# Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Save this PDF as:

Size: px
Start display at page:

Download "Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010"

## Transcription

1 Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun Suksompong 1 June 16, Special thanks to Dr.Waree Kongprawechnon and Dr.Somsak Kittipiyakul for earlier versions of the notes. Parts of the notes were compiled from C.K. Alexander and M.N.O. Sadiku, Fundamentals of Electric Circuits, 4th ed., McGraw-Hill, International Edition, 2009 and G. Rizzoni, Principles and Applications of Electrical Engineering, 5th ed., Mc-Graw-Hill, International Edition, 2007

2 CHAPTER 1 Basic Concepts In electrical engineering, we are often interested in communicating or transferring energy from one point to another. To do this requires an interconnection of electrical devices. Such interconnection is referred to as an electric circuit, and each component of the circuit is known as an element. Definition An electric circuit is an interconnection of electrical elements Systems of Units As engineers, we deal with measurable quantities. Our measurement must be communicated in standard language that virtually all professionals can understand irrespective of the country. Such an international measurement language is the International System of Units (SI). In this system, there are six principal units from which the units of all other physical quantities can be derived. 7

3 8 1. BASIC CONCEPTS Quantity Basic Unit Symbol Length meter m Mass kilogram Kg Time second s Electric Current ampere A Temperature kelvin K Luminous Intensity candela cd Charge coulomb C One great advantage of SI unit is that it uses prefixes based on the power of 10 to relate larger and smaller units to the basic unit. Example Change of units: Multiplier Prefix Symbol tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 2 centi c 10 3 milli m 10 6 micro µ 10 9 nano n pico p 600, 000, 000 mm = 1.2. Circuit Variables Charge: The concept of electric charge is the underlying principle for all electrical phenomena. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C). The charge of an electron is C. The coulomb is a large unit for charges. In 1 C of charge, there are 1/( ) = electrons. Thus realistic or laboratory values of charges are on the order of pc, nc, or µc. A large power supply capacitor can store up to 0.5 C of charge Law of Conservation of Charge: Charge can neither be created nor destroyed, only transferred.

4 1.2. CIRCUIT VARIABLES 9 Definition Current: The time rate of change of charge, measured in amperes (A). Mathematically, i(t) = d dt q(t) Note: 1 ampere (A) = 1 coulomb/second (C/s). The charge transferred between time t 1 and t 2 is obtained by q = t2 t 1 idt Two types of currents: (a) A direct current (DC) is a current that remains constant with time. (b) An alternating current (AC) is a current that varies with time. Such AC current is used in your household, to run the air conditioner, refrigerator, washing machine, and other electric appliances.

5 10 1. BASIC CONCEPTS By convention the symbol I is used to represent such a constant current. A time-varying current is represented by the symbol i. Definition Voltage (or potential difference): the energy required to move a unit charge though an element, measured in volts (V). The voltage between two points a and b in a circuit is denoted by v ab and can be interpreted in two ways: (a) point a is at a potential of v ab volts higher than point b, or (b) the potential at point a with respect to point b is v ab. Note: 1 volt (V) = 1 joule/coulomb = 1 newton-meter/coulomb v ab = v ba Mathematically, v ab = dw dq where w is the energy in joules (J) and q is charge in coulombs (C). The plus (+) and minus (-) signs at the points a and b are used to define reference direction or voltage polarity.

6 1.2. CIRCUIT VARIABLES Like electric current, a constant voltage is called a DC voltage and is represented by V, whereas a sinusoidally time-varying voltage is called an AC voltage and is represented by v. A dc voltage is commonly produced by a battery; ac voltage is produced by an electric generator Current and voltage are the two basic variables in electric circuits. The common term signal is used for an electric quantity such as a current or a voltage (or even electromagnetic wave) when it is used for conveying information. Engineers prefer to call such variables signals rather than mathematical functions of time because of their importance in communications and other disciplines. For practical purposes, we need to be able to find/calculate/measure more than the current and voltage. We all know from experience that a 100-watt bulb gives more light than a 60-watt bulb. We also know that when we pay our bills to the electric utility companies, we are paying for the electric energy consumed over a certain period of time. Thus power and energy calculations are important in circuit analysis. Definition Power: time rate of expending or absorbing energy, measured in watts (W). Mathematically, the instantaneous power p = dw dt = dw dq dq dt = vi Definition Sign of power Plus sign: Power is absorbed by the element. (resistor, inductor) Minus sign: Power is supplied by the element. (battery, generator) Definition Passive sign convention: If the current enters through the positive polarity of the voltage, p = vi. If the current enters through the negative polarity of the voltage, p = vi.

