# Review Questions PHYS 2426 Exam 2

Size: px
Start display at page:

Download "Review Questions PHYS 2426 Exam 2"

Transcription

1 Review Questions PHYS 2426 Exam 2 1. If 4.7 x electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2. The current in a wire varies with time according to the relation I = 4 + 3t 2 where I is in amperes and t is in seconds. The number of coulombs of charge that pass a cross section of the wire between t = 3 s and t = 5 s is A) 12 B) 48 C) 52 D) 106 E) 305 Ans: D 5. For copper, ρ = 8.93 g/cm 3 and M = 63.5 g/mol. Assuming one free electron per copper atom, what is the drift velocity of electrons in a copper wire of radius mm carrying a current of 3 A? A) 3.54 x 10 4 m/s D) 7.52 x 10 4 m/s B) 1.80 x 10 4 m/s E) 2.46 x 10 4 m/s C) 4.26 x 10 4 m/s 12. The drift velocity of an electron in a wire varies A) directly with the number of charge carriers per unit volume. B) directly with the cross-sectional area of the conducting wire. C) directly with the charge carried carried by it. D) directly with the current flowing in the conducting wire. E) inversely with the current flowing in the conducting wire. Ans: D 13. The seemingly instantaneous propagation of electric current in a wire when a switch is closed can be understood in terms of A) the propagation of an electric field down the wire with nearly the speed of light. B) the acquisition of the drift velocities of the free electrons almost immediately. C) a very large number of charges slowly drifting down the wire. D) the replacement of charge flowing out of the wire at one end by charge entering the wire at the other end. E) all of the above. Review Sheet 3 Chapters 25, 26, 27 1

2 14. The resistivity of any given metal A) depends on its temperature. B) varies nearly linearly with temperature. C) is the proportionality constant between the resistance, R, and the ratio of the length, L, to the crosssectional area, A, of a wire made of the metal. D) has units of ohm-meter. E) is described by all of the above. 18. You want to use a metal bar as a resistor. Its dimensions are 2 by 4 by 10 units. To get the smallest resistance from this bar, you should attach leads to the two opposite sides that have the dimensions of A) 2 by 4 units. B) 2 by 10 units. C) 4 by 10 units. D) any number of units because all connections give the same resistance. E) None of these is correct. Ans: C 21. A potential difference of 120 V produces a current of 8.0 A in the heating element of a toaster. What is the resistance of this heating element while the toaster is carrying this current? A) 6.7 x 10 2 Ω B) 15 Ω C) 0.96 k Ω D) 67 Ω E) 30 Ω 24. The curves on the graph represent the current versus the potential difference for various conductors. The conductor whose behavior is described by Ohm's law is A) 1 B) 2 C) 3 D) 4 E) None of these is correct. Ans: C Review Sheet 3 Chapters 25, 26, 27 2

3 27. If a current of 2.0 A is flowing from point a to point b, the potential difference between the points is A) 6 V B) 8 V C) 14 V D) 20 V E) 22 V 31. The curve that best illustrates the relation between the current in a metallic conductor and the potential difference between its terminals is A) 1 B) 2 C) 3 D) 4 E) Suppose instead of using a 12-gauge (diameter = 2.05 mm) solid copper cable you made a hollow copper cable of outer diameter 2.59 mm (10-gauge) and inner diameter 1.29 mm (16-gauge). Calculate the length of hollow cable that would give the same resistance as 1 m of 12-gauge solid cable. Use ρ(cu) = 1.7 x 10 8 Ω /m. A) m B) 2.48 m C) m D) 1.44 m E) 1.20 m 46. A comparison of the power losses (P 1, P 2, or P 3 ) in the resistors of the circuit in the diagram shows that, if R 1 = R 2 = R 3, A) 4P 1 = P 2 = P 3 D) P 1 = (1/2)P 2 = (1/2)P 3 B) P 1 = 2P 2 + 2P 3 E) P 1 = P 2 + P 3 C) P 1 = P 2 = P 3 Review Sheet 3 Chapters 25, 26, 27 3

