# DISPLACEMENT AND FORCE IN TWO DIMENSIONS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient of static friction kinetic friction vector resolution components 5 1. To determine the of a vector, a coordinate system must be chosen.. The force of depends on the normal force exerted by an object when there is no motion between the two surfaces. 3. The is a force that puts an object into equilibrium. 4. is always less than the maximum value of static friction. 5. The is needed to calculate the force of kinetic friction. 6. Breaking a vector down into its components is called. 7. The is greater than the coefficient of kinetic friction. SECTION 1 Vectors In your textbook, read about vectors. For each statement below, write true or rewrite the italicized part to make it true. 1. The representation of a vector has both length and direction.. Velocity and speed are both quantities, but only speed is a vector. 3. Mass is not a vector. 4. Force is a vector because it has both magnitude and direction. 5. When you represent a vector on a coordinate system, the tail of the vector is always placed on the origin. 6. If two vectors are represented on a coordinate system and they point in the same direction and have the same length, the vectors are equivalent. 7. When adding two vectors on a graph, you place them tail-to-tail. 1

2 For the following combinations of vectors, draw the resultant vector by connecting the tip of one vector to the tail of the other Circle the letter of the choice that best completes the statement. 1. When adding two vectors that are perpendicular, it is best to use. a. the Pythagorean theorem c. the law of sines b. the law of cosines d. a free-body diagram 13. The law of sines is. a. R A B c. R A B AB cos b. R A B sin sin a sin b d. A A x A y 14. If you know three sides of a triangle but do not know any of the angles, you must use the to find one of the angles. a. Pythagorean theorem c. law of sines b. law of cosines d. resultant vector

4 SECTION Friction In your textbook, read about friction. Circle the letter of the choice that best completes the statement or answers the question. 1. A box with a mass of 10 kg is at rest on a table. The normal force acting on the box is. a. 10 kg upward c. 98 N upward b. 9.8 N upward d. 989 downward. An ice-skater who weighs 00 N is gliding across the ice. If the force of friction is 4 N, what is the coefficient of kinetic friction? a. 50 b. 0.0 c. 4 d. 4 N 3. A sofa is at rest on the floor. The mass of the sofa is 150 kg and the coefficient of static friction between the sofa and the floor is The maximum force of static friction is approximately. a. 150 N b N c. 440 N d N 4. A team of dogs is pulling a heavy sled through the snow in the direction of east. The direction of the force of friction acting on the sled is. a. east b. upward c. west d. downward 5. A mover of household goods wants to push a heavy bureau at rest on the floor across the floor. He puts his shoulder against the bureau and begins to push. He gradually increases the force of his push until the bureau moves when he keeps the pushing force constant. The force of friction. a. decreases and then increases c. remains the same b. increases and then decreases d. continues to increase Refer to the passage below to answer questions 6 8. A crate with a mass of 1000 kg is being pulled along greased tracks by a winch. The winch is exerting a force of 000 N in the horizontal direction along the tracks. The coefficient of kinetic friction between the crate and the tracks is Draw a free-body diagram of the crate showing the gravitational force, the pulling force, and the force of friction. 4

5 7. What is the net force acting on the crate in the horizontal direction? 8. Using Newton s second law, calculate the crate s acceleration. SECTION 3 Force and Motion in Two Dimensions In your textbook, read about force and motion in two dimensions. Circle the letter of the choice that best completes the statement or answers the question. 1. The equilibrant of a force directed 45 west of north has the direction. a. 45 west of north c. 45 south of east b. 45 east of north d. 45 west of south. The equilibrant of force in the positive x-direction and a force in the positive y-direction is directed from the origin to the. a. first quadrant c. third quadrant b. second quadrant d. fourth quadrant 3. The magnitude of the equilibrant of a 3 N force acting toward the east and a 4 N force acting toward the south is. a. 7 N b. 5 N c. 1 N d. 7 N Refer to the passage below to answer questions 4 9. A toy sled with a mass of 1.0 kg is sliding down a ramp that makes an angle of 5 with the ground. The coefficient of kinetic friction between the toy sled and the ramp is In a coordinate system where the x-axis is parallel to the ramp and the y-axis is perpendicular to the ramp, what are the components of the toy sled s weight? 5. In a coordinate system where the x-axis is parallel to the ground and the y-axis is perpendicular to the ground, what are the components of the toy sled s weight? 5