7 12 1. BASIC CONCEPTS Law of Conservation of Energy: Energy can neither be created nor destroyed, only transferred.

8 1.2. CIRCUIT VARIABLES 13 For this reason, the algebraic sum of power in a circuit, at any instant of time, must be zero. The total power supplied to the circuit must balance the total power absorbed. Example Energy: the energy absorbed or supplied by an element from time 0 to t is w = t 0 p dt = t 0 vi dt. Integration suggests finding area under the curve. Need to be careful with negative area. The electric power utility companies measure energy in kilowatt-hours (kwh), where 1 kwh = 3600 kj.

9 14 1. BASIC CONCEPTS 1.3. Circuit Elements Definition There are 2 types of elements found in electrical circuits. 1) Active elements (is capable of generating energy), e.g., generators, batteries, and operational amplifiers (Op-amp). 2) Passive element, e.g., resistors, capacitors and inductors The most important active elements are voltage and current sources: (a) Voltage source provides the circuit with a specified voltage (e.g. a 1.5V battery) (b) Current source provides the circuit with a specified current (e.g. a 1A current source). Definition In addition, we may characterize the voltage or current sources as: 1) Independent source: An active element that provides a specified voltage or current that is completely independent of other circuit elements.

10 1.3. CIRCUIT ELEMENTS 15 2) Dependent source: An active element in which the source quantity is controlled by another voltage or current The key idea to keep in mind is that a voltage source comes with polarities (+ -) in its symbol, while a current source comes with an arrow, irrespective of what it depends on Remarks: Dependent sources are useful in modeling elements such as transistors, operational amplifiers and integrated circuits. An ideal voltage source (dependent or independent) will produce any current required to ensure that the terminal voltage is as stated. An ideal current source will produce the necessary voltage to ensure the stated current flow. Thus an ideal source could in theory supply an infinite amount of energy. Not only do sources supply power to a circuit, they can absorb power from a circuit too. For a voltage source, we know the voltage but not the current supplied or drawn by it. By the same token, we know the current supplied by a current source but not the voltage across it.

11 CHAPTER 2 Basic Laws Here we explore two fundamental laws that govern electric circuits (Ohm s law and Kirchhoff s laws) and discuss some techniques commonly applied in circuit design and analysis Ohm s Law Ohm s law shows a relationship between voltage and current of a resistive element such as conducting wire or light bulb Ohm s Law: The voltage v across a resistor is directly proportional to the current i flowing through the resistor. v = ir, where R = resistance of the resistor, denoting its ability to resist the flow of electric current. The resistance is measured in ohms (Ω). To apply Ohm s law, the direction of current i and the polarity of voltage v must conform with the passive sign convention. This implies that current flows from a higher potential to a lower potential 17

12 18 2. BASIC LAWS in order for v = ir. If current flows from a lower potential to a higher potential, v = ir The resistance R of a cylindrical conductor of cross-sectional area A, length L, and conductivity σ is given by R = L σa. Alternatively, R = ρ L A where ρ is known as the resistivity of the material in ohm-meters. Good conductors, such as copper and aluminum, have low resistivities, while insulators, such as mica and paper, have high resistivities Remarks: (a) R = v/i (b) Conductance : G = 1 R = i v The unit of G is the mho 1 ( ) or siemens 2 (S) 1 Yes, this is NOT a typo! It was derived from spelling ohm backwards. 2 In English, the term siemens is used both for the singular and plural.

13 2.1. OHM S LAW 19 (c) The two extreme possible values of R. (i) When R = 0, we have a short circuit and v = ir = 0 showing that v = 0 for any i. (ii) When R =, we have an open circuit and v i = lim R R = 0 indicating that i = 0 for any v A resistor is either fixed or variable. Most resistors are of the fixed type, meaning their resistance remains constant.

14 20 2. BASIC LAWS A common variable resistor is known as a potentiometer or pot for short Not all resistors obey Ohms law. A resistor that obeys Ohms law is known as a linear resistor. A nonlinear resistor does not obey Ohms law. Examples of devices with nonlinear resistance are the lightbulb and the diode. Although all practical resistors may exhibit nonlinear behavior under certain conditions, we will assume in this class that all elements actually designated as resistors are linear.

15 2.1. OHM S LAW Using Ohm s law, the power p dissipated by a resistor R is p = vi = i 2 R = v2 R. Example In the circuit below, calculate the current i, and the power p. Definition The power rating is the maximum allowable power dissipation in the resistor. Exceeding this power rating leads to overheating and can cause the resistor to burn up. Example Determine the minimum resistor size that can be connected to a 1.5V battery without exceeding the resistor s 1 4-W power rating.

16 22 2. BASIC LAWS 2.2. Node, Branches and Loops Definition Since the elements of an electric circuit can be interconnected in several ways, we need to understand some basic concept of network topology. Network = interconnection of elements or devices Circuit = a network with closed paths Definition Branch: A branch represents a single element such as a voltage source or a resistor. A branch represents any two-terminal element. Definition Node: A node is the point of connection between two or more branches. It is usually indicated by a dot in a circuit. If a short circuit (a connecting wire) connects two nodes, the two nodes constitute a single node. Definition Loop: A loop is any closed path in a circuit. A closed path is formed by starting at a node, passing through a set of nodes and returning to the starting node without passing through any node more than once. Definition Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current. Definition Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them. Elements may be connected in a way that they are neither in series nor in parallel. Example How many branches and nodes does the circuit in the following figure have? Identify the elements that are in series and in parallel.

17 2.3. KIRCHHOFF S LAWS A loop is said to be independent if it contains a branch which is not in any other loop. Independent loops or paths result in independent sets of equations. A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology: b = l + n Kirchhoff s Laws Ohm s law coupled with Kirchhoff s two laws gives a sufficient, powerful set of tools for analyzing a large variety of electric circuits Kirchhoff s current law (KCL): the algebraic sum of current entering a node (or a closed boundary) is zero. Mathematically, N i n = 0 n=1 KCL is based on the law of conservation of charge. An alternative form of KCL is Sum of currents (or charges) entering a node = Sum of the currents (charges) leaving the node. Note that KCL also applies to a closed boundary. This may be regarded as a generalized case, because a node may be regarded as a closed surface shrunk to a point. In two dimensions, a closed boundary is the same as a closed path. The total current entering the closed surface is equal to the total current leaving the surface.

18 24 2. BASIC LAWS Example A simple application of KCL is combining current sources in parallel. A Kirchhoff s voltage law (KVL): the algebraic sum of all voltages around a closed path (or loop) is zero. Mathematically, M v m = 0 m=1 KVL is based on the law of conservation of energy. An alternative form of KVL is Sum of voltage drops = Sum of voltage rises.

19 2.3. KIRCHHOFF S LAWS 25 Example When voltage sources are connected in series, KVL can be applied to obtain the total voltage. Example Find v 1 and v 2 in the following circuit.

20 26 2. BASIC LAWS 2.4. Series Resistors and Voltage Division When two resistors R 1 and R 2 ohms are connected in series, they can be replaced by an equivalent resistor R eq where R eq = R 1 + R 2. In particular, the two resistors in series shown in the following circuit can be replaced by an equivalent resistor R eq where R eq = R 1 + R 2 as shown below. The two circuits above are equivalent in the sense that they exhibit the same voltage-current relationships at the terminals a-b. Voltage Divider: If R 1 and R 2 are connected in series with a voltage source v volts, the voltage drops across R 1 and R 2 are v 1 = R 1 R 1 + R 2 v and v 2 = R 2 R 1 + R 2 v