4 52. The circuit in the figure contains a battery and a resistor in series. Which of the following statements is not true? A) The current in the circuit is 2 A. B) Point α is at a higher potential than point β, and V αβ = 5 V. C) The battery is supplying energy to the circuit at the rate of 6 W. D) The rate of heating in the external resistor is 10 W. E) The battery is being discharged. Ans: C 58. An electric generator supplies power as a function of time according to the expression P(t) = 2t + 3t 2 where the units are SI. The electric energy provided by the generator between t = 0 and t = 1 s is A) 1.8 J B) 2.0 J C) 2.5 J D) 5.0 J E) 8.0 J 59. You leave your 120-W light bulb on in your room by mistake while you are at school for 8.5 hours. If the price of electrical energy is \$0.085 per kilowatt-hour, how much did it cost you? A) \$0.082 B) \$0.075 C) \$0.065 D) \$0.087 E) \$0.078 Ans: D 64. A current of 1.2 A flows from A to B. Therefore, the magnitude of the potential difference between points A and B is approximately A) 1.0 V B) 4.2 V C) 4.6 V D) 6.0 V E) 20 V Ans: D Review Sheet 3 Chapters 25, 26, 27 4

5 68. In the circuit shown, the power dissipated in the 18-Ω resistor is A) 0.15 kw B) 98 W C) 33 W D) 0.33 kw E) 47 W 72. When two resistors are connected in series, the equivalent resistance is R s = 10 Ω. When they are connected in parallel, the equivalent resistance is R p = 2.4 Ω. What are the values of the two resistances? A) 4.0 Ω and 6.0 Ω D) 1.2 Ω for both B) 5.0 Ω for both E) 2.5 Ω and 7.5 Ω C) 1.0 Ω and 1.4 Ω 78. Which of the following relations among the quantities in the figure is generally correct? A) I 1 R 1 = I 2 R 2 D) I 3 R 4 = I 4 R 3 B) I 3 R 3 = I 4 R 4 E) I 1 R 1 + I 2 R 2 = 0 C) I 1 R 1 = I 4 R 4 Review Sheet 3 Chapters 25, 26, 27 5

6 80. The dashed lines represent graphs of the potential as a function of the current for two resistors A and B, respectively. The curve that might reasonably represent a graph of the data taken when the resistors are connected in series is A) 1 B) 2 C) 3 D) 4 E) In this circuit, two batteries, one with a potential difference of 10 V and the other with a potential difference of 20 V, are connected in series across a resistance of 90 Ω. The current in the circuit is A) 3.0 A B) 0.33 A C) 9.0 A D) 30 A E) 4.5 A 94. You connect resistors of 2 Ω, 3 Ω, and 6 Ω in parallel across a battery. The current through the 6-Ω resistor is 3 A. What are the currents in the other two resistors? A) I 1 = 9 A; I 2 = 6 A B) I 1 = 6 A; I 2 = 9 A C) I 1 = 1 A; I 2 = 1.5 A D) The answer cannot be obtained without knowing the emf of the battery. E) None of these is correct. Review Sheet 3 Chapters 25, 26, 27 6

7 96. The conservation of energy in an electric circuit is closely related to which of the following? A) Ohm's law D) Newton's laws B) Kirchhoff's junction rule E) Ampère's law C) Kirchhoff's loop rule Ans: C 97. What is the current through the circuit in the figure? A) A B) 0.50 A C) A D) A E) 0.92 A Ans: C 99. The conservation of charge in an electric circuit is closely related to which of the following? A) Ohm's law D) Newton's laws B) Kirchhoff's junction rule E) Ampère's law C) Kirchhoff's loop rule 106. In this circuit, the batteries have negligible internal resistance and the ammeter has negligible resistance. The current through the ammeter is A) 0.30 A B) 0.69 A C) 2.1 A D) 4.2 A E) 3.6 A Review Sheet 3 Chapters 25, 26, 27 7

8 108. The circuit in which the voltmeter and the ammeter are correctly arranged to determine the value of the unknown resistance R is A) 1 B) 2 C) 3 D) 4 E) 5 Ans: C 121. In the above circuit, ξ 1 = 9 V, ξ 2 = 6 V, and ξ 3 = 6 V. Also R 1 = 25 Ω, R 2 = 125 Ω, and R 3 = 55 Ω. Find the current flowing through R 3. A) 0.60 A B) A C) 0.68 A D) 0.36 A E) A 125. Capacitors C 1 and C 2 are connected in series to the battery as shown. When you close switch S, a momentary current is indicated by A) ammeter A 1 only. D) ammeter A 1 and A 3 only. B) ammeter A 2 only. E) all of the ammeters. C) ammeter A 3 only. Review Sheet 3 Chapters 25, 26, 27 8

9 1. A charged particle is moving horizontally westward with a velocity of 3.5 x 10 6 m/s in a region where there is a magnetic field of magnitude 5.6 x 10 5 T directed vertically downward. The particle experiences a force of 7.8 x N northward. What is the charge on the particle? A) +4.0 x C D) 1.2 x C B) 4.0 x C E) +1.4 x C C) +4.9 x 10 5 C 4. The phenomenon of magnetism is best understood in terms of A) the existence of magnetic poles. B) the magnetic fields associated with the movement of charged particles. C) gravitational forces between nuclei and orbital electrons. D) electrical fluids. E) None of these is correct. 5. A wire 30 cm long with an east west orientation carries a current of 3.0 A eastward. There is a uniform magnetic field perpendicular to this wire. If the force on the wire is 0.18 N upward, what are the direction and magnitude of the magnetic field? A) 0.20 T up D) T north B) 0.20 T north E) T up C) 0.20 T south 10. The magnetic force on a charged particle A) depends on the sign of the charge on the particle. B) depends on the velocity of the particle. C) depends on the magnetic field at the particle's instantaneous position. D) is at right angles to both the velocity and the direction of the magnetic field. E) is described by all of these. Review Sheet 3 Chapters 25, 26, 27 9

10 11. An alpha particle has a charge of +2e (e = C) and is moving at right angles to a magnetic field B = 0.27 T with a speed v = m/s. The force acting on this charged particle is A) zero D) 2.7 x N B) 5.3 x N E) 4.8 x 10 5 N C) 3.3 x 10 5 N 14. A long straight wire parallel to the y axis carries a current of 6.3 A in the positive y direction. There is a uniform magnetic field B = 1.5 T î. The force per unit length on the wire is approximately A) ˆk 6.3 N/m B) ˆk 9.5 N/m C) ˆk 6.3 N/m D) E) 9.5 N/m ˆk 1.5 N/m ˆk 16. A rectangular loop of wire (0.10 m by 0.20 m) carries a current of 5.0 A in a counterclockwise direction. The loop is oriented as shown in a uniform magnetic field of 1.5 T. The force acting on the upper 0.10-m side of the loop is A) 1.5 N B) 0.75 N C) 0.50 N D) 0.15 N E) zero 20. A beam of electrons (q = 1.6 x C) is moving through a region of space in which there is an electric field of intensity 3.4 x 10 4 V/m and a magnetic field of 2.0 x 10 3 T. The electric and magnetic fields are so oriented that the beam of electrons is not deflected. The velocity of the electrons is approximately A) 6.8 x 10 6 m/s D) 0.68 km/s B) 3.0 x 10 8 m/s E) 1.7 x 10 7 m/s C) 6.0 x 10 9 m/s Review Sheet 3 Chapters 25, 26, 27 10

11 23. A positively charged particle moves with velocity vî ˆk along the x axis. A uniform magnetic field B exists in the negative z direction. You want to balance the magnetic force with an electric field so that the particle will continue along a straight line. The electric field should be in the A) positive x direction. D) negative x direction. B) positive z direction. E) negative z direction. C) negative y direction. Ans: C 28. An alpha particle of charge +2e and mass 4(1.66 x ) kg, and an 16 O nucleus of charge +8e and mass 16(1.66 x ) kg have been accelerated from rest through the same electric potential. They are then injected into a uniform magnetic field B, where both move at right angles to the field. The ratio of the radius of the path of the alpha particle to the radius of the path of the nucleus 16 O is A) r /r O = 1/1 D) r /r O = 1/2 B) r /r O = 1/4 E) None of these is correct. C) r /r O = 1/8 29. An electron is accelerated from rest by an electric field. After the acceleration, the electron is injected into a uniform magnetic field of 1.27 x 10 3 T. The velocity of the electron and the magnetic field lines are perpendicular to one another. The electron remains in the magnetic field for s. The angle between the initial electron velocity and the final electron velocity is A) 1.1 rad D) 6.5 x 10 2 rad B) 5.8 x 10 2 rad E) 2.3 rad C) 8.68 x 10 2 rad 33. The radius of curvature of the path of a charged particle moving perpendicular to a magnetic field is given by A) qe/m B) Bm/(qv) C) Bv/(qm) D) mv/(qb) E) Bq/(mv) Ans: D Review Sheet 3 Chapters 25, 26, 27 11

