s law Describe types and behavior of electric charge Apply Coulomb s law and the superposition principle o Electric field Define in terms of force on a test charge Calculate magnitude and direction of field from or more point charges Interpret electric field diagrams Analyze kinematics of motion of a charged particle in a field. o Gauss s law Concept of flux and Gaussian surface Electric field by integration for symmetric geometries o Electric potential Concept of electric potential and relation to field Potential of point charge configurations Potential by integration o Fields and potentials of other charge distributions Equipotential lines and surfaces Unit 2: Conductors, Capacitors and Dielectrics (5 days), Chapter 24 o Conductors Explain how charge distributes itself on conductor in equilibrium Describe the electric fields surrounding conductors in equilibrium o Capacitors Define capacitance and state relation to charge, voltage and energy o Parallel plate capacitors o Dielectrics Understand effect of dielectric placed within a capacitor Unit 3: Electric Circuits (16 days), Chapters 25, 26 o Current, resistance and power Concept of resistance and current at microscopic level Ohm s law o Steady-state direct current circuits with batteries and resistors only Series and parallel combinations of resistors Application of Kirchoff s rules to solve circuits o Capacitors in circuits Concept of voltage and charge across capacitors in initial and steady-state situations Capacitors in series and parallel Write expressions for time-dependence of charge and voltage for capacitor 7

8 Unit 4: Magnetic Fields (15 days), Chapters 27, 28 o Forces on moving charges in magnetic fields Describe magnitude and direction of force on charges moving in magnetic fields Understand situations involving motion of charged particle through a magnetic field at constant velocity, uniform circular motion, etc. o Forces on current-carrying wires in magnetic fields Describe magnitude and direction of force on current-carrying wire in magnetic field Calculate magnitude and direction of torque on current loops o Fields of long current-carrying wires Calculate net field from multiple current sources, and the effect that one wire has on another. o Biot-Savart law and Ampere s law Derive and apply expression for the field created by summing small current elements, in particular for a circular loop of current. Use Ampere s law, plus symmetry arguments and the right-hand rule, to relate magnetic field strength to current for planar or cylindrical symmetries. Unit 5: Electromagnetism (14 days), Chapters 29, 30 o Electromagnetic induction Calculate flux of a uniform field through a loop of arbitrary orientation. Calculate flux of a non-uniform field by integration Calculate the magnitude and direction of an induced emf in a loop under different circumstances o Inductance Understand how an emf generated within an inductor Understand self-inductance of long solenoid. Understand LR and LC circuits with direct current, especially initial and steady state behavior. o Maxwell s Equations Recognize each of Maxwell s equations and identify its implications 8

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

How To Understand The Physics Of A Single Particle

How To Understand The Physics Of A Single Particle Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

Build A Simple Electric Motor (example #1)

Build A Simple Electric Motor (example #1) PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE COURSE SYLLABUS FOR UNIVERSITY PHYSICS II Course Title: University Physics II Course Number : PHYS 2326-7 Class Number : 48053 Semester : Time and Location:

More information

Last time : energy storage elements capacitor.

Last time : energy storage elements capacitor. Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because

More information

Inductors & Inductance. Electronic Components

Inductors & Inductance. Electronic Components Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

More information

5. Measurement of a magnetic field

5. Measurement of a magnetic field H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

More information

APC Physics - Mechanics Sachem North High School Syllabus William Holl. Overview and Prerequisites: Textbook: Schedule:

APC Physics - Mechanics Sachem North High School Syllabus William Holl. Overview and Prerequisites: Textbook: Schedule: APC Physics - Mechanics Sachem North High School Syllabus William Holl Overview and Prerequisites: Any student who has successfully completed APB Physics as a junior, and is currently enrolled in either

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

Instructor: Mr. Undieme B.S. Physics University of Illinois, M.S. Mathematics University of Central Florida

Instructor: Mr. Undieme B.S. Physics University of Illinois, M.S. Mathematics University of Central Florida AP Physics C Mechanics and AP Physics C Electricity and Magnetism Room 3-05 Text: Physics for Scientists and Engineers Serway and Jewett 6 th edition Materials: Notebooks, scientific calculator, and graph

More information

Physics 142 Course Information

Physics 142 Course Information Physics 142 Course Information General Physics II Electricity and Magnetism (4 credit hours) Fall 2013 Instructors: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Randall Espinoza 2272 SES (312)

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use non-programmable calculators.

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples

Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Unit: Charge Differentiated Task Light it Up!

Unit: Charge Differentiated Task Light it Up! The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Aircraft Electrical System

Aircraft Electrical System Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

More information

Magnetostatics (Free Space With Currents & Conductors)

Magnetostatics (Free Space With Currents & Conductors) Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary

More information

physics 112N magnetic fields and forces

physics 112N magnetic fields and forces physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

More information

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A 1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

More information

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

Magnetic electro-mechanical machines

Magnetic electro-mechanical machines Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

Physics 2102 Lecture 19. Physics 2102

Physics 2102 Lecture 19. Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

ELECTRICITE ET MAGNETISME.

ELECTRICITE ET MAGNETISME. Created by Neevia Personal Converter trial version Physique Fondamentale ELECTRICITE ET MAGNETISME. LA LOI D INDUCTION DE FARADAY (Faraday Law Induction) Magnetic Flux Faraday's Law of Induction Lenz's

More information

Capacitors in Circuits

Capacitors in Circuits apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively

More information

Complete tests for CO 2 and H 2 Link observations of acid reactions to species

Complete tests for CO 2 and H 2 Link observations of acid reactions to species Acids and Bases 1. Name common acids and bases found at home and at school 2. Use formulae for common acids and bases 3. Give examples of the uses of acids and bases 4. State that all solutions are acidic,

More information

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

More information

12. Transformers, Impedance Matching and Maximum Power Transfer

12. Transformers, Impedance Matching and Maximum Power Transfer 1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Electromagnetic Induction: Faraday's Law

Electromagnetic Induction: Faraday's Law 1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:

More information

Electronics Technology

Electronics Technology Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information

More information

Biology AP Edition - Campbell & Reece (8th Edition)

Biology AP Edition - Campbell & Reece (8th Edition) AP biology syllabus ~ 2016-2017 Instructor s Information Course: Advance Placement Biology (A/B) Instructor: Mrs. R. R. Wingerden Phone: (805) 937-2051 x2121 E-mail: rwingerden@righetti.us Website: http://www.rwingerden.com/apbio/

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor. Physics 1051 Laboratory #5 The DC Motor The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

Faraday s Law of Induction

Faraday s Law of Induction Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

More information

LABORATORY V MAGNETIC FIELDS AND FORCES

LABORATORY V MAGNETIC FIELDS AND FORCES LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and

More information

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

The Electrical Properties of Materials: Resistivity

The Electrical Properties of Materials: Resistivity The Electrical Properties of Materials: Resistivity 1 Objectives 1. To understand the properties of resistance and resistivity in conductors, 2. To measure the resistivity and temperature coefficient of

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic

More information

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii. Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 164 Summary Gauss's

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

More information

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010 Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Electronics Technology

Electronics Technology Job Ready Assessment Blueprint Electronics Technology Test Code: 4035 / Version: 01 Copyright 2010. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information

More information