# The DC Motor. Physics 1051 Laboratory #5 The DC Motor

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 The DC Motor Physics 1051 Laboratory #5 The DC Motor

2 Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force on Current Carrying Wire A Force on Current Carrying Loop B Force on Current Carrying Wire C Force on Current Carrying Loop D Part IV: Apparatus and Setup Apparatus Setup Details The Wire The Coil The Stick The Support Arms The Circuit Part V: The Experiment Get Your Motor Running Which End is Up? Current and Rotation Relative Vector Directions Part VI: Summary

3 Part I: Objective In this experiment you will: Determine the direction of the magnetic moment vector for a current carrying loop. Determine the direction of torque on a current carrying loop in a magnetic field. Build a DC motor and determine the orientation of an unknown magnet.

4 Part II: Introduction Magnetic Force A current carrying wire in a magnetic field will experience a force perpendicular to both the field and the current. For example, a wire carrying current I out of the page placed in a magnetic field B to the right will experience a force F directed up as shown. The force is given by! F B! F B = I! L! B.! B

5 Part II: Introduction Right Hand Rule You may find the direction of the force by applying the right hand rule:! Point your fingers in the direction of the current! Bend your fingers (90º) towards the magnetic field (you may have to twist and turn your hand!).! Your thumb indicates the direction of force. If the current and magnetic field are parallel, the force is zero!! I This method applies to all cross products Brooks/Cole - Thomson. Fig. 22-4, p. 731, from Serway and Jewett, Principles of Physics. This material may not be copied or distributed to any third party.

6 Part II: Introduction Force on a Loop The right hand rule may be applied to each segment of a loop to determine the force on each segment. The image at right is a simple DC motor.! F B! B The two magnetic forces F B and F B produce a torque on the loop, tending to rotate it about its central axis. The other two sides of the loop do not experience a force since the current and magnetic field are parallel. N _! F B S The force vectors may be added to determine the net force.

7 Part II: Introduction Magnetic Dipole Moment A current carrying coil has a magnetic dipole moment µ. This vector points in the direction normal to the plane of the coil and has magnitude µ= NIA where N is number of turns, I is current, and A is the coil area. The figure at right shows a right-hand rule for finding the direction of µ : Point or curl the fingers of your right hand in the direction of current at any point on the loop. Your extended thumb then points in the direction of the magnetic dipole moment Brooks/Cole - Thomson. Fig , p. 742, from Serway and Jewett, Principles of Physics. This material may not be copied or distributed to any third party.

8 Part II: Introduction Torque A current carrying coil experiences a torque that is related to both the magnitude and direction of the µ and B vectors. This vector relation is written as Torque direction may be found in one of two ways: 1. If you know the directions of µ and B, you may use the right hand rule. Point your fingers in the direction of µ. Bend your fingers towards B. Your thumb indicates the direction of torque. If µ and B are parallel, the torque is zero! τ = µ B 2. If you know the direction of rotation, curl your fingers in the directions of rotation. Your thumb points towards torque. This torque is the basis for the operation of a DC motor.

9 Lab Report Lab Report 1: Lab Report 2: Write the objective of your experiment. Write the relevant theory of this experiment.

10 Part III: Predictions A: Force on Current Carrying Wire All throughout the boxed region below, there is a uniform magnetic field pointing into the page (as indicated by the cross). A wire segment carrying a current in the direction shown is placed inside the region. B I Lab Report 3: Indicate the direction of the force on the wire segment, using either arrows or the dot or cross symbols. If the force is zero, write zero.

11 Part III: Predictions B: Force on Current Carrying Loop A square wire loop carrying a steady clockwise current is placed in the region. (Current in each of the four sides is equal.) B I Lab Report 4: On each of the four sides of the loop, indicate the direction of the magnetic force (if there is one) or write zero. Lab Report 5: Is there a net force acting on the loop as a whole? If so, state its direction. If not, explain. Lab Report 6: Indicate the direction of the magnetic moment vector of the loop. Lab Report 7: Indicate the direction of the torque vector of the loop or write zero if the net torque is zero. Lab Report 8: Assuming the loop is free to move, will it rotate? Explain.