12 36. All of the charged particles that pass through crossed electric and magnetic fields without deflection have the same A) mass. B) speed. C) momentum. D) energy. E) charge-to-mass ratio. 38. A small positively charged body is moving horizontally and westward. If it enters a uniform horizontal magnetic field that is directed from north to south, the body is deflected A) upward. D) toward the south. B) downward. E) not at all. C) toward the north. 40. A uniform magnetic field is parallel to and in the direction of the positive z axis. For an electron to enter this field and not be deflected by the field, the electron must be traveling in which direction? A) any direction as long as it is in the xy plane. B) any direction as long as it is in the xz plane. C) along the positive x axis. D) along the positive y axis. E) along the positive z axis. 46. A beam of electrons moving at a speed of 8 x 10 4 m/s is undeflected when it passes through an electric field of 5 N/C perpendicular to its path and a magnetic field that is perpendicular to its path and also to that of the electric field. Calculate the strength of the magnetic field. A) 1.60 x 10 4 T D) 3.13 x 10 5 T B) 6.25 x 10 5 T E) 1.25 x 10 4 T C) 7.81 x T Review Sheet 3 Chapters 25, 26, 27 12

13 53. A small permanent magnet is placed in a uniform magnetic field of magnitude 0.35 T. If the maximum torque experienced by the magnet is 0.50 N m, what is the magnitude of the magnetic moment of the magnet? A) 1.4 A m 2 D) 2.8 A m 2 B) 0.70 A m 2 E) 0.35 A m 2 C) 0.18 A m A circular 20-turn coil with a radius of 10 cm carries a current of 3 A. It lies in the xy plane in a uniform magnetic field B = 0.4 T î T ˆk. The potential energy of the system is A) J B) J C) J D) J E) J Ans: C 62. Which of the following statements correctly describes the torque-potential energy relationship for a current-carrying coil in a uniform magnetic field? A) The maximum potential energy occurs for the same orientation of magnetic dipole and the magnetic field that corresponds to maximum torque. B) The potential energy of the system is constant. C) The torque rotates the coil toward a position of lower potential energy. D) The torque rotates the coil toward a position of higher potential energy. E) None of these is correct. Ans: C Review Sheet 3 Chapters 25, 26, 27 13

14 63. A rectangular loop of wire (0.10 m by 0.20 m) carries a current of 5.0 A in a counterclockwise direction. The loop is oriented as shown in a uniform magnetic field. The magnetic dipole moment associated with this loop has a value of A) A m 2 D) 0.50 A m 2 B) A m 2 E) 1.5 A m 2 C) 0.10 A m 2 Ans: C 1. A point charge of q 1 = 3.6 nc is moving with speed 4.5 x 10 7 m/s parallel to the y axis along the line x = 3 m. The magnetic field produced by this charge at the origin when it is at the point x = 3 m, y = 4 m is approximately A) 0.39 nt ˆk B) 0.78 nt ˆk C) 0.39 nt ˆk D) 0.78 nt ˆk E) 2.0 nt ˆk 5. The magnitude of the magnetic field due to the presence of a charged body A) varies directly with the speed of the body. B) varies directly with the charge carried by the body. C) varies inversely with the square of the distance between the charged body and the field point. D) depends on the magnetic properties of the space between the charged body and the field point. E) is described by all of these. Review Sheet 3 Chapters 25, 26, 27 14

15 7. A positively charged body is moving in the negative z direction as shown. The direction of the magnetic field due to the motion of this charged body at point P is A) 1 B) 2 C) 3 D) 4 E) 5 Ans: D. At the instant the negatively charged body is at the origin, the magnetic field at point P due to its motion is in the negative x direction. The charged body must be moving A) in the negative z direction. D) in the negative y direction. B) in the positive y direction. E) in the positive z direction. C) in the positive x direction. 11. Two positively charged bodies are moving in opposite directions on parallel paths that lie in the xz plane. Their speeds are equal and their trajectories are equidistant from the x axis. The magnetic field at the origin, due to the motion of these charged bodies will be A) in the x direction. D) in the z direction. B) in the y direction. E) zero. C) in the y direction. Review Sheet 3 Chapters 25, 26, 27 15

16 14. Two wires lying in the plane of this page carry equal currents in opposite directions, as shown. At a point midway between the wires, the magnetic field is A) zero. D) toward the top or bottom of the page. B) into the page. E) toward one of the two wires. C) out of the page. 15. What is the direction of the magnetic field around a wire carrying a current perpendicularly into this page? A) The field is parallel to and in the same direction as the current flow. B) It is parallel to but directed opposite to the current flow. C) It is counterclockwise around the wire in the plane of the page. D) It is clockwise around the wire in the plane of the page. E) None of these is correct. Ans: D 17. The Biot Savart law is similar to Coulomb's law in that both A) are inverse square laws. D) are not electrical in nature. B) include the permeability of free space. E) are described by none of the above. C) deal with excess charges. 18. Two current-carrying wires are perpendicular to each other. The current in one flows vertically upward and the current in the other flows horizontally toward the east. The horizontal wire is 1 m south of the vertical wire. What is the direction of the net magnetic force on the horizontal wire? A) north B) east C) west D) south E) There is no net magnetic force on the horizontal wire. Review Sheet 3 Chapters 25, 26, 27 16

17 20. A solenoid carries a current I. An electron is injected with velocity v along the axis AB of the solenoid. When the electron is at C, it experiences a force that is A) zero. B) not zero and along AB. C) not zero and along BA. D) not zero and perpendicular to the page. E) None of these is correct. 22. At great axial distances x from a current-carrying loop the magnetic field varies as A) x 2 B) x 3 C) x 2 D) x 3 E) x In a circular loop of wire lying on a horizontal floor, the current is constant and, to a person looking downward, has a clockwise direction. The accompanying magnetic field at the center of the circle is directed A) horizontally and to the east. D) parallel to the floor. B) horizontally and to the north. E) vertically downward. C) vertically upward. 27. An electron beam travels counterclockwise in a circle of radius R in the magnetic field produced by the Helmholtz coils as shown. If you increase the current in the Helmholtz coils, the electron beam will A) increase its radius. B) decrease its radius. C) maintain the same radius. D) reverse and travel clockwise with the same radius. E) reverse and travel clockwise with a larger radius. Review Sheet 3 Chapters 25, 26, 27 17

18 30. A circular loop of wire of radius 6.0 cm has 30 turns and lies in the xy plane. It carries a current of 5 A in such a direction that the magnetic moment of the loop is along the x axis. The magnetic field on the x axis at x = 6.0 cm is approximately A) 19 µt B) 0.56 mt C) 0.11 mt D) 47 µt E) 0.88 mt 33. The current in a wire along the x axis flows in the positive x direction. If a proton, located as shown in the figure, has an initial velocity in the positive z direction, it experiences A) a force in the direction of positive x. D) a force in the direction of positive y. B) a force in the direction of negative x. E) no force. C) a force in the direction of positive z. 35. A long conductor carrying current I lies in the xz plane parallel to the z axis. The current travels in the negative z direction, as shown in the figure. The vector that represents the magnetic field at the origin O is A) 1 B) 2 C) 3 D) 4 E) 5 Review Sheet 3 Chapters 25, 26, 27 18

19 37. Four wires carry equal currents along the four parallel edges of a cube. A parallel current-carrying wire through the center of the cube is free to move. The vector that might represent the direction in which the center wire will move is A) 1 B) 2 C) 3 D) 4 E) 5 (If I is into the page); D (If I is out of the page.) 38. Current-carrying wires are located along two edges of a cube with the directions of the currents as indicated. The vector that indicates the resultant magnetic field at the corner of the cube is A) 1 B) 2 C) 3 D) 4 E) The magnetic field at point P, due to the current in the very long wire, varies with distance R according to A) R 2 B) R 3 C) R 2 D) R 3 E) R 1 Review Sheet 3 Chapters 25, 26, 27 19

20 42. The force per unit length between two current-carrying wires is expressed as F/l = (µ 0 /2πd)I 2 where I is the current, d the separation of the wires, and l the length of each wire. A plot of force per unit length versus I 2 gives a straight line, the slope of which is A) µ 0 B) F/l C) (2πd/ µ 0) 1/2 D) µ 0/2πd E) FI 2 /l Ans: D Two very long, parallel conducting wires carry equal currents in the same direction, as shown. The numbered diagrams show end views of the wires and the resultant force vectors due to current flow in each wire. Which diagram best represents the direction of the forces? A) 1 B) 2 C) 3 D) 4 E) 5 Two very long, parallel conducting wires carry equal currents in opposite directions. The numbered diagrams show end views of the wires and the resultant force vectors due to current flow in each wire. Which diagram best represents the direction of the forces? A) 1 B) 2 C) 3 D) 4 E) Two straight rods 60 cm long and 2.0 mm apart in a current balance carry currents of 18 A each in opposite directions. What mass must be placed on the upper rod to balance the magnetic force of repulsion? A) 0.50 g B) 0.99 g C) 9.7 g D) 4.3 g E) 1.6 g Review Sheet 3 Chapters 25, 26, 27 20

21 50. If the magnetic field at the center of a square current loop of side L = 40 cm is 2.4 x 10 6 T calculate the current flowing around the loop. A) 11 A B) 3.4 A C) 0.85 A D) 0.21 A E) 1.7 A Ans: C 53. Calculate the magnetic field and its direction at point P, which is 2.0 cm away from the top wire and 4.0 cm from the bottom wire. Assume both wires are infinitely long and each carries a current of 1.5 A. A) T directed OUT of the page B) T directed INTO the page C) T directed INTO the page D) T directed OUT of the page E) T directed OUT of the page 56. Two long parallel wires are a distance d apart (d = 6 cm) and carry equal and opposite currents of 5 A. Point P is distance d from each of the wires. Calculate the magnitude of the magnetic field strength at point P. A) 2.9 x 10 5 T D) 1.7 x 10 5 T B) 8.5 x 10 6 T E) None of the above C) 3.3 x 10 5 T Ans: D 58. Gauss's law for magnetism summarizes the fact(s) that A) the magnetic flux through a closed surface is zero. B) the magnetic flux is given by A S B da. C) the existence of magnetic monopoles has yet to be verified. D) there is no point in space from which magnetic field lines diverge. E) all of the above are true. Review Sheet 3 Chapters 25, 26, 27 21

22 59. Ampère's law is valid A) when there is a high degree of symmetry in the geometry of the situation. B) when there is no symmetry. C) when the current is constant. D) when the magnetic field is constant. E) for all of these conditions. 61. The graph that best represents B as a function of r for a wire of radius R carrying a current I uniformly distributed over its cross-sectional area is A) 1 B) 2 C) 3 D) 4 E) 5 Ans: C Review Sheet 3 Chapters 25, 26, 27 22

23 Use the following to answer questions 65-67: 65. The tightly wound toroid shown consists of 100 turns of wire, each carrying a current I = 3 A. If a = 12 cm and b = 15 cm, the magnetic field at r = 10 cm, due to the current in this toroid, is (µ 0 = 4 x 10 7 N/A 2 ) A) 400 µt B) 500 µt C) 600 µt D) zero E) impossible to calculate without additional information. Ans: D 77. A cylindrical bar magnet of radius 1.00 cm and length 10.0 cm has a magnetic dipole moment of magnitude m = 2.00 A m 2. What is the magnetic field at the center of the magnet? A) 125 mt B) 23.0 mt C) 57.0 mt D) 80.0 mt E) 40.0 mt Ans: D 91. When a sample is inserted into a solenoid carrying a constant current, the magnetic field inside the solenoid increases by 0.005%. What is the magnetic susceptibility of the sample? A) 5 x 10 5 B) +5 x 10 5 C) 3.6 x 10 5 D) 3.6 x 10 5 E) More information is needed to answer this question. 92. Nickel has a density of 8.70 g/cm 3 and a molecular mass of 58.7 g/mol. Its magnetic moment is Bohr magnetons (1 Bohr magneton = 9.27 x A m 2 ). What is its saturation magnetization? A) 4.85 x 10 9 A/m D) 8.92 x A/m B) 8.92 x 10 5 A/m E) 4.85 x 10 5 A/m C) 9.27 x A/m Review Sheet 3 Chapters 25, 26, 27 23

24 105. Point P 1 on the hysteresis curve corresponds to A) approximate saturation. B) the alignment of nearly all atomic magnetic moments. C) maximum applied magnetic field. D) the alignment of virtually all the magnetic domains. E) All of these are correct If you assume that the scalings of the axes of these hysteresis curves are the same, you can conclude that A) curve 1 is for a magnetically soft material. B) curve 2 is for a magnetically soft material. C) curve 2 is for a magnetically hard material. D) both curves are for a magnetically soft material. E) both curves are for a magnetically hard material. Review Sheet 3 Chapters 25, 26, 27 24

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

### Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

### Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### 45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

### 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### Candidate Number. General Certificate of Education Advanced Level Examination June 2012

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

### Chapter 22 Magnetism

22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

### Candidate Number. General Certificate of Education Advanced Level Examination June 2010

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

### Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

### ( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

### Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

### Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

### Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

### Problem 1 (25 points)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

### Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

### Faraday s Law of Induction

Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

### AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

### Magnetic fields of charged particles in motion

C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE

### Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

### Candidate Number. General Certificate of Education Advanced Level Examination June 2014

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

### physics 112N magnetic fields and forces

physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field

### Objectives. Electric Current

Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

### Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### 5. Measurement of a magnetic field

H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

### Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

### 7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

### Magnetic Fields and Forces. AP Physics B

Magnetic ields and orces AP Physics acts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create a MAGNETIC IELD around them Magnetic ield A bar magnet

### Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Experiment 7: Forces and Torques on Magnetic Dipoles

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

### TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

### Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Direction of Induced Current

Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### MFF 2a: Charged Particle and a Uniform Magnetic Field... 2

MFF 2a: Charged Particle and a Uniform Magnetic Field... 2 MFF2a RT1: Charged Particle and a Uniform Magnetic Field... 3 MFF2a RT2: Charged Particle and a Uniform Magnetic Field... 4 MFF2a RT3: Charged

### Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.

### ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

### Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

### Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 30 - Magnetic Fields and Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

### PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

### CURRENT ELECTRICITY - I

CURRNT LCTRCTY - 1. lectric Current 2. Conventional Current 3. Drift elocity of electrons and current 4. Current Density 5. Ohm s Law 6. Resistance, Resistivity, Conductance & Conductivity 7. Temperature

### Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio

### Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### CHAPTER 24 GAUSS S LAW

CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

### 39 kg of water at 10 C is mixed with 360 kg of ice at -7 C.

39 kg of water at 10 C is mixed with 360 kg of ice at -7 C. (The heat capacity of water is 4190 J/(kg C), that of ice is 2090 J/(kg C), and the heat of fusion of water is 3.34x10 5 J/kg. A. 320 J/K B.

### Experiment #8: Magnetic Forces

Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Exam 2 Practice Problems Part 2 Solutions

Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### Chapter 10. Faraday s Law of Induction

10 10 10-0 Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction... 10-3 10.1.1 Magnetic Flux... 10-5 10.2 Motional EMF... 10-5 10.3 Faraday s Law (see also Faraday s Law Simulation in

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### FORCE ON A CURRENT IN A MAGNETIC FIELD

7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

### The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

### STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

### Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

### How To Understand The Physics Of A Charge Charge

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

### PHYSICAL QUANTITIES AND UNITS

1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

### Chapter 22: Electric Flux and Gauss s Law

22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we