6 6. How large is the normal force acting on the toy sled? 7. What is the magnitude and direction of the force of friction acting on the toy sled? 8. In a coordinate system where the x-axis is parallel to the ramp and the y-axis is perpendicular to the ramp, how large is the net force acting on the toy sled along the x-axis? 9. Using Newton s second law, calculate the acceleration of the toy sled as it moves down the ramp. Refer to the passage below to answer questions Workers on the back of a truck gently place a crate with a mass of 00.0 kg on a ramp going down to the ground. The angle the ramp makes with the ground is 30. The crate does not slide down the ramp but is held in place by the force of static friction. 10. Draw a free-body diagram showing all of the forces acting on the crate. 11. Draw a second diagram showing the components of all the forces acting on the crate in a coordinate system that makes it easy to apply the law of friction. 1. Calculate the coefficient of static friction between the ramp and the crate by assuming that the coefficient is the minimum coefficient needed to keep the crate from sliding. 6

7 Study Guide Teacher Support DISPLACEMENT AND FORCE IN TWO DIMENSIONS All numerical answers have been rounded to the correct number of significant figures. Vocabulary Review 1. components. static friction 3. equilibrant 4. kinetic friction 5. coefficient of kinetic friction 6. vector resolution a 13. b 14. b (15 18 Accept all reasonable answers.) m, 63 north of east 7. coefficient of static friction SECTION 1 Vectors 1. true. velocity 3. true 4. true 5. may or may not be 6. true 7. tip north of east, 641 m/s

8 Study Guide Teacher Support 17. In vector addition you are transforming two vectors into one vector. In vector resolution you are transforming one vector into two vectors. 18. Add each x- and y-component of the vectors to obtain the answer resultant force, F x 5.0 N 4.0 N 1.0 N.0 N F y 3.0 N.0 N 8.0 N 3.0 N R (.0 N) ( 3.0 N) 3.6 N R A sin sin ο A sin ( 3.0 N) sin 90 sin 0.83 R 3.6 N ο 56.0 N in the x-direction, 3.0 N in the y-direction, resultant force is 3.6 N acting at an angle of c 4. c 5. b F net F winch F friction 000 N (0.)(9800 N) 40 N 8. F 40 N a 0.04 m/s m 1000 kg SECTION 3 Force and Motion in Two Dimensions 1. c. c 3. b R A 4. sin sin (9.8 N)sin 5 A sin N B R A (9.8 N) (4.1 N) 8.9 N The horizontal component is 4.1 N and the vertical component is 8.9 N SECTION Friction 1. c. b 5. The x-component is 0 N and the y-component is 9.8 N N 8

9 Study Guide 7. F f k F N (0.5)(8.9 N). N 8. F net F gravity F friction 4.1 N (0.5)(8.9 N) 1.9 N F 1.9 N m/s a m 1.0 kg 10. Teacher Support 1. R A sin sin F friction (00.0 kg)(9.8 N/kg)sin30 A sin N B R A (1960 N) ( N) N F s normal N s N 11. 9

### A Review of Vector Addition

Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine

### PHYS 1111L LAB 2. The Force Table

In this laboratory we will investigate the vector nature of forces. Specifically, we need to answer this question: What happens when two or more forces are exerted on the same object? For instance, in

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

What You ll Learn You will represent vector quantities both graphically and algebraically. You will use Newton s laws to analyze motion when friction is involved. You will use Newton s laws and your knowledge

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Vector Lab Teacher s Guide

Vector Lab Teacher s Guide Objectives: 1. Use s to show addition of force vectors. 2. Vector addition using tip-to-tail method and trigonometry. Materials: Each group must have: 2 ring stands, 2 s, 4 washers,

### Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

### 1.3 Displacement in Two Dimensions

1.3 Displacement in Two Dimensions So far, you have learned about motion in one dimension. This is adequate for learning basic principles of kinematics, but it is not enough to describe the motions of

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Addition and Resolution of Vectors Equilibrium of a Particle

Overview Addition and Resolution of Vectors Equilibrium of a Particle When a set of forces act on an object in such a way that the lines of action of the forces pass through a common point, the forces

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Example (1): Motion of a block on a frictionless incline plane

Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

### 2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N

QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a

### Chapter 3. Technical Measurement and Vectors

Chapter 3. Technical Measurement and Vectors Unit Conversions 3-1. soccer field is 100 m long and 60 m across. What are the length and width of the field in feet? 100 cm 1 in. 1 ft (100 m) 328 ft 1 m 2.54

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

### 8-2 Vectors in the Coordinate Plane

Find the component form and magnitude of with the given initial and terminal points 1 A( 3, 1), B(4, 5) 3 A(10, 2), B(3, 5) First, find the component form First, find the component form Next, find the

### Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

pecific Outcome: i. I can explain, quantitatively, two-dimensional motion in a horizontal or vertical plane, using vector components. Horizontal Two-Dimensional Motion Adding Vectors at ight Angles Horizontal

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### First Semester Learning Targets

First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

### F = ma. F = mg. Forces. Forces. Free Body Diagrams. Find the unknown forces!! Ex. 1 Ex N. Newton s First Law. Newton s Second Law

Forces Free Body Diagrams Push or pull on an object Causes acceleration Measured in Newtons N = Kg m s Shows all forces as vectors acting on an object Vectors always point away from object Used to help

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### Vectors are quantities that have both a direction and a magnitude (size).

Scalars & Vectors Vectors are quantities that have both a direction and a magnitude (size). Ex. km, 30 ο north of east Examples of Vectors used in Physics Displacement Velocity Acceleration Force Scalars

### HW#4b Page 1 of 6. I ll use m = 100 kg, for parts b-c: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).

HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Recap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:

Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Steps to Solving Newtons Laws Problems.

Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

### 8-1 Introduction to Vectors

State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.

### Unit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures

Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;

### Forces: Equilibrium Examples

Physics 101: Lecture 02 Forces: Equilibrium Examples oday s lecture will cover extbook Sections 2.1-2.7 Phys 101 URL: http://courses.physics.illinois.edu/phys101/ Read the course web page! Physics 101:

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Introduction to Vectors

Introduction to Vectors A vector is a physical quantity that has both magnitude and direction. An example is a plane flying NE at 200 km/hr. This vector is written as 200 Km/hr at 45. Another example is

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### All students entering this course in September of the school year are required to complete this assignment.

This course is equivalent to pre-engineering introductory Physics course for the university students. Comprehension of important physical concepts is emphasized in this course, together with development

### Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1)

COROLLARY I. A body, acted on by two forces simultaneously, will describe the diagonal of a parallelogram in the same time as it would describe the sides by those forces separately. Isaac Newton - Principia

### SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS

SOLID MECHANICS DYNAMICS TUTORIAL INERTIA FORCES IN MECHANISMS This work covers elements of the syllabus for the Engineering Council Exam D225 Dynamics of Mechanical Systems C103 Engineering Science. This

### SQA Higher Physics Unit 1 Mechanics and Properties of Matter

SCHOLAR Study Guide SQA Higher Physics Unit 1 Mechanics and Properties of Matter John McCabe St Aidan s High School Andrew Tookey Heriot-Watt University Campbell White Tynecastle High School Heriot-Watt

### 6. Note that the following question has only three choices.

1. A 5.0-newton force and a 7.0-newton force act concurrently on a point. As the angle between the forces is increased from 0 to 180, the magnitude of the resultant of the two forces changes from 0.0 N

### Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law

Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,

### Lecture Presentation Chapter 3 Vectors and Motion in Two Dimensions

Lecture Presentation Chapter 3 Vectors and Motion in Two Dimensions Suggested Videos for Chapter 3 Prelecture Videos Vectors and Motion Projectile Motion Circular Motion Class Videos Motion on a Ramp Acceleration

### Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

### Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

### Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

### Mass, energy, power and time are scalar quantities which do not have direction.

Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### University Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples

University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Wednesday, September

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Friction and Newton s 3rd law

Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

### Lecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter ,

Lecture 4 Vectors Motion and acceleration in two dimensions Cutnell+Johnson: chapter 1.5-1.8, 3.1-3.3 We ve done motion in one dimension. Since the world usually has three dimensions, we re going to do

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### Physics-1 Recitation-3

Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

### 1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

### Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

### 56 Chapter 5: FORCE AND MOTION I

Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference

### Monday 20 May 2013 Afternoon

Monday 20 May 2013 Afternoon AS GCE PHYSICS A G481/01 Mechanics *G411700613* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships Booklet (sent with general

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### 2 Understanding motion. Written by. Dr Janet Taylor

Module Understanding motion UNDERSTANDING MOTION Written by Dr Janet Taylor Revised by Lucy George 00 Introduction Module The Nature of Physics Module Understanding Motion Module Understanding motion.

### Chapter 5 Practice Problems, Review, and Assessment

Section 1 Vectors: Practice Problems 1. A car is driven 125.0 km due west then 65.0 km due south. What is the magnitude of its displacement? Solve this problem both graphically and mathematically, and

### Experiment: Static and Kinetic Friction

PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a