12 Part III: Predictions C: Force on Current Carrying Wire In this region, a uniform magnetic field is present that points toward the bottom of the page. A wire segment carrying a current in the direction shown is placed in the region. B I Lab Report 9: Indicate the direction of the force on the wire segment, using either arrows or the dot or cross symbols. If the force is zero, write zero.

13 Part III: Predictions D: Force on Current Carrying Loop A square wire loop carrying a clockwise current is placed in the region. B I Lab Report 10: On each of the four sides of the loop, indicate the direction of the magnetic force (if there is one) or write zero. Lab Report 11: Is there a net force acting on the loop as a whole? If so, state its direction. If not, explain. Lab Report 12: Indicate the direction of the magnetic moment vector of the loop. Lab Report 13: Indicate the direction of the torque vector of the loop or write zero if the net torque is zero. Lab Report 14: Assuming the loop is free to move, will it rotate? Explain.

14 Part IV: Apparatus and Setup Apparatus You have been provided with: Wooden base DC power supply Wires and connectors 2 Magnets Wooden stick 2-3 m of thin copper wire (insulated) Paper clips Some masking tape Sandpaper 200 g mass

15 Part IV: Apparatus and Setup Setup Details The DC motor consists of loops of wire. Current must be running through the wire. The loops must be set in a magnetic field. Remember: For motion to occur, there must be a net torque on the motor. For there to be a net torque, the magnetic moment vector and the magnetic field must be perpendicular.

16 Part IV: Apparatus and Setup The Wire You have been given insulated copper wire, leads with alligator clips, and paper clips. The wire is insulated with a thin plastic coating. Current will not flow from the paper clips to the wire if it has this coating. Current will flow from the paper clips to the wire if this coating has been removed at the point of contact. You have been given a piece of sandpaper. Once the plastic insulation is removed from the appropriate part of the copper wire it is bright and shiny in colour.

17 Part IV: Apparatus and Setup The Coil You may use the 200g mass as a base to keep your coil round. To obtain a sufficient magnetic moment vector, it is recommended that you have a minimum of 15 turns in your coil.

18 Part IV: Apparatus and Setup The Stick You have been given a small wooden stick which may be used to hold the loops. Be sure the loop is symmetric on the stick. When securing the loose ends of the wire to the stick, think carefully about the current flow: Where must the wires be secured to ensure current will flow?

19 Part IV: Apparatus and Setup The Support Arms The motor may be supported using the paper clips and the wooden base.

20 Part IV: Apparatus and Setup The Circuit Use the power supply, leads, and alligator clips to connect a circuit with your DC motor. Make sure the current and voltage knobs are turned all the way to the left. Switch on the power supply. First slightly increase the voltage knob, then adjust the current until you observe a voltage and current output. Adjust both the voltage and current knobs until you observe a current (maximum of 2.0 A). If there is no current, carefully check that you have a closed circuit.

21 Lab Report Lab Report 15: List your apparatus and sketch your setup.

22 Part V: Experiment Get Your Motor Running You may need to give the loop a slight flick with your finger to get it spinning. You should adjust your apparatus until the spinning is smooth and even. If there are sparks, you may decrease the voltage a little. These sparks will not hurt you. Note the rotational direction of your motor! You will use this information to determine the orientation of your magnet. Don t run your motor for more than a minute straight. The coil can get very HOT! Before proceeding, have an instructor see your running motor and sign your lab report. This Checkpoint is worth 15% of your lab!

23 Part V: Experiment Which End is Up? Lab Report 16: Based on the direction of current and rotation of your motor, determine which pole of your magnet is facing up. Explain your answer. Before proceeding, have an instructor check your answer with a labelled bar magnet to see if you are right.