21 2.5. PARALLEL RESISTORS AND CURRENT DIVISION 27 Note: The source voltage v is divided among the resistors in direct proportion to their resistances In general, for N resistors whose values are R 1, R 2,..., R N ohms connected in series, they can be replaced by an equivalent resistor R eq where N R eq = R 1 + R R N = If a circuit has N resistors in series with a voltage source v, the jth resistor R j has a voltage drop of v j = j=1 R j R 1 + R R N v 2.5. Parallel Resistors and Current Division When two resistors R 1 and R 2 ohms are connected in parallel, they can be replaced by an equivalent resistor R eq where or 1 R eq = 1 R R 2 R eq = R 1 R 2 = R 1R 2 R 1 + R 2 R j Current Divider: If R 1 and R 2 are connected in parallel with a current source i, the current passing through R 1 and R 2 are R 2 R 1 i 1 = i and i 2 = i R 1 + R 2 R 1 + R 2 Note: The source current i is divided among the resistors in inverse proportion to their resistances.

22 28 2. BASIC LAWS Example Example = Example (a) (na) = Example (ma) (na) = In general, for N resistors connected in parallel, the equivalent resistor R eq = R 1 R 2 R N is 1 = R eq R 1 R 2 R N Example Find R eq for the following circuit. Example Find i o, v o, p o (power dissipated in the 3Ω resistor). Example Three light bulbs are connected to a 9V battery as shown below. Calculate: (a) the total current supplied by the battery, (b) the current through each bulb, (c) the resistance of each bulb.

23 2.7. MEASURING DEVICES Practical Voltage and Current Sources An ideal voltage source is assumed to supply a constant voltage. This implies that it can supply very large current even when the load resistance is very small. However, a practical voltage source can supply only a finite amount of current. To reflect this limitation, we model a practical voltage source as an ideal voltage source connected in series with an internal resistance r s, as follows: Similarly, a practical current source can be modeled as an ideal current source connected in parallel with an internal resistance r s Measuring Devices Ohmmeter: measures the resistance of the element. Important rule: Measure the resistance only when the element is disconnected from circuits. Ammeter: connected in series with an element to measure current flowing through that element. Since an ideal ammeter should not restrict the flow of current, (i.e., cause a voltage drop), an ideal ammeter has zero internal resistance. Voltmeter:connected in parallel with an element to measure voltage across that element. Since an ideal voltmeter should not draw current away from the element, an ideal voltmeter has infinite internal resistance.

24 CHAPTER 3 Methods of Analysis Here we apply the fundamental laws of circuit theory (Ohm s Law & Kirchhoff s Laws) to develop two powerful techniques for circuit analysis. 1. Nodal Analysis (based on KCL) 2. Mesh Analysis (based on KVL) This is the most important chapter for our course Nodal Analysis Analyzing circuit using node voltages as the circuit variables Steps to Determine Node Voltages: Step 0: Determine the number of nodes n. Step 1: Select a node as a reference node (ground node). Assign voltages v 1, v 2,, v n 1 to the remaining n 1 nodes. The voltage are referenced with respect to the reference node. The ground node is assumed to have 0 potential. Step 2: Apply KCL to each of the n 1 nonreference nodes. Use Ohm s law to express the branch currents in terms of node voltages. Step 3: Solve the resulting simultaneous equations to obtain the unknown node voltages Remark: 31

25 32 3. METHODS OF ANALYSIS (a) Current flows from a higher potential to a lower potential in a resistor. (b) If a voltage source is connected between the reference node and a nonreference node, we simply set the voltage at the nonreference node equal to the voltage of the voltage source. (c) Multiple methods to solve the simultaneous equations in Step 3. Method 1: Elimination technique (good for a few variables) Method 2: Write in term of matrix and vectors (write Ax = b), then use Cramer s rule. Method 3: Use computer (e.g., Matlab) to find A 1 and x = A 1 b Example Calculate the node voltages in the circuit below.

26 3.1. NODAL ANALYSIS 33 Example Calculate the node voltages in the circuit below Special Case: If there is a voltage source connected between two nonreference nodes, the two nonreference nodes form a supernode. We apply both KCL and KVL to determine the node voltages. Example Find v and i in the circuit below.

27 34 3. METHODS OF ANALYSIS Remarks: Note the following properties of a supernode: (a) The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages. (b) A supernode has no voltage of its own. (c) We can have more than two nodes forming a single supernode. (d) The supernodes are treated differently because nodal analysis requires knowing the current through each element. However, there is no way of knowing the current through a voltage source in advance Mesh Analysis Mesh analysis provides another general procedure for analyzing circuits, using mesh currents as the circuit variables. Definition Mesh is a loop which does not contain any other loop within it Steps to Determine Mesh Currents: Step 0: Determine the number of meshes n. Step 1: Assign mesh current i 1, i 2,, i n, to the n meshes. The direction of the mesh current is arbitrary (clockwise or counterclockwise) and does not affect the validity of the solution. For convenience, we define currents flow in the clockwise (CW) direction. Step 2: From the current direction in each mesh, define the voltage drop polarities. Step 3: Apply KVL to each of the n meshes. Use Ohm s law to express the voltages in terms of the mesh current. Step 4: Solve the resulting n simultaneous equations to get the mesh current.

28 3.2. MESH ANALYSIS 35 Example Find the branch currents I 1, I 2, and I 3 using mesh analysis.

29 36 3. METHODS OF ANALYSIS Remarks: (a) Nodal analysis applies KCL to find unknown voltages in a given circuit, while mesh analysis applies KVL to find unknown currents. (b) Using mesh currents instead of element currents as circuit variables is convenient and reduces the number of equations that must be solved simultaneously. (c) Mesh analysis is not quite as general as nodal analysis because it is only applicable to a circuit that is planar. A planar circuit is one that can be drawn in a plane with no branches crossing one another; otherwise it is nonplanar Nodal Versus Mesh Analysis You should be familiar with both methods. However, given a network to be analyzed, how do we know which method is better or more efficient? Suggestion: Choose the method that results in smaller number of variables or equations. A circuit with fewer nodes than meshes is better analyzed using nodal analysis, while a circuit with fewer meshes than nodes is better analyzed using mesh analysis. You can also use one method to check your results of the other method.

### Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### 1. Introduction and Chapter Objectives

Real Analog Circuits 1 Chapter 1: Circuit Analysis Fundamentals 1. Introduction and Chapter Objectives In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical

### 07-Nodal Analysis Text: ECEGR 210 Electric Circuits I

07Nodal Analysis Text: 3.1 3.4 ECEGR 210 Electric Circuits I Overview Introduction Nodal Analysis Nodal Analysis with Voltage Sources Dr. Louie 2 Basic Circuit Laws Ohm s Law Introduction Kirchhoff s Voltage

### Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis 4.1 Motivation 4.2 Nodal Voltage Analysis 4.3 Simultaneous Eqs. & Matrix Inversion 4.4 Nodal Voltage Analysis with Voltage Sources 4.5 Mesh Current Analysis 4.6 Mesh Current

### Chapter 1. Fundamental Electrical Concepts

Chapter 1 Fundamental Electrical Concepts Charge, current, voltage, power circuits, nodes, branches Branch and node voltages, Kirchhoff Laws Basic circuit elements, combinations 01 fundamental 1 1.3 Electrical

### Chapter 2. Circuit Analysis Techniques

Chapter 2 Circuit Analysis Techniques 1 Objectives To formulate the node-voltage equations. To solve electric circuits using the node voltage method. To introduce the mesh current method. To formulate

### Chapter 4 Objectives

Chapter 4 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 4 Objectives Understand and be able to use the node-voltage method to solve a circuit; Understand and be able to use the mesh-current method

### Node and Mesh Analysis

Node and Mesh Analysis 1 Copyright ODL Jan 2005 Open University Malaysia Circuit Terminology Name Definition Node Essential node Path Branch Essential Branch Loop Mesh A point where two ore more branches

### Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports

Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports ROSE-HULMAN INSTITUTE OF TECHNOLOGY ECE 203 DC Circuits Winter 09-10 Course Information and

### EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis

EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Reading Material Chapter

### Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

### 4. Basic Nodal and Mesh Analysis

1 4. Basic Nodal and Mesh Analysis This chapter introduces two basic circuit analysis techniques named nodal analysis and mesh analysis 4.1 Nodal Analysis For a simple circuit with two nodes, we often

### Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

### Series and Parallel Circuits

Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

### The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

### 802307 ELECTRICAL ENGINEERING FOR MECHANICAL ENGINEER. Tarek M. Abdolkader

802307 ELECTRICAL ENGINEERING FOR MECHANICAL ENGINEER Tarek M. Abdolkader KINGDOM OF SAUDI ARABIA Ministry of Higher Education Umm Al-Qura University College of Engineering and Islamic Architecture Electrical

### Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alexander-Sadiku Fundamentals of Electric Circuits Chapter 3 Methods of Analysis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Methods of Analysis - Chapter

### How can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery

Network nalysis ims: Consolidate use of KCL in circuit analysis. Use Principle of Superposition. Learn basics of Node Voltage nalysis (uses KCL) Learn basics of Mesh Current nalysis (uses KVL) Lecture

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

### Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 5 (Mesh Analysis) Sep 8 th, 205 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 205 Overview With Ohm s

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

### An Introduction to the Mofied Nodal Analysis

An Introduction to the Mofied Nodal Analysis Michael Hanke May 30, 2006 1 Introduction Gilbert Strang provides an introduction to the analysis of electrical circuits in his book Introduction to Applied

### Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering.

Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering. The examples given are example of basic problems that you

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Basic Principles of. Electricity. Basic Principles of Electricity. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

Basic Principles of Electricity METU by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU,

### Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

### Chapter 4: Techniques of Circuit Analysis

4.1 Terminology Example 4.1 a. Nodes: a, b, c, d, e, f, g b. Essential Nodes: b, c, e, g c. Branches: v 1, v 2, R 1, R 2, R 3, R 4, R 5, R 6, R 7, I d. Essential Branch: v 1 -R 1, R 2 -R 3, v 2 -R 4, R

### 2.1 Introduction. 2.2 Terms and definitions

.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,

### Student Exploration: Circuits

Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

### SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self Stud Course MODULE 27 FURTHER APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Inverse of a matri using elimination 2. Mesh analsis of

### Chapter 08. Methods of Analysis

Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning C-C Tsai Outline Source Conversion Mesh Analysis Nodal Analysis Delta-Wye ( -Y) Conversion Bridge Networks

### 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1

IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### Chapter 19 DC Circuits

Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

### Fundamentals of. Electric Circuits

Fundamentals of Electric Circuits P A R T O N E DC Circuits OUTLINE 1 Basic Concepts 2 Basic Laws 3 Methods of Analysis 4 Circuit Theorems 5 Operational Amplifiers 6 Capacitors and Inductors 7 First-Order

### 3LEARNING GOALS. Analysis Techniques

IRWI3_8232hr 9/3/4 8:54 AM Page 82 3 Nodal 3LEARNING GOALS and Loop Analysis Techniques 3. Nodal Analysis An analysis technique in which one node in an Nnode network is selected as the reference node and

### Nodal and Loop Analysis

Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

### Science AS90191 Describe Aspects of Physics.

Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

### CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

### Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### Series and Parallel Circuits

Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

### 3. Introduction and Chapter Objectives

Real nalog Circuits Chapter 3: Nodal and Mesh nalysis 3. Introduction and Chapter Objectives In Chapters and 2, we introduced several tools used in circuit analysis: Ohm s law, Kirchoff s laws, and circuit

### ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS. Tutor: Asad Akram

ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS Tutor: Asad Akram 1 AGENDA Background: KCL and KVL. Nodal Analysis: Independent Sources and relating problems, Dependent Sources and relating problems. Loop (Mesh

### AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

### Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the

### Chapter 07. Series-Parallel Circuits

Chapter 07 Series-Parallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements

### Mesh-Current Method (Loop Analysis)

Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop

### 7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

### Capacitance, Resistance, DC Circuits

This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

### Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

### Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### 2 A bank account for electricity II: flows and taxes

PHYS 189 Lecture problems outline Feb 3, 2014 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more

### Capacitors and Inductors

P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance

### Question Bank. Electric Circuits, Resistance and Ohm s Law

Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

### Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

### Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit

### Problem set #5 EE 221, 09/26/ /03/2002 1

Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

1 ANSWERS to CIRCUITS 1. The speed with which electrons move through a copper wire is typically 10-4 m s -1. a. Explain why is it that the electrons cannot travel faster in the conductor? b. Explain why

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

### Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

Current, Resistance and Electromotive Force Young and Freedman Chapter 25 Electric Current: Analogy, water flowing in a pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a

### Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

### PHYS-2020: General Physics II Course Lecture Notes Section III

PHYS-2020: General Physics Course Lecture Notes Section Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

### STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

### Recitation 6 Chapter 21

Recitation 6 hapter 21 Problem 35. Determine the current in each branch of the circuit shown in Figure P21.35. 3. Ω 5. Ω 1. Ω 8. Ω 1. Ω ɛ 2 4 12 Let be the current on the left branch (going down), be the

### UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering. Linear Equations: Engineering Supplement

UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering Spring 203 Professor: S. Govindjee Linear Equations: Engineering Supplement Introduction The workhorse

### NODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller

NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'short-circuit', is not considered a branch since it is known

### 101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY. Cutler-Hammer

101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY Cutler-Hammer WELCOME Welcome to Module 2, Fundamentals of Electricity. This module will cover the fundamentals of electricity in a practical

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Department of Electrical and Electronic Engineering, California State University, Sacramento

Department of Electrical and Electronic Engineering, California State University, Sacramento Engr 17 Introductory Circuit Analysis, graded, 3 units Instructor: Tatro - Spring 2016 Section 2, Call No. 30289,

### Capacitors and RC Circuits

Chapter 6 Capacitors and RC Circuits Up until now, we have analyzed circuits that do not change with time. In other words, these circuits have no dynamic elements. When the behavior of all elements is

### = (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

### SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

### Circuits. PHY2049: Chapter 27 1

Circuits PHY2049: Chapter 27 1 What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric

### Unit 7: Electric Circuits

Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

### A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT

A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled

### Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

### Simon Nemsadze. BASIC ELECTRICAL ENGINEERING Theory and Practice

The Georgian Technical University The Department of Electrical Engineering and Electronics Simon Nemsadze BASC ELECTCAL ENGNEENG Theory and Practice TBLS 04 A course in basic electrical engineering is

### As we move forward, new components will be added to the inventory to allow more complex (and useful) circuits to be considered.

5/4/11 10:51 AM Page 9 CONFIRMING PAGES CHAPTER hay29575_ch02_009-038.qxd Basic Components 2 and Electric Circuits KEY CONCEPTS INTRODUCTION In conducting circuit analysis, we often find ourselves seeking

### Chapter 7. DC Circuits

Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### A physical quantity is any quantity that can be measured with a certain mathematical precision. Example: Force

1 Unit Systems Conversions Powers of Physical Quantities Dimensions Dimensional Analysis Scientific Notation Computer Notation Calculator Notation Significant Figures Math Using Significant Figures Order

### TOPIC 3.1: ELECTRIC CIRCUITS

TOPIC 3.1: ELECTRIC CIRCUITS S4P-3-1 S4P-3-2 S4P-3-3 S4P-3-4 S4P-3-5 S4P-3-6 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical

### CHAPTER 19: DC Circuits. Answers to Questions

HAPT 9: D ircuits Answers to Questions. The birds are safe because they are not grounded. Both of their legs are essentially at the same voltage (the only difference being due to the small resistance of

### Direct versus Alternating Current Things We Can Measure

Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent

### 1Physical quantities and units

1Physical quantities and units By the end of this chapter you should be able to: explain what is meant by a in physics; state the five fundamental quantities recognised and used in physics; explain the

### Chapter 13: Electric Circuits

Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

### Two kinds of electrical charges

ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces