# ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions. You will construct various conducting surfaces (metal electrodes) and study the electric field and equipotential patterns associated with them. Although you will study only several particular configurations, you should come away with a basic understanding of fields and equipotentials which is true for any geometry. This write-up begins with some basic facts about fields and equipotentials. For more details, you should consult the appropriate chapters in your physics textbook. FACTS ABOUT FIELDS AND POTENTIALS Electric field E is a vector quantity; it is defined as the force per unit charge that would act upon a unit positive test charge if the charge were placed at the point in question. A line of force or electric field line is the path a charge would follow if it were allowed to move along in exactly the direction of the force acting on it. By convention, the sense of E is the direction of the force on a positive test charge. The potential difference, V AB, (between two points A and B) is defined as the work that would have to be done in moving a unit charge from point A to point B. The sign of V may be positive or negative. Work can be expressed as force times distance, where the force acting on the charge is due to the electric field at the location of the charge, F = qe, and the distance is measured along the direction of the force. The calculus and non-calculus form of the equations which relate V and E are given below. The electric field at a point is E = dv dl r or approximately E V l where r is a unit vector in the direction of greatest change in V. If Eq. (1) is integrated over l (or both sides are multiplied by l), the potential difference between points A and B is found: B r r r r V = VB VA = E dl or approximately V B V A = E l (2) A where dl or l are infinitesimal or finite, but small, line elements, respectively, along a given path. Since the work done in moving a test charge from A to B (and consequently the potential difference between A and B) is independent of the path for a conservative force, r (1) 1 Electric Field Lines and Equipotential Surfaces

2 you can choose a path which makes the integral or sum of Eq. 2 easy to evaluate. If you have studied calculus, it is preferable to use the line integral B E dl A For a constant E, as in the case of the parallel plate capacitor, V = E l cos θ. Potentials are often defined relative to some standard reference point that is taken to be zero. The reference point is often referred to as ground. The MKS unit of potential is joule/coulomb that has been given the name volt. If a test charge is moved in a direction perpendicular to E, no work is done (see Eq. 2). Therefore, there is no change in electric potential. Such a path is an equipotential surface. Since there is a potential and electric field value at every point in space, there is no limit to the number of field lines and equipotential surfaces. In this experiment you will work in two dimensions to acquire a family of lines spaced at convenient intervals. APPARATUS DC power supply (25-40V max) Conductive paper Scissors Assorted leads Multimeter Copper foil tape with conductive adhesive Cork board Push pins The apparatus consists of a sheet of carbon-impregnated paper with a relatively high resistance, metallic tape used as the electrodes, push pins for connecting the power supply to the electrodes, and a multimeter with various probes for making measurements of V and E. You will construct two electrodes (dots, lines, circles, combinations, etc.) with the metallic tape and connect these shapes to a power supply to create a potential difference between them. Because they are good conductors, the taped regions build up a net charge, which sets up an electric field in the paper between them. You will be able to measure the potential difference (voltage) between any two points using two probes that are connected to a digital multimeter. You will use the multimeter as a voltmeter, which measures the potential difference between its terminals. It is calibrated in volts with several scale settings. By using a double probe (two probes connected together so that their tips are 1 cm apart), you can directly measure the average electric field in volts/cm in the region between the probes by measuring V; see Eq. 1). When you touch the probe to your carbonimpregnated paper, you are actually reading the work in joules required to move a coulomb of charge from one position on the carbon sheet to the other. A negative reading means that instead of having to do work to transport a charge from one prong to the other, you would get work out. 2 Electric Field Lines and Equipotential Surfaces

3 It is important to understand that you are modeling three-dimensional systems in only two dimensions. The paper and conductors represent the cross-section of objects that are cylindrically symmetrical rather than spherically symmetrical. For example, the field of a dot and a circle on the paper will be identical to that of a line and a cylinder in space, not of a point charge and a sphere. PROCEDURE It is assumed that 2 lab partners are working together to make measurements of various electrode configurations as detailed below, but lab reports and analysis of the data are done independently. The following electrode configurations should be measured: 1. Two point electrodes (Figure 1a) 2. Two parallel bar electrodes (Figure 1b) 3. A point electrode inside a circular electrode (Figure 1c). Note: It is not advised that more than 2 students work together in lab, since more measurements would be needed than time allows. Making Electrodes: Plan your electrode configurations by outlining them in pencil on the carbon impregnated paper. Use the 20 x 28 cm grid markings as a guide for dimensions. Generally, it is best to have your electrodes spaced cm apart so that measurements are more easily made. You will need to make measurements on both sides of the electrodes, so be sure to leave a few centimeters of space between your electrodes and the edge of the paper. Some suggested dimensions for the required electrodes are: 2 point electrodes: 1 cm squares or dots separated by 20 cm. 2 parallel bar electrodes: cm in length separated by 20 cm. Construct your electrodes using the metallic tape. Be sure the tape is tightly adhered to the paper and free of wrinkles by rubbing with the edge of your fingernail. (a) (b) (c) Figure 1: Electrode patterns Follow the procedure presented below for each of the electrode configurations. 3 Electric Field Lines and Equipotential Surfaces

4 Effective Electrode Potential: Since the adhesive on the back of the tape insulates the metal from the paper somewhat, it is necessary for you to determine the effective electrode potential. To do this, insert push pins through each metal electrode and connect them with wires to the (+) and ( ) terminals of the power supply respectively. Label the positive (+) and negative ( ) electrodes on the carbon impregnated paper. Increase the power supply to volts. Setup the multimeter as a voltmeter on the appropriate scale. Connect the ground side ( ) of the multimeter to the ground terminal ( ) of the power supply (See Figure 2). You are now ready to make potential measurements. First measure the potential of each of your electrodes by touching the multimeter probe directly to the metallic tape. The potential difference you measure should be very close to the voltage setting of the power supply. If not, check that you have connected everything correctly and that your push pins are making contact with the metal part of the tape. These potentials would be the electrode potentials if the tape made perfect contact with the carbon impregnated paper, but it does not. Hence, determine the effective electrode potential by measuring the potential on the paper very near to (~ 1 mm) but not touching the tape. Make several measurements along each electrode and use the average value as the effective electrode potential. Write the effective potentials next to each electrode. You will probably observe a 5-8 volt difference between the potential measured directly on the tape and 1 mm away from the tape on the paper. The important factor is to achieve a volt difference in your effective electrode potentials. If you do not, then adjust the power supply voltage or rub the tape more tightly to the paper until you get the minimum volt difference. Digital Voltmeter v + Power Supply Probe + Figure 2. Arrangement for measuring potentials. Equipotential Lines: Using the arrangement shown in Figure 2 you will first plot the equipotential lines -- lines on which the electric potential is constant. Touching the probe of the meter to the paper, find a place where the meter reads a whole number of volts (e.g. 15 not 15.4, etc.) which is approximately half way between the effective potentials. Mark this point with a pencil. Now move the probe around the paper to find other points at the same potential. Mark each of these points with your pencil. Find enough points so that you can connect them together to form an equipotential line between and/or around the electrodes. Now plot lines at intervals of 2, 4 and 6 volts etc. on each side of your first equipotential line. Also plot the equipotential lines close to but not touching the metallic electrodes. Label 4 Electric Field Lines and Equipotential Surfaces

5 all the lines with their voltages. Make enough measurements to determine the complete equipotential pattern. If you are pretty fast at plotting, you may want to make measurements in steps of 1 volt for better accuracy. Digital Voltmeter v + Power Supply Double Probe + Figure 3. Arrangement for measuring electric field in volts/cm. Electric Field Lines: Next you will plot the electric field lines on the same drawing. A different probe will be used as shown in Figure 3. This probe measures the difference in potential between two points separated by 1 cm. The electric field is defined as the difference of potential divided by the separation. The separation of the points is approximately 1 cm so that the meter readings will be the electric field E in volts/cm if the probe is oriented to give the maximum reading. Start with one tip of the probe close to one electrode. Hold it nearly vertical. Carefully rotate the probe through 360 about the point farther from the electrode. You will notice that the meter goes through 0 and changes sign. Experiment with this until you understand polarity. Next rotate the probe and stop where the meter reads the maximum. The position for maximum meter reading has to be found carefully as it is not very sharp. It is best to rock the probe back and forth a little when you are near the maximum to close in on it from either side. Read the meter, then rotate the probe 180 and put it back in the same spot. You may note a slight asymmetry in the readings. If so, keep the probe oriented in the direction that gives the higher reading. The magnitude of E is the maximum reading and its direction is toward the negative electrode. After you find the maximum, draw a pencil line between the two points of the probe. Label it with the meter reading. Indicate the sense of E with an arrowhead. Now move the probe 1 cm so that the other tip is on the tip of the arrow and repeat the process. Keep doing this and plot out a complete field line from one electrode to the other with no gaps. (See Question 3) Plot at least 5 lines at representative places along the electrodes. Keep in mind that the field lines should have a symmetry which reflects the symmetry of the electrode arrangement. 5 Electric Field Lines and Equipotential Surfaces

6 Repeat the above measurements for each of your electrode configurations. A minimum of 2 per student are required. If you have time, you may want to experiment with other electrode arrangements. 6 Electric Field Lines and Equipotential Surfaces

7 QUESTIONS 1. What can you say about the angle at which field lines cross equipotential lines? What about the angle at which field lines start out from the electrodes? Can two field lines cross? Two equipotential lines? 2. Did you observe two field or equipotential lines crossing each other? Is this possible according to the theory? Explain. 3. For one of your electrode configurations, what were the effective potentials of the electrodes? The effective potential difference? Do the readings that you wrote next to the 1 cm segments equal the effective electrode potential difference when added up for an entire field line? Give numerical examples. 4. What relation do you observe between the values of E close to the bar conductors and the spacing of the equipotential lines near them? Explain. 5. What kind of line (field or equipotential) runs along, or "hugs", the boundary of a conductor (electrode)? What kind of line comes out perpendicular to a conductor? 6. Your textbook says that for parallel plate electrodes E = V/d where V is the (effective) potential between the electrodes. This formula suggests that E is uniform and constant between the plates. Is this what you observed? Explain any deviations. 7 Electric Field Lines and Equipotential Surfaces

### ROUGH DRAFT. Electric Fields Experiment-The Cenco Overbeck Apparatus. by Dr. James E. Parks

ROUGH DRAFT Electric Fields Experiment-The Cenco Overbeck Apparatus by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee

### Electric Field Mapping Lab 3. Precautions

HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

### Equipotential and Electric Field Mapping

Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

### Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

### PHYS-2212 LAB Coulomb s Law and the Force between Charged Plates

PHYS-2212 LAB Coulomb s Law and the Force between Charged Plates Objectives To investigate the electrostatic force between charged metal plates and determine the electric permittivity of free space, ε

### PSS 27.2 The Electric Field of a Continuous Distribution of Charge

Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight Problem-Solving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.

### physics 111N electric potential and capacitance

physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth

### Chapter 22: Electric Flux and Gauss s Law

22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

### The electrical field produces a force that acts

Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the

### Physics 505 Fall 2007 Homework Assignment #2 Solutions. Textbook problems: Ch. 2: 2.2, 2.8, 2.10, 2.11

Physics 55 Fall 27 Homework Assignment #2 Solutions Textbook problems: Ch. 2: 2.2, 2.8, 2., 2. 2.2 Using the method of images, discuss the problem of a point charge q inside a hollow, grounded, conducting

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

### Chapter 18 Electric Forces and Electric Fields. Key Concepts:

Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent

### Capacitance, Resistance, DC Circuits

This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

### LAB 4: CAPACITORS AND RC CIRCUITS

1 Name Date Partner(s) OBJECTIVES LAB 4: CAPACITORS AND RC CIRCUITS! To define capacitance and to learn to measure it with a digital multimeter.! To discover how the capacitance of conducting parallel

### Pre-Lab 7 Assignment: Capacitors and RC Circuits

Name: Lab Partners: Date: Pre-Lab 7 Assignment: Capacitors and RC Circuits (Due at the beginning of lab) Directions: Read over the Lab Handout and then answer the following questions about the procedures.

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### Electrostatics-E Field

1. Which diagram represents the electric field lines between two small electrically charged spheres? 2. Which graph best represents the relationship between the magnitude of the electric field strength,

### 1 Measuring resistive devices

1 Measuring resistive devices 1.1 Sourcing Voltage A current can only be maintained in a closed circuit by a source of electrical energy. The simplest way to generate a current in a circuit is to use a

### Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A

Meters - Ohm s Law APPARATUS 1. Board on which two wires are mounted, each 1 m long, equipped with a sliding contact 2. Rheostat (variable resistance), 0... 7 Ω 3. DC ammeter (full scale: 2 A) 4. Voltmeter

### Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( )

a. Using Faraday s law: Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION The overall sign will not be graded. For the current, we use the extensive hints in the

### Magnetic Fields; Sources of Magnetic Field

This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

### Gauss's Law. Gauss's Law in 3, 2, and 1 Dimension

[ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### A2 Physics - Electric Fields Q&A Revision Sheet

Give the equation relating to the force between point charges in a vacuum If 'F' (the force) is negative what does that mean? If 'F' (the force) is positive what does that mean? State Coulomb's Law F is

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### AP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.

Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = -4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?

### Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

### Magnetic Fields. Goals. Introduction. Mapping magnetic fields with iron filings

Lab 4. Magnetic Fields Goals To visualize the magnetic fields produced by several different configurations of simple bar magnets using iron filings. To use small magnetic compasses to trace out the magnetic

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

### ENGR 1181 Lab 3: Circuits

ENGR 1181 Lab 3: Circuits Lab Procedure Report Guidelines 2 Goal of the Circuits: The Circuits Lab introduces series and parallel circuit which are used by engineers. Students will review this document

### 6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

### 3 DC Circuits, Ohm's Law and Multimeters

3 DC Circuits, Ohm's Law and Multimeters Theory: Today's lab will look at some basics of electricity and how these relate to simple circuit diagrams. Three basic terms are important to a study of electricity.

### Deflection of Electrons in an Electric Field

Name: Partners: Date: Deflection of Electrons in an Electric Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric field on the motion of a charged particle,

### Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

### Chapter 3. Gauss s Law

3 3 3-0 Chapter 3 Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example

### 6/06 Ampere's Law. Ampere's Law. Andre-Marie Ampere in France felt that if a current in a wire exerted a magnetic

About this lab: Ampere's Law Andre-Marie Ampere in France felt that if a current in a wire exerted a magnetic force on a compass needle, two such wires also should interact magnetically. Beginning within

### Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings

Signed in as Richard Sonnenfeld, Instructor Help Sign Out Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library Essential

### Chapter 26. Capacitance and Dielectrics

Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energy-storing devices

### LAB 8: Electron Charge-to-Mass Ratio

Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

### Mapping the Magnetic Field

I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude

### Home Work 9. i 2 a 2. a 2 4 a 2 2

Home Work 9 9-1 A square loop of wire of edge length a carries current i. Show that, at the center of the loop, the of the magnetic field produced by the current is 0i B a The center of a square is a distance

### Electrical Energy, Potential and Capacitance. AP Physics B

Electrical Energy, Potential and Capacitance AP Physics B Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to separate two opposite charges, work

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

### Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

Introduction to Electric Circuits Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos Electrical Circuits (Over)simplified The simple model of matter is that it is made

### ( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

### Physics 12 Study Guide: Electromagnetism Magnetic Forces & Induction. Text References. 5 th Ed. Giancolli Pg

Objectives: Text References 5 th Ed. Giancolli Pg. 588-96 ELECTROMAGNETISM MAGNETIC FORCE AND FIELDS state the rules of magnetic interaction determine the direction of magnetic field lines use the right

### Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

### EE301 RESISTANCE AND OHM S LAW

Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

### The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

### Experiment #11 Faraday s Law Pre-lab

Experiment #11 Faraday s Law Pre-lab ** Disclaimer: This pre-lab hint is not to be copied, in whole or in part, unless a proper reference is made as to the source. (It is strongly recommended that you

### Experiment 6: Magnetic Force on a Current Carrying Wire

Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of

### Parallel Plate Capacitor

Parallel Plate Capacitor Capacitor Charge, Plate Separation, and Voltage A capacitor is used to store electric charge. The more voltage (electrical pressure) you apply to the capacitor, the more charge

### Measurement of Capacitance

Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

### 1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

### Chapter 5. Magnetic Fields and Forces. 5.1 Introduction

Chapter 5 Magnetic Fields and Forces Helmholtz coils and a gaussmeter, two of the pieces of equipment that you will use in this experiment. 5.1 Introduction Just as stationary electric charges produce

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

### Lab 4 - Capacitors & RC Circuits

Lab 4 Capacitors & RC Circuits L41 Name Date Partners Lab 4 Capacitors & RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### Chapter 18. Electric Forces and Electric Fields

My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields

### 4/16/ Bertrand

Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 10-19 Coulombs. Charge distribution

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2 - CAPACITANCE

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 2 - CAPACITANCE 2 Understand the concepts of capacitance and determine capacitance values in DC circuits

### Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F

Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The

### Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

### Phys102 Lecture 18/19 Ampere's Law

Phys102 Lecture 18/19 Ampere's Law Key Points Ampère s Law Magnetic Field Due to a Straight Wire B Magnetic Field of a Solenoid and a Toroid References SFU Ed: 28-1,2,3,4,5. 6 th Ed: 20-5,6,7. Ampère s

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance

Name: Date: Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Background Information and Pre-Lab Activity Materials: One solar module One small DC

### CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding

### Lesson 6 Capacitors and Capacitance Lawrence B. Rees 2007. You may make a single copy of this document for personal use without written permission.

Lesson 6 apacitors and apacitance Lawrence B. Rees 7. You may make a single copy of this document for personal use without written permission. 6. Introduction In 745 Pieter van Musschenbroek, while trying

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

### Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

### CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

### Resistor-Capacitor (RC) Circuits

Resistor-Capacitor (RC) Circuits Introduction In this second exercise dealing with electrical circuitry, you will work mainly with capacitors, which are devices that are used to store charge for later

### ELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects

ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?

### EXPERIMENT IV. FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND. FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD (µ o )

1 PRINCETON UNIVERSITY PHYSICS 104 LAB Physics Department Week #4 EXPERIMENT IV FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD

### Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

Last Name: First Name: Physics 102 Spring 2007: Exam #1 Multiple-Choice Questions 1. Two small conducting spheres attract one another electrostatically. This can occur for a variety of reasons. Which of

### 3. As shown in the diagram below, a charged rod is held near, but not touching, a neutral electroscope.

1. As a positively charged rod is brought near to but not allowed to touch the knob of an uncharged electroscope, the leaves will diverge because negative charges are transferred from the electroscope

### Physics 2220 Module 09 Homework

Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10-cm-long wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength

### Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

### What is the direction of a compass needle placed at point A?

SAMPLE QUIZ: COVERAGE OHM S LAW CIRCUIT ANALYSIS RESISTANCE ELECTRICAL POWER MAGNETISM AND ELECTROMAGNETISM MAGNETISM: 1. In order to produce a magnetic field, an electric charge must be 1. stationary

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### 1 of 7 3/23/2010 2:45 PM

1 of 7 3/23/2010 2:45 PM Chapter 30 Homework Due: 8:00am on Tuesday, March 23, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Series and Parallel Circuits

Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the

### Magnetic Force on a Current-Carrying Wire

Title: Original Version: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: AP Physics Learning Objective: Magnetic Force on a Current-Carrying Wire 11 November 2006 24 June

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Problem 4.48 Solution:

Problem 4.48 With reference to Fig. 4-19, find E 1 if E 2 = ˆx3 ŷ2+ẑ2 (V/m), ε 1 = 2ε 0, ε 2 = 18ε 0, and the boundary has a surface charge density ρ s = 3.54 10 11 (C/m 2 ). What angle does E 2 make with

### Concept Review. Physics 1

Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

### J. J. Thomson's Measurement of e/m for the electron

Physics 165 Laboratory J. J. Thomson's Measurement of e/m for the electron In 1897, the cathode ray tube or CRT, which is now a part of most TV sets, was the last word in advanced laboratory instrumentation

### * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

### Diffraction from a Ruler

Lab #27 Diffraction page 1 Diffraction from a Ruler Reading: Giambatista, Richardson, and Richardson Chapter 25 (25.1, 25.6, 25.7, 25.9). Summary: In this lab you will learn the diffraction analysis scientists

### Experiment IV: Magnetic Fields and Inductance

Experiment IV: Magnetic Fields and Inductance I. References Tipler and Mosca, Physics for Scientists and Engineers, 5th Ed., Chapter 7 Purcell, Electricity and Magnetism, Chapter 6 II. Equipment Digital