Unit: Charge Differentiated Task Light it Up!


 Marylou Kelly
 2 years ago
 Views:
Transcription
1 The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are available by using the Search Standards feature located on GeorgiaStandards.Org. Georgia Performance Standards Framework for Physical Science High School Subject Area: Physical Science Grade: High School Standards (Content and Characteristics): Unit: Charge Differentiated Task Light it Up! SPS10. Students will investigate the properties of electricity and magnetism. a. Explain the flow of electrons in terms of Alternating and directing current. The relationship among voltage, resistance and current. Simple series and parallel circuits. SPS8 Students will determine relationships among force, mass, and motion. a. Apply Newton s three laws to everyday situations by explaining the following: Inertia Relationship between force, mass, and acceleration Equal and opposite forces SCSh1. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science. a. Exhibit the above traits in their own scientific activities. b. Recognize that different explanations often can be given for the same evidence. c. Explain that further understanding of scientific problems relies on the design and execution of new experiments which may reinforce or weaken opposing explanations. SCSh2. Students will use standard safety practices for all classroom laboratory and field investigations. a. Follow correct procedures for use of scientific apparatus. b. Demonstrate appropriate techniques in all laboratory situations. c. Follow correct protocol for identifying and reporting safety problems and violations. PHYSICAL SCIENCE HIGH SCHOOL CHARGE! Page 1 of 7
2 SCSh3. Students will identify and investigate problems scientifically. a. Suggest reasonable hypotheses for identified problems. b. Develop procedures for solving scientific problems. c. Collect, organize and record appropriate data. d. Graphically compare and analyze data points and/or summary statistics. e. Develop reasonable conclusions based on data collected. f. Evaluate whether conclusions are reasonable by reviewing the process and checking against other available information. SCSh4. Students will use tools and instruments for observing, measuring, and manipulating scientific equipment and materials. a. Develop and use systematic procedures for recording and organizing information. SCSh5. Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations. a. Trace the source on any large disparity between estimated and calculated answers to problems. b. Consider possible effects of measurement errors on calculations. c. Recognize the relationship between accuracy and precision. d. Express appropriate numbers of significant figures for calculated data, using scientific notation where appropriate. e. Solve scientific problems by substituting quantitative values, using dimensional analysis, and/or simple algebraic formulas as appropriate. SCSh6. Students will communicate scientific investigations and information clearly. a. Write clear, coherent laboratory reports related to scientific investigations. c. Use data as evidence to support scientific arguments and claims in written or oral presentations. d. Participate in group discussions of scientific investigation and current scientific issues. SCSh9. Students will enhance reading in all curriculum areas by: c. Building vocabulary knowledge Demonstrate an understanding of contextual vocabulary in various subjects. Use content vocabulary in writing and speaking. Explore understanding of new words found in subject area texts. d. Establishing context Explore life experiences related to subject area content. Discuss in both writing and speaking how certain words are subject area related. Determine strategies for finding content and contextual meaning for unknown words Page 2 of 7
3 Enduring Understandings: The student will understand that: Electric current is the result of the motion of charged particles across a conductor. Friction forces can cause the accumulation of an unbalanced amount of charged particles on the surface of an object. The voltage created between two objects due to the presence of an unbalanced charge may create an electric spark or shock. Electrons can be transferred from one charged conductor to another by physical contact. An electric current requires a complete circuit and a voltage source. The amount of current that flows in a circuit depends on both the resistance and the voltage of the source. In a series circuit the same amount of current flows through all the components. In a parallel circuit the voltage drop across each component is equal and equal to the voltage of the power source. In a direct current circuit the electrons flow in only one direction. In an alternating current circuit the motion of the electrons alternates back and forth due to the changing polarity of the voltage source. Essential Question(s): What does it mean when something is electrically charged? How can an object become electrically charged? Why can small birds sit on highvoltage power lines? Why is an alternating current necessary for a motor to work? What characteristics of the material make it a good conductor or insulator? Why are insulators attracted to charged objects? Why is alternating current commonly used in household applications? PreAssessment: Give students threefive statements about the standards listed above and a scale that goes from true, false, maybe, and no idea. This can be done as a ticketoutthedoor the day prior to beginning this unit. Evaluate the quiz results and group students based on their current knowledge level. This will allow the teacher to give a brief introduction to this activity and then work with the no idea group for minutes, the maybe group for 510 minutes, and the true group for only a few minutes to get everyone started. Then the teacher should be able to navigate the room offering help where needed. Teacher Note: It may be necessary to review the concepts related to Newton s Laws of Motion as they apply to the movement of charges in a circuit prior to this activity Page 3 of 7
4 Outcome/ Performance Level Indicator Performance Task: (Detailed Description) Teacher role? Student role? BASIC INTERMEDIATE ADVANCED Students will Students will design, construct and construct and differentiate between differentiate between series and parallel series and parallel circuits, measure the circuits, measure the voltage and current voltage and current across the circuit, and across the circuit, and calculate the calculate the resistance using resistance using Ohm s Law. Ohm s Law. Students will construct a series and parallel circuit using detailed instructions. Students will differentiate between the two, measure voltage and current across the circuit, and calculate the resistance using Ohm s Law. Using the materials and procedures below, the teacher will explain and demonstrate how to set up a circuit. Following the teacher s demonstration, the students will then construct series and parallel circuits. Students will measure voltage using a voltmeter and current using an ammeter. Using voltage and current measurements, students will calculate resistance in each circuit using Ohm s Law. Students will use two resistors. Using the materials and procedures below, the teacher will allow students to construct their own circuits. Students will measure voltage using a voltmeter and an ammeter to measure current. Using voltage and current measurements, students will calculate resistance of each resistor in each circuit using Ohm s Law. Students will use more than two resistors. Using the materials and some guiding questions (see teacher note below), the teacher will allow students to design and construct their own circuits. Students will construct series and parallel circuits and using the equipment that is provided measure voltage and current across the circuit. Using voltage and current measurements, students will calculate resistance of each resistor in each circuit using Ohm s Law. Students will use more than two resistors of different types. Resources lab and websites attached below lab and websites attached below lab and websites attached below Page 4 of 7
5 Homework/Extension Instructional Tasks Accommodations for ELL Students Instructional Tasks Accommodations for Students with Specific Disabilities Instructional Tasks Accommodations for Gifted Students homework attached homework attached homework attached below below below Procedures could be translated and recorded on audio cassette by language teacher and given to student prior to lab. ELL student could play a major role in building circuits, taking measurements, and discussing observations and outcomes while lab partner (Englishspeaking) records data and writes report. Provide teacher formatted lab sheet. Provide video clips for content. Allow simple schematics to be used. Pair disabled student with regular student. The disabled student could build circuits, take measurements, and discuss observations and outcomes while lab partner records data and writes report. Provide teacher formatted lab sheet. Provide video clips for content. Allow simple schematics to be used. Working in pairs, students should show all resistance calculations. Students must also include a switch and a door bell in the circuit where the doorbell remains on even when the lights go off. Web Resources for interactive circuits and other electronic components: It may be beneficial for students to access these sites prior to the performance task Materials: 2 sized dry cells (batteries) Various pieces of copper wire flashlight bulbs, sections of holiday lights or various resistors bulb holders if available battery holders if available alligator clips if available 1 voltmeter 1 ammeter 1 switch For demonstration purposes one large scale series circuit one large scale parallel circuit light bulbs, resistors of various wattages Page 5 of 7
6 Safety Hazards: Students should wear goggles and aprons. Avoid batteries coming in contact with water and other liquids. Caution students that battery connections will generate heat. Student lab setups should not exceed more than 2 D batteries. Teacher note: Provide students with a data table to save time. Differentiate the materials and the instructions/diagrams that are available to each group. For example: Group 1: (Basic) Detailed instructions which include a teacher demonstration. Diagram of each circuit. Only provide two resistors Group 2: (Intermediate) Instructions More than two resistors Group 3: (Advanced) Procedure is not provided for this group. This group will write their own procedure using guiding questions. Examples of questions may include: 1. How can your group power the given resistors using the materials that are provided? 2. Design a circuit that will power resistors in the circuit even when one resistor is disabled or removed. Several resistors of varying types (door bell, buzzer, holiday lights, flashlight bulbs etc.) Procedure 1. Using the given materials, construct a series circuit that contains a power source (1 battery), a resistor, wires, and a switch. Diagram your completed circuit showing the flow of energy when the switch is open and when it is closed. Explain what happens when the switch is opened and why. 2. Connect the voltmeter and measure the voltage across the circuit. Remove the voltmeter and replace with the ammeter to measure the current across the circuit. Record your observations in your data table. 3. Repeat steps one and two adding a resistor. Diagram your circuit and record your observations in your data table. 4. Add the second battery and attempt to power all of the resistors that were provided in your lab equipment. Diagram each arrangement, measure the voltage and current and record your observations in your data table. 5. In the circuit with two bulbs, unscrew one of the bulbs. Record your observations. 6. Repeat this procedure for the parallel circuit Page 6 of 7
7 Additional Notes One Stop Shop For Educators Series Circuits Devices in series are dependent upon each other to operate properly. The total resistance in a circuit is equal to the sum of the individual resistances along the current path. R T = R 1 + R 2 + R 3 etc. The potential difference, or voltage, is decreased over each resistance. The voltage drop across each device is directly proportional to its resistance. Parallel Circuits Devices act independently of each other and can operate properly even when one or more resistors become disabled. The total equivalent resistance is less than the value of any individual resistor. Each device connects the same two points of the circuit; therefore, the voltage is the same across each device. The total current is equal to the sum of the currents in each branch. I T = I 1 + I 2 + I 3 etc. Homework Problems Basic and Intermediate 1. You are to draw a series circuit schematic with a battery as the source and three resistors. Then calculate the voltage if the current of the circuit is 1875 amps and the resistors have the following values: R 1 =7.00 Ohms, R 2 =5.00 Ohms, and R 3 =8.00 Ohms. What would the voltage be across each resistor? Advanced 2. You are to draw a parallel circuit schematic with a battery as the source and two resistors. Then calculate the current if the battery is supplying volts across two resistors with R 1 =5.00 Ohms and R 2 =12.00 Ohms. What is the current across each resistor? Draw a series circuit schematic with one battery and two resistors. Applying the same voltage and resistance values to this circuit (as listed at the beginning of this problem), determine the total current and the current across each resistor Page 7 of 7
One Stop Shop For Teachers
PROGRAM CONCENTRATION: CAREER PATHWAY: COURSE TITLE: Engineering and Technology Energy Systems Energy and Power Technology COURSE DESCRIPTION: This course is the second course in the Energy Systems Pathway.
More informationOne Stop Shop For Teachers
Physical Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy
More informationUnit: Energy Transformations Inquiry Task. How Does Energy Flow Through Ecosystems?
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationUnit: Organization Inquiry Task. Investigating Common Functions Among Diverse Organisms
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationGeorgia Department of Education
Epidemiology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is
More informationGeorgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationStudent Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
More informationChapter 11 Electricity
Chapter 11 Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law
More informationA CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.
Biology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is used
More informationResistors in Series and Parallel Circuits
69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM8656 2 D cell 1.5 volt Introduction
More informationPhysics Worksheet Electric Circuits Section: Name: Series Circuits
Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation
More informationOne Stop Shop For Teachers. Georgia Performance Standards Framework for Physical Science 8 th GRADE
Subject Area: Physical Science Grade: 8 Unit: Fast and Furious Forces General Task Fact or Friction S8P3. Students will investigate relationship between force, mass, and the motion of objects. a. Determine
More informationSeries & Parallel Circuits Challenge
Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,
More informationA CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.
Anatomy and Physiology of Human Body Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks
More informationch 18 practice Multiple Choice
ch 18 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the best description of a schematic diagram? a. uses pictures
More informationCircuits. Page The diagram below represents a series circuit containing three resistors.
Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question
More informationPHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:
PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors
More informationInvestigating Parallel Circuits: Student Activity Lesson Plan
: Student Activity Lesson Plan Subject/Strand/Topic: Science / Physics: Electricity Grade(s) / Course(s): 9 / SNC1D Ontario Expectations: PH1.09, PH1.10 Key Concepts: parallel circuits, current, voltage,
More informationTwo kinds of electrical charges
ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces
More information1) 10. V 2) 20. V 3) 110 V 4) 220 V
1. The diagram below represents an electric circuit consisting of a 12volt battery, a 3.0ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10
More informationA CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.
Environmental Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy
More informationEarth, Moon, and Sun Inquiry Template Eclipses
One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved
More informationAn explanation of the coding of the science GPS is attached.
Entomology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is
More informationThis Performance Standards include four major components. They are
Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.
More informationForensic Science Curriculum
Forensic Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy
More informationLesson Plan. Session Title: Basic Electrical Theory Understanding Ohm s Law
Course Title: Construction Technology Lesson Plan Session Title: Basic Electrical Theory Understanding Ohm s Law Performance Objective: Upon completion of this assignment, the student will be able to explain
More informationAP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
More informationREVIEW QUESTIONS. A6 Test Preparation
A6 Test Preparation Note: The lessons, exercises and tests in this manual are great preparation for taking the ASE A6 (electrical) certification test. However, that s only for the topics we ve covered.
More informationBotany Curriculum. An explanation of the coding of the science GPS is attached.
Botany Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is used
More informationGeorgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines
Subject Area: Physical Science Grade: 8 Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines S8P3. Students will investigate relationship between force, mass, and the motion of
More informationElectrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310 Electrical Fundamentals 2 Module 3 Parallel Circuits Module
More informationUnit: The Structure and Function of Cells General Task The Animated World of Cellular Processes Subject Area: Life Science
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationSection 6. Current, Voltage, and Resistance in Parallel and Series Circuits: Who s in Control? What Do You See? What Do You Think?
Section 6 Current, Voltage, and Resistance in Parallel and Series Circuits: Who s in Control? What Do You See? Learning Outcomes In this section, you will ssemble a switch in a circuit with parallel components
More informationTOPIC 3.1: ELECTRIC CIRCUITS
TOPIC 3.1: ELECTRIC CIRCUITS S4P31 S4P32 S4P33 S4P34 S4P35 S4P36 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical
More informationCircuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions.
Circuits Review KEY Interpreting Diagrams Use the diagram below to answer the following questions. 1. Look at the arrows which indicate the direction of the flow of electrons. Label the negative and the
More informationSeries,"Parallel," and"series." Parallel"Circuits"
chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the
More informationUnit: Organization General Task. How Are Cells Differentiated?
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationCircuitsCircuit Analysis
Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9volt battery is connected to a 4ohm resistor and a 5ohm resistor as shown in the diagram below. A 3.0ohm resistor,
More informationCircuits and the Flow of Electricity Lesson Plan
Circuits and the Flow of Electricity Lesson Plan Michigan Grade Level Content Expectations and Common Core State Standards 6 th Grade: ELA: o SL.6.4 Present claims and findings, sequencing ideas logically
More informationScience 10F: Nature of Electricity. Cells and Circuits
Science 10F: Nature of Electricity Investigation #7: Cells and Circuits Background: Suppose you have two dry cells. There are two different ways to connect the dry cells together. One of the ways to connect
More informationUnit 7: Electric Circuits
Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude
More informationActivity 8 Ohms Law and Circuits PHYS 010
Name: Date: Partners: Purpose: To study the relationship between voltage, current and resistance and apply this understanding to simple series and parallel circuits. Materials: 1. 2 identical bulbs, and
More informationOhm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and nonlinear behavior.
Ohm s Law Object To study resistors, Ohm s law, linear behavior, and nonlinear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which
More informationKirchhoff s Voltage Law
BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel
More informationCircuits. PHY2049: Chapter 27 1
Circuits PHY2049: Chapter 27 1 What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric
More informationELECTRICITY AND MAGNETISM CREEKSIDE HIGH SCHOOL.
STEPUP 2008 LESSON PLAN UNIT: TIME: ELECTRICITY AND MAGNETISM 8 WEEKS CLASS LEVEL: HIGH SCOOL PHYSICS. GRADES: 11 & 12 NAME: SCHOOL: ANITA NAIR CREEKSIDE HIGH SCHOOL. 07/21/2008. PROBLEM:! "ow is energy
More informationScience AS90191 Describe Aspects of Physics.
Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together
More informationCHAPTER12. Electricity. Multiple Choice Questions. Fig. 12.1
CHAPTER12 Electricity Multiple Choice Questions 1. A cell, a resistor, a key and ammeter are arranged as shown in the circuit diagrams of Figure12.1. The current recorded in the ammeter will be Fig. 12.1
More informationAP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
More informationVideo Component (15 min)
The tree house detectives continue their quest for the solution to the case of the electrical mystery. Because they are eager to go swimming in their neighbor s pool, the tree house detectives hope that
More informationElectrostatics. Electrostatics Version 2
1. A 150watt lightbulb is brighter than a 60.watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150watt lightbulb,
More informationA CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.
Earth Systems Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy
More informationPHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
More informationFundamentals of Direct Current Circuits
Fundamentals of Direct Current Circuits Course No: E06001 Credit: 6 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 3225800 F: (877) 3224774
More informationOhm s Law & Series Circuit
Open the TINspire document Ohms_Law_&_Series_Circuit.tns. We all use and rely on electric circuits every day by flipping a switch, turning up the volume, or operating a computer or calculator. Even the
More informationWhat is the direction of a compass needle placed at point A?
SAMPLE QUIZ: COVERAGE OHM S LAW CIRCUIT ANALYSIS RESISTANCE ELECTRICAL POWER MAGNETISM AND ELECTROMAGNETISM MAGNETISM: 1. In order to produce a magnetic field, an electric charge must be 1. stationary
More informationElectrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.
PHSC 101 Electrical Circuits Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple electrical circuits and Ohm's
More informationKirchhoff s Laws. Kirchhoff's Law #1  The sum of the currents entering a node must equal the sum of the currents exiting a node.
Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1  The sum of the currents
More informationElectrical Power. How do you calculate electrical power? 14.3
. Name: Date: Electrical Power 14.3 How do you calculate electrical power? In this skill sheet you will review the relationship between electrical power and Ohm s law. As you work through the problems,
More informationBUILDING A BASIC CIRCUIT
Teacher Information BUILDING A BASIC CIRCUIT NSES912.2 Physical Science: Interactions of Energy and Matter Adaptations Some adaptations and modifications that may assist a student with visual and/or other
More informationLevel 2 Physics: Demonstrate understanding of electricity and electromagnetism
Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential
More informationELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS
ELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS 1 To determine the equivalent resistance of two resistors when connected in series, a student arranged the circuit components as shown in the diagram. But
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationDuration of resource: 23 Minutes. Year of Production: Stock code: VEA12041
ADDITIONAL RESOURCES We use electrical circuits every day. In the home, the car, at work and school they are a vital part of our lives. This program covers the basics of electrical circuits in detail.
More informationCircuits and the Flow of Electricity
Lesson Overview This lesson helps Girl Scouts learn about how electricity works within a simple circuit. Many vocabulary words must be introduced (located under things for the leader to know). This lesson
More informationUnderstanding Solar Energy Teacher Page
Understanding Solar Energy Teacher Page Series and Parallel Circuits Student Objective The student: will calculate the current, voltage and power output for modules in which the cells are connected in
More informationGeorgia Performance Standards Framework for Science Grade 3
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
More informationSeries and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected endtoend. A parallel
More informationENGR 1181 Lab 3: Circuits
ENGR 1181 Lab 3: Circuits Lab Procedure Report Guidelines 2 Goal of the Circuits: The Circuits Lab introduces series and parallel circuit which are used by engineers. Students will review this document
More informationASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars. Grade 6: Energy and Control Electricity
ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars Grade 6: Energy and Control Electricity Exemplar Task (6ECPT01/Dec 2000) ELECTRIFYING York University, Dec
More informationEMF & INTERNAL RESISTANCE 28 JULY 2015 Section A: Summary Notes
EMF & INTERNAL RESISTANCE 28 JULY 2015 Section A: Summary Notes Internal Resistance The emf of a cell is the maximum amount of energy which the cell can supply. When the cell is delivering current, the
More informationLesson Plan. Parallel Resistive Circuits Part 1 Electronics
Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate
More informationObjectives 200 CHAPTER 4 RESISTANCE
Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys
More informationHow Does it Flow? Electricity, Circuits, and Motors
How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move
More informationUNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I
UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I FALL 2014/2015 LAB 2: RESISTORS ASSOCIATION AND THE WHEATSTONE
More informationOhms Law IDC Circuits with Light Bulbs PhET Lab I with Ammeters and Voltmeters
Ohms Law IDC Circuits with Light Bulbs PhET Lab I with Ammeters and Voltmeters by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville,
More informationLesson Plan for Electric Circuits
Lesson Plan for Electric Circuits Last Updated: 11/6/2009 Updated by: Sci4Kids Electric Circuits Lesson 1 Lesson Summary Lesson name Audience Focus Standards (4 th grade) Fourth Grade AZ standard(s) applied
More informationObjectives. to understand how to use a voltmeter to measure voltage
UNIT 10 MEASUREMENTS OF VOLTAGE (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand how to use a voltmeter
More information3. What atom s particle moves through a conductor material? 4. Which are the electric components of an elemental electric circuit?
1. What is electricity? 2. Write down the name of the atom s particles. 3. What atom s particle moves through a conductor material? 4. Which are the electric components of an elemental electric circuit?
More informationphysics 112N current, resistance and dc circuits
physics 112N current, resistance and dc circuits current! previously we considered electrostatic situations in which no Efield could exist inside a conductor! now we move to the case where an electric
More informationResistors in Series and Parallel
Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the
More informationScience Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy
Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing
More informationElectric circuit diagram components (symbols) Symbol Component Symbol Component
7. ELECTRICS 7.1. SYMBOLS Electric circuit diagram components (symbols) Symbol Component Symbol Component Symbol (plan view) Battery Biased switch. Pushtomake (PTM) M Bulb Resistor Motor Fuse Biased
More informationLab 3  DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L31 Name Date Partners Lab 3  DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
More informationPreLab 7 Assignment: Capacitors and RC Circuits
Name: Lab Partners: Date: PreLab 7 Assignment: Capacitors and RC Circuits (Due at the beginning of lab) Directions: Read over the Lab Handout and then answer the following questions about the procedures.
More informationPeople s Physics Book
The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy
More information1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE
Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:
More informationCHAPTER 2. Basic Electronics & Theory. (The rules behind all those little things)
CHAPTER 2 Basic Electronics & Theory (The rules behind all those little things) 1 Current, Voltage, Resistance Water flowing through a hose is a good way to imagine electricity. Water is like Electrons
More informationEDSE 732 SECONDARY SCIENCE METHODS 4/17/10 Lesson Plan Cooperative Learning Moritz Huegle 1. Topic of the lesson
1. Topic of the lesson Applications of series and parallel electrical circuits This lesson will focus on the knowledge about parallel and series circuits gained in the lesson before. The students will
More informationQuestion Bank. Electric Circuits, Resistance and Ohm s Law
Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define
More informationBuild A Simple Electric Motor (example #1)
PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet
More informationSection 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes
Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given
More informationEELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws
EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3 1 Lab Overview: Many electric loads such as electric heaters and light bulbs can
More informationMAGNETISM AND ELECTRICITY
WEEK 19 MAGNETISM AND ELECTRICITY ELECTRIC CIRCUITS. 1 Resistance: After this lesson, you should be able to do the following: Know how to define resistance. Know what resistance is. Know the unit for resistance.
More informationGrade 6 Unit Template Electrical Energy
Delaware Science Coalition Grade 6 Unit Template Electrical Energy Copyright 2008Delaware Department of Education Copyright 2008, Delaware Department of Education Page 1 of 10 Preface: This unit has been
More informationSeries and Parallel. How we wire the world
Series and Parallel How we wire the world Series vs Parallel Circuits Series Circuit Electrons only have one path to flow through. Parallel Circuit There are MULTIPLE paths for the current to flow through.
More informationNoteARific: Characteristics
NoteARific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch
More informationMagnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility  Office of Science Education http://education.jlab.
Magnets and Electromagnets Magnets and Electromagnets Can you make a magnet from a nail, some batteries and some wire? Problems Can the strength of an electromagnet be changed by changing the voltage of
More informationMC Electricity Resistors Review
2. In the circuit shown above, what is the value of the potential difference between points X and Y if the 6 volt battery has no internal resistance? (A) 1 V (B) 2 V (C) 3 V (D) 4 V (E) 6V 8. The circuit
More informationQ1. (a) Complete the sentence below to name the instrument used to measure electrical current.
Q. (a) Complete the sentence below to name the instrument used to measure electrical current. The instrument used to measure electrical current is called... () (b) In the diagram below each box contains
More information