24 Part V: Experiment Current and Rotation Lab Report 17: What would happen to your motor if you switch the direction of the current by switching the alligator clips? Why? Test your prediction. Lab Report 18: Did you observe your prediction to be true? If not, explain why. Lab Report 19: Test your prediction. What would happen to your motor if you increase the current? Why? Lab Report 20: Did you observe your prediction to be true? If not, explain why.

25 Part V: Experiment Relative Vector Directions Think about the orientation of your coil relative to the magnet. In particular, consider the time when the current is flowing through the coil. Lab Report 21: What were the relative directions of the magnetic moment vector and the magnetic field? Provide a sketch of your apparatus with these directions clearly indicted. Why did they have to be arranged this way?

26 Part VI: Summary Lab Report 22: Lab Report 23: Outline briefly the steps of your experiment. List your experimental results and comment on how they agreed with the expected results. Lab Report 24: Are there any experimental uncertainties associated with this experiment? Explain.

27 Wrap it up! Check that you have completed your Lab Report. Make sure an instructor has checked your motor and signed your report.

### Build A Simple Electric Motor (example #1)

PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

### Lab 9 Magnetic Interactions

Lab 9 Magnetic nteractions Physics 6 Lab What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. Most of the electrical devices you will encounter

### LABORATORY VI ELECTRICITY FROM MAGNETISM

LABORATORY VI ELECTRICITY FROM MAGNETISM In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how magnetic fields could be created by electric currents.

### 1 of 7 4/13/2010 8:05 PM

Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Experiment 7: Forces and Torques on Magnetic Dipoles

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin.

Objective To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin. Introduction So, what do windshield wipers, CD players, VCR's, blenders, ice

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 To study

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### Mapping the Magnetic Field

I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude

### Profs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution

PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units

### Magnets. We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect.

Magnets We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect. What you are seeing is another invisible force field known as

### Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

### Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

### Electric Circuits. HPP Activity 69v1. Exploration. Equipment: Chirping Chick

HPP Activity 69v1 Electric Circuits Chirping Chick GE 1 1. Obtain a chirping chick and make the chick chirp. Without taking the chick apart, where do you suspect the chick gets the energy needed to produce

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

### Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines

### mv = ev ebr Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer KE=PE magnitude of electron charge

1.4 The Mass Spectrometer Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer mv r qb mv eb magnitude of electron charge 1 mv ev KEPE v 1 mv ebr m v e r m B m

### CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

### Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

### Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### Lab 9: Energy Conservation in Circuits & Charge on a Capacitor

Part (1) Energy Conservation in Circuits OBJECTIVES In this part of the lab you will Write the energy conservation equation (loop rule) for several pairs of circuits Predict the relation between the currents

### E X P E R I M E N T 8

E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

### Chapter 22 Magnetism

22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### DC Motor Annotated Handout American Physical Society

DC Motor Annotated Handout American Physical Society A. What You Already Know Make a labeled drawing to show what you think is inside the motor. Write down how you think the motor works. Please do this

### Magnetism Conceptual Questions. Name: Class: Date:

Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must

### Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Name Section Torque is the rotational analog of force. If you want something to move (translation), you apply a force; if you want something to rotate, you apply a torque.

### BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT

BASANT S SCIENCE ACADEMY Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

### Magnetic Force on a Current-Carrying Wire

Title: Original Version: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: AP Physics Learning Objective: Magnetic Force on a Current-Carrying Wire 11 November 2006 24 June

### Magnetic Fields Lab. Station #1 à Determining Magnetic Flux Lines

Magnetic Fields Lab Regents Physics Name Mr. Putnam Station #1 à Determining Magnetic Flux Lines You must FIRST FIND WHICH END of your compass needle that points Geographic North. THIS WILL BE THE NORTH

### Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

### Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

### ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### CET Moving Charges & Magnetism

CET 2014 Moving Charges & Magnetism 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### Experiment #8: Magnetic Forces

Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable

### NAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o

(1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the x-y plane. (a) Find the

### Magnetic Fields; Sources of Magnetic Field

This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### 5.Magnetic Fields due to Currents( with Answers)

5.Magnetic Fields due to Currents( with Answers) 1. Suitable units for µ. Ans: TmA -1 ( Recall magnetic field inside a solenoid is B= µ ni. B is in tesla, n in number of turn per metre, I is current in

### Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used

### Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### FORCE ON A CURRENT IN A MAGNETIC FIELD

7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Magnetic Forces and Magnetic Fields

1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric

MAGNETIC FIELD Magnetic Force For centuries, humans observed strange force Between iron and special stones called lodestones Force couldn't be gravity or electric Not enough mass or electric charge to

### LABORATORY V MAGNETIC FIELDS AND FORCES

LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and

### Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

### In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

### Magnetism: a new force!

-1 Magnetism: a new force! So far, we'e learned about two forces: graity and the electric field force. =, = Definition of -field kq -fields are created by charges: = r -field exerts a force on other charges:

### Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P r + v r A. points in the same direction as v. B. points from point

### Physics 104 Exam 2 Name

1. An electron moves with a velocity of 7.0 x 10 6 m/s due west in a uniform magnetic field of magnitude 4.0 T at an angle of 30 ast of orth. At the same point an electric field of magnitude 9.0 x 10 6

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

### My lecture slides are posted at Information for Physics 112 midterm, Wednesday, May 2

My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 112 midterm, Wednesday, May 2 1) Format: 10 multiple choice questions (each worth 5 points) and two show-work

### ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

### Constructing P90 Pickups. UIUC PHYS 498, Spring 2010 Dan Carson. The goal of this project was to build P90 pickups that as closely as possible,

Constructing P90 Pickups UIUC PHYS 498, Spring 2010 Dan Carson Introduction The goal of this project was to build P90 pickups that as closely as possible, recreate the sound of classic P90 pickups such

### Section V.4: Cross Product

Section V.4: Cross Product Definition The cross product of vectors A and B is written as A B. The result of the cross product A B is a third vector which is perpendicular to both A and B. (Because the

### It is the force experienced by a charged particle moving in a space where both electric and magnetic fields exist. F =qe + q(v B )

Moving Charges And Magnetism Moving Charges Moving charges produce magnetic field around them. SI unit of magnetic field is Tesla (T). Lorentz Force It is the force experienced by a charged particle moving

### Building an Electric Motor

Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure

### Chapter 4. Magnetic Materials and Circuits

Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

### Question Details C14: Magnetic Field Direction Abbott [ ]

Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

### Electromagnetic Induction - A

Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

### Date: Deflection of an Electron in a Magnetic Field

Name: Partners: Date: Deflection of an Electron in a Magnetic Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric and magnetic field on the motion of a charged

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field

### Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

Copyright 2014 Edmentum - All rights reserved. Science Physics Electromagnetic Blizzard Bag 2014-2015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines

### The Ideal Transformer. Description and Circuit Symbol

The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,

### BUILDING AN INEXPENSIVE MOTOR IN THE CLASSROOM

BUILDING AN INEXPENSIVE MOTOR IN THE CLASSROOM Aaron Osowiecki Boston Latin School Research Experience for Teachers Center for Materials Science and Engineering Massachusetts Institute of Technology August

### Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

### Physics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1-S)R P R 1 =SR P. R P =10kΩ 10-turn pot.

Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

### Experiment 9: Biot -Savart Law with Helmholtz Coil

Experiment 9: Biot -Savart Law with Helmholtz Coil ntroduction n this lab we will study the magnetic fields of circular current loops using the Biot-Savart law. The Biot-Savart Law states the magnetic

### Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications