DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING


 Brook Gaines
 8 years ago
 Views:
Transcription
1 SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2 teachers WEEKLY PROGRAMMING FOR STUDENT 1. Coulomb's Law. The Electric Field 1 1 Electric charge Coulomb's Law. Dimensions and Units. The Superposition Principle. Definition of the Electric Field 1 2 The Electric Field Created by a Point Charge The Superposition Principle. The Electric Field Lines 2 Gauss's Law Charge Distributions and Charge Densities. The 2 3 Electric Field Created by Various Charge Distributions The Electric Flux 2 4 Gauss's Law on the search of bibliography the discussions. Expose the suggested works. on the search of bibliography the discussions. Expose the suggested works. Página 1 de 5
2 Application of Gauss's Law to Calculate Electric Fields 3 The Electric Potential Work Done in Moving a Charge in an Electric Field 3 5 Potential Difference and Electric Potential Electric Potential Created by Various Charge Distributions Relation between Electric Field and Electric Potential. 3 Equipotential Surfaces Electrostatic Energy of a Point Charge 4 Conductors 4 7 Microscopic perspective on conductors: Conductors and Insulators Conductors in Electrostatic Equilibrium Charge Distribution in Conductors: Electric Field and Electric Potential. 4 8 Electric Fields Inside of Charged Conductors: The Faraday s Cage. Corona Discharges on the search of bibliography the discussions. Expose the suggested works. on the search of bibliography the discussions. Expose the suggested works. Página 2 de 5
3 5 Dielectrics: Capacitance and Energy Storage 5 9 Microscopic perspective on dielectrics: induced dipoles. Polarization and bound charges. The electric displacement: linear dielectrics. Definition of Capacitance: calculating capacitance 5 10 and RC circuits. Capacitors with Dielectrics. Dielectric Constant Combination of Capacitors Energy Stored in a Charged Capacitor Electric Current 11 The Electric Current: Intensity and Current Density. Ohm's Law. Electric Resistance and Electric Conductivity Joule s Law. Power Dissipated in an Electric 12 Conductor Electromotive Force (emf) 7 Magnetic Forces and Magnetic Fields Definition of Magnetic Field. Lorentz s Force 7 13 Charged Particle Movement in a Magnetic Field Magnetic Force Acting on a CurrentCarrying Conductor 7 14 Torque on Current Loops, Permanent Magnets. Magnetic Moment Página 3 de 5
4 Sources of Magnetic Field Sources of the Magnetic Field: Electric Currents. BiotSavart Law Forces Between CurrentCarrying Conductors Magnetic Flux Ampère s Law. Application of Ampère s Law to 8 1 Calculate Magnetic Fields Magnetic Fields in Matter. Magnetism from a microscopic perspective. Magnetization: Magnetic Dipoles. The auxiliary Field H: Ampère's law in Magnetized Materials. Paramagnetism, Diamagnetism and Ferromagnetism Magnetic Susceptibility and Permeability Faraday's Law Faraday's Law of Induction. Lenz s Law. Applications Motional Electromotive Force Examples of Electromagnetic Induction Mutual Induction and SelfInduction Magnetic Energy 11. Introduction to electromagnetism. Maxwell's Equations Introduction to Maxwell s equations. Static and time dependent Oscillations. Maxwell's Equations(2) Electromagnetic Waves: Introduction to the oscillatory movement Mathematical description of the oscillatory systems: AC sources LC and LCR circuits and Resonance. Impedance. Damping. Resonance and Natural Fecuency Introduction to travelling Waves and Standing Waves: Mathematical Description. Mechanical waves, Sound and Electromagnetic Waves scription of a wave. Wave Página 4 de 5
5 13 25? 2 Velocity: phase velocity and group velocity Maxwell's Equations.Electromagnetic Waves. Energy Flux Density of an Electromagnetic Wave. Revision and integration of the main concepts. practice 1? 27 practice 2? 28 practice 3 on the concepts shown in course lectures. It work. Elaborate a report. work. Elaborate a report. work. Elaborate a report. work. Elaborate a report ? 29 practice 4 3 SUBTOTAL 48, = 13,33 Tutorials, handing in, etc Tutorials, handing in, etc 0 Assessment 0 12 TOTAL 150 Página 5 de 5
CHAPTER  1. Chapter ONE: WAVES CHAPTER  2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER  3 Chapter THREE: WAVE OPTICS PERIODS PERIODS
BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICSII (w.e.f 201314) Chapter ONE: WAVES CHAPTER  1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement
More informationCOURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st
COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationApril 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.
Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  164 Summary Gauss's
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationPhysics 142 Course Information
Physics 142 Course Information General Physics II Electricity and Magnetism (4 credit hours) Fall 2013 Instructors: Nikos Varelas 2134 SES (312) 9963415 varelas@uic.edu Randall Espinoza 2272 SES (312)
More informationInductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
More informationGeneral Physics belongs to the core course module of the Degree of Telecommunication Technologies and Services Engineering.
1. COURSE TITLE General Physics 1.1. Course number 18465 1.2. Course area Physics 1.3. Course type Core course 1.4. Course level Undergraduate 1.5. Year 1º 1.6. Semester 1º 1.7. ECTS 6 1.8. Prerequisites
More informationLast time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
More informationChapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
More informationChapter 30 Inductance
Chapter 30 Inductance  Mutual Inductance  SelfInductance and Inductors  MagneticField Energy  The R Circuit  The C Circuit  The RC Series Circuit . Mutual Inductance  A changing current in
More informationHow To Understand The Physics Of A Single Particle
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
More informationAn equivalent circuit of a loop antenna.
3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
More informationPhysics 2102 Lecture 19. Physics 2102
Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationThe rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
More informationHOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE
HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE COURSE SYLLABUS FOR UNIVERSITY PHYSICS II Course Title: University Physics II Course Number : PHYS 23267 Class Number : 48053 Semester : Time and Location:
More informationObjectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
More informationIntroduction to Electricity & Magnetism. Dr Lisa JardineWright Cavendish Laboratory
Introduction to Electricity & Magnetism Dr Lisa JardineWright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More information5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationInductance. Motors. Generators
Inductance Motors Generators Selfinductance Selfinductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
More informationPHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) 
More informationAircraft Electrical System
Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.
More informationTopic Suggested Teaching Suggested Resources
Lesson 1 & 2: DC Networks Learning Outcome: Be able to apply electrical theorems to solve DC network problems Electrical theorems and DC network problems Introduction into the unit contents, aims & objectives
More informationElectric energy by direct conversion from gravitational energy: a gift. Departamento de Física, Universidade Federal de Santa Catarina, Campus,
1 Electric energy by direct conversion from gravitational energy: a gift from superconductivity. Osvaldo F Schilling Departamento de Física, Universidade Federal de Santa Catarina, Campus, Trindade, 88040900,
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationLecture 22. Inductance. Magnetic Field Energy. Outline:
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationEE301 Lesson 14 Reading: 10.110.4, 10.1110.12, 11.111.4 and 11.1111.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
More informationPhysics 6C, Summer 2006 Homework 2 Solutions
Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 330 below shows a circuit containing
More informationAPC Physics  Mechanics Sachem North High School Syllabus William Holl. Overview and Prerequisites: Textbook: Schedule:
APC Physics  Mechanics Sachem North High School Syllabus William Holl Overview and Prerequisites: Any student who has successfully completed APB Physics as a junior, and is currently enrolled in either
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationÇANKAYA UNIVERSITY Faculty of Engineering and Architecture
ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes
More informationGACE Physics Assessment Test at a Glance
GACE Physics Assessment Test at a Glance Updated January 2016 See the GACE Physics Assessment Study Companion for practice questions and preparation resources. Assessment Name Physics Grade Level 6 12
More informationInductance and Magnetic Energy
Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 113 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 115 11. SelfInductance... 115 Example 11. SelfInductance
More informationFundamentals of radio communication
Fundamentals of radio communication This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationSCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
More informationREPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationChapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee
Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic
More informationpotential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 20060927, kl 16.0022.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
More informationDOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 1 of 4
DOEHDBK1011/192 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 1 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release;
More informationCritical thinfilm processes such as deposition and etching take place in a vacuum
WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thinfilm processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationDOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4
DOEHDBK1011/392 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release;
More informationLecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
More informationRUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman
Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster
More informationBSNL TTA Question PaperInstruments and Measurement Specialization 2007
BSNL TTA Question PaperInstruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above
More informationModule 22: Inductance and Magnetic Field Energy
Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationDEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
More informationMagnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples
Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS
More informationFaraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...1010.1.1 Magnetic Flux...103 10.1. Lenz s Law...105 10. Motional EMF...107 10.3 Induced Electric Field...1010 10.4 Generators...101
More informationApplication Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationPHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
More informationInductors and Capacitors Energy Storage Devices
Inuctors an Capacitors Energy Storage Devices Aims: To know: Basics of energy storage evices. Storage leas to time elays. Basic equations for inuctors an capacitors. To be able to o escribe: Energy storage
More informationRC NETWORKS SALES GUIDE
SALES GUIDE INTRODUCTION TO Recent developments in electronic equipment have shown the following trends: Increasing demands for numerical control machines, robotics and technically advanced appliances
More informationThe performance improvement by ferrite loading means  increasing,  increasing of ratio, implicitly related to the input impedance.
3.2.3. Ferrite Loading Magnetic ferrite loading can enhance a transmitting signal as high as 2 to 10 db for MHz [Devore and Bohley, 1977]. There is an optimum frequency range where ferrite loading is beneficial.
More informationLinear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationCode number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.
Series ONS SET1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the
More informationA wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S01430807(04)76273X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationAlternating Current Circuits and Electromagnetic Waves
Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create
More informationELECTRICITE ET MAGNETISME.
Created by Neevia Personal Converter trial version Physique Fondamentale ELECTRICITE ET MAGNETISME. LA LOI D INDUCTION DE FARADAY (Faraday Law Induction) Magnetic Flux Faraday's Law of Induction Lenz's
More informationELECTRIC FIELDS AND CHARGE
1 E1 ELECTRIC FIELDS AND CHARGE OBJECTIVES Aims In studying this chapter you should aim to understand the basic concepts of electric charge and field and their connections. Most of the material provides
More informationChapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits. Copyright 2009 Pearson Education, Inc.
Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 301 Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: Coil 1 produces a flux
More informationCURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE
CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an online knowledge enhancement module for a PGCE programme. It is used to cover
More informationUndergraduate academic research program: BACHELOR OF GEOPHYSICS UNIVERSITY OF ZAGREB FACULTY OF SCIENCE DEPARTMENT OF GEOPHYSICS
Undergraduate academic research program: BACHELOR OF GEOPHYSICS UNIVERSITY OF ZAGREB FACULTY OF SCIENCE DEPARTMENT OF GEOPHYSICS Zagreb, January 2015 STUDY OF GEOPHYSICS Geophysics at the University of
More informationHow to teach about transition processes and other more complex factors in socalled simple electric circuits Abstract Keywords: Introduction
How to teach about transition processes and other more complex factors in socalled simple electric circuits Hermann Haertel ITAP  University Kiel haertel@astrophysik.unikiel.de Sasa Divjak University
More informationStudent Learning Outcomes. Candidates should be able to: 1.1.1 describe the importance of physics in science, technology and society; *
Topics and Student Learning Outcomes of the Examination Syllabus Part I (Class XI) 1. Measurement Topics Student Learning Outcomes Cognitive level 2 1.1 Scope of physics 1.1.1 describe the importance of
More informationAssessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
More informationDC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
More informationDC motors: dynamic model and control techniques
DC motors: dynamic model and control techniques Luca Zaccarian Contents 1 Magnetic considerations on rotating coils 1 1.1 Magnetic field and conductors.......................... 1 1.2 The magnetomotive
More informationGrounding Demystified
Grounding Demystified 31 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%
More informationElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
More informationDepartamento de Física, Ingeniería de Sistemas y Teoría de la Señal FUNDAMENTALS OF PHYSICS IN ENGINEERING I
Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal FUNDAMENTALS OF PHYSICS IN ENGINEERING I Degree in Sound and Image in Telecommunications Engineering Polytechnic University College UNIT
More informationCurrent, Resistance and Electromotive Force. Young and Freedman Chapter 25
Current, Resistance and Electromotive Force Young and Freedman Chapter 25 Electric Current: Analogy, water flowing in a pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a
More informationInteraction of Atoms and Electromagnetic Waves
Interaction of Atoms and Electromagnetic Waves Outline  Review: Polarization and Dipoles  Lorentz Oscillator Model of an Atom  Dielectric constant and Refractive index 1 True or False? 1. The dipole
More informationMagnetic electromechanical machines
Magnetic electromechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity
More informationConceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
More informationThink About This How do the generators located inside the dam convert the kinetic and potential energy of the water into electric energy?
What You ll Learn You will describe how changing magnetic fields can generate electric potential differences. You will apply this phenomenon to the construction of generators and transformers. Why It s
More informationElectronics Technology
Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
More informationMagnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!
Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets
More informationCLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism
CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use nonprogrammable calculators.
More informationInstructor: Mr. Undieme B.S. Physics University of Illinois, M.S. Mathematics University of Central Florida
AP Physics C Mechanics and AP Physics C Electricity and Magnetism Room 305 Text: Physics for Scientists and Engineers Serway and Jewett 6 th edition Materials: Notebooks, scientific calculator, and graph
More informationPS6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
More informationThe DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics
The